{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 101 "x[c] is an x value on the constant axis. x[p] is on the perspective axis.\ncp converts x[c] into x[p]." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 80 "cp := unapply(x*(1-u)/(x-u), x):\ncp(x[c]); cp(-1);\nlimit(cp(x[c]),x[c]=infinity);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(&%\"xG6#%\"cG\"\"\",&F(F(%\"uG!\"\"F(,&F$F(F*F+F +" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,&\"\"\"F&%\"uG!\"\"F&,&F(F&F 'F(F(F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&\"\"\"F$%\"uG!\"\"" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 70 "the inverse function is named pc. \+ Let's convert x[p] to an x[c] value." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "pc := unapply(solve(cp(x[c])=x,x[c]),x):\npc(x[p]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(&%\"xG6#%\"pG\"\"\"%\"uGF(,(!\"\"F (F)F(F$F(F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 82 "cu1 is the scale \+ factor that takes point 1 to point x when dilated with center u." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 65 "cu1 := unapply((x-u)/(1-u),x ):\ncu1(x[c]); cu1(0); cu1(1); cu1(u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&&%\"xG6#%\"cG\"\"\"%\"uG!\"\"F),&F)F)F*F+F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&%\"uG\"\"\",&F&F&F%!\"\"F(F(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 92 "Which scale factor do we need to a rrive at x[p] (after measuring x[p] on the constant axis)?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "simplify(cu1(pc(x[p])));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&%\"uG\"\"\",(!\"\"F%F$F%&%\"xG6#%\"pGF%F' " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 85 "cu0 is the the scale factur t hat takes point 0 to point x when dilated with center u." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "cu0 := unapply((u-x)/u,x):\ncu0(x[c ]); cu0(0); cu0(1); cu0(u);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&&% \"xG6#%\"cG!\"\"%\"uG\"\"\"F+F*F)" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# \"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&!\"\"\"\"\"%\"uGF&F&F'F% " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "The same question as above for cu1." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "simplify(cu0(pc(x[p])));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&!\"\"\"\"\"%\"uGF&F&,(F%F&F'F&&%\"xG6#%\"pGF&F%" }} }{EXCHG {PARA 0 "" 0 "" {TEXT -1 154 "The reverse test. Take that scal e factor and do the dilation (apply the factor to the inverse of cu0, \+ which yields x)\nand we should get back our pc(x[p])." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "unapply(solve(cu0(x)=f,x),f) (cu0(p c(x[p])));\nsimplify(\");" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&,&*&, &%\"uG\"\"\"*(&%\"xG6#%\"pGF)F(F),(!\"\"F)F(F)F+F)F0F0F)F(F0F)F0F)F)F( F)F0" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(&%\"xG6#%\"pG\"\"\"%\"uGF(,( !\"\"F(F)F(F$F(F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "0 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }