Jotta voimme operoida vapaasti ilman orientaatiomodulissa kuvattuja ongelmia, meidän on sovittava "ideaaliselle"
operaatiollemme
o
aksiomaattisesti seuraavat ominaisuudet:
|
|
Question 1 (2 points)
|
II Problem 1A3 (DIS) (old 1A DIS)
|
Let us define
Is o a binary operation in R ?
Määritellään
Onko o
laskutoimitus joukossa R ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
|
a. |
yes |
0.0% |
|
 |
b. |
no Not correct. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: YES. For any two real numbers the result is a uniquely defined real number.
|
Score: | 0 / 2
|
|
|
|
|
Question 2 (2 points)
|
II Problem 1B3 (DIS) old 1C (DIS)
|
Let I : = [0,1] (closed interval of R) and
Is o a binary operation in I ?
Olkoon I : = [0,1] (suljettu väli R:ssä) ja
Onko o
laskutoimitus joukossa I ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: YES. For any two real numbers in [0,1] their product is a unique real number, and stays inside the interval.
|
Score: | 2 / 2
|
|
|
|
|
Question 3 (2 points)
|
II Problem 1C2 (DIS)
|
Let us define
Is o a binary operation in N = {1,2,3,¼} ?
Määritellään
Onko o
laskutoimitus joukossa
N = {1,2,3,¼} ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
yes |
100.0% |
 |
 |
b. |
no Correct! See the General Feedback. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. For example 1 o 1 = 0 is not in N.
|
Score: | 2 / 2
|
|
|
|
|
Question 4 (2 points)
|
II Problem 1D1 (DIS)
|
Let us define
Is o a binary operation in the set of positive rational numbers?
Määritellään
Onko o
laskutoimitus positiivisten rationaalilukujen joukossa ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
yes |
100.0% |
 |
 |
b. |
no Correct! See the General Feedback. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. For example, the result is not unique:
|
1
2
|
o |
1
1
|
: = 1 + 1 = 2 ¹ 3 = 2 + 1 = |
2
4
|
o |
1
1
|
|
|
|
Score: | 2 / 2
|
|
|
|
|
Question 5 (2 points)
|
II Problem 1E4 (DIS)
|
Let us define
Is o a binary operation in the set of plane vectors R2 ?
Määritellään
Onko o
laskutoimitus tasovektorien joukossa R2 ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: YES. The sum of two plane vectors multiplied by a real scalar is again a plane vector, and unique.
|
Score: | 2 / 2
|
|
|
|
|
Question 6 (2 points)
|
II Problem 2A3 (DIV) old 2B (DIV)
|
Is the operation o a binary operation in the set V, when
V is the set of even integers and
o : to each number pair we assign their mean value.
Onko operaatio
o
laskutoimitus joukossa V, kun
V on parillisten kokonaislukujen joukko ja
o :
kuhunkin lukupariin liitetään niiden keskiarvo.
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
 |
a. |
yes Not correct, see the General Feedback. |
100.0% |
 |
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. For example the average of 2 and 4 is 3, which is not an even integer.
|
Score: | 0 / 2
|
|
|
|
|
Question 7 (2 points)
|
II Problem 2B2 (DIV)
|
Is the operation o a binary operation in the set V, when
V is the set of rational numbers and
o : to each number pair we assign the square root of their sum.
Onko operaatio
o
laskutoimitus joukossa V, kun
V on rationaalilukujen joukko ja
o :
kuhunkin lukupariin liitetään niiden summan neliöjuuri.
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
yes |
100.0% |
 |
 |
b. |
no Correct! See the General Feedback. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. For example the square root of the sum of 1 and 2 is Ö3, not rational.
|
Score: | 2 / 2
|
|
|
|
|
Question 8 (2 points)
|
II Problem 2C3 (DIV) old 2D (DIV)
|
Let A be the set of vowels in the Finnish language; i.e. (in alphabetic order)
A : = { a, e, i, o, u, y, ä, ö }. |
|
The rule · assigns to each vowel pair (v1,v2) a result in the following way:
v1·v2 is the vowel that comes in alphabets right after v1, if any, otherwise u.
Is this a binary operation in A ?
Olkoon A suomen kielen vokaalien joukko, ts.
(aakkosjärjestyksessä)
A : = { a, e, i, o, u, y, ä, ö }. |
|
Sääntö · liittää jokaiseen vokaalipariin (v1,v2)
tuloksen seuraavasti:
v1·v2 on se vokaali, joka on aakkosissa juuri vokaalin v1 jälkeen, mikäli sellaisia on, muutoin
u.
Onko tämä laskutoimitus joukossa A ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! See the General Feedback. |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
For any pair of vowels, the result is exactly one vowel.
|
Score: | 2 / 2
|
|
|
|
|
Question 9 (2 points)
|
II Problem 2D1 (DIV) old 2E (DIV)
|
Let V : = R2. To every pair of plane vectors u and v
u = |
æ ç
è
|
|
ö ÷
ø
|
, v = |
æ ç
è
|
|
ö ÷
ø
|
|
|
we assign a plane vector u o v,
whose coordinates are chosen randomly from the coordinates of u and v
every time when the rule is applied.
Is o a binary operation in R2 ?
Olkoon V : = R2.
Jokaiseen tasovektoripariin u ja v
u = |
æ ç
è
|
|
ö ÷
ø
|
, v = |
æ ç
è
|
|
ö ÷
ø
|
|
|
liitämme tasovektorin
u o v,
jonka koordinaatit valitaan satunnaisesti vektorien
u ja v
koordinaateista joka kerran kun sääntöä käytetään.
Onko o
laskutoimitus joukossa R2 ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
yes |
100.0% |
 |
 |
b. |
no Correct! See the General Feedback. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. The result of for example (1 2)T o (3 4)T is not unique,
since another time the result can be different, and applying the rule many times
it is certain that the result is not the same every time.
|
Score: | 2 / 2
|
|
|
|
|
Question 10 (2 points)
|
II Problem 3A2 (DIG)
|
In the dynamical Sketch above you see two real numbers
u and v and the result u o v of an operation o .
Is this a binary operation in the whole line V : = R ?
Yllä olevassa dynaamisessa taulussa näkyy kaksi
reaalilukua u ja v sekä erään operaation
o
tulos u o v.
Onko tämä laskutoimitus koko suoralla V : = R ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
 |
a. |
yes Not correct, see the General Feedback. |
100.0% |
 |
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. The result exists only when the variables are on the interval [-c,c].
|
Score: | 0 / 2
|
|
|
|
|
Question 11 (2 points)
|
II Problem 3B1 (DIG)
|
In the dynamical Sketch above you see two real numbers
u and v and the result u o v of an operation o .
Is this a binary operation in the interval V : = [-c,c] ?
Yllä olevassa dynaamisessa taulussa näkyy kaksi
reaalilukua u ja v sekä erään operaation
o
tulos u o v.
Onko tämä laskutoimitus
välillä V : = [-c,c] ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! See the General Feedback. |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: YES. For all values of the variables on the interval [-c,c] the unique result stays on the same interval.
|
Score: | 2 / 2
|
|
|
|
|
Question 12 (2 points)
|
II Problem 3C2 (DIG) old 3B (DIG)
|
In the plane geometry dynamical Sketch below you see two vectors
u and v and the result u o v of an operation o .
Is this a binary operation in the whole plane V : = R2 ?
Alla olevassa dynaamisessa tasokuviossa näkyy
kaksi vektoria
u ja v ja erään
operaation o
tulos
u o v.
Onko tämä laskutoimitus koko tasossa V : = R2 ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
|
a. |
yes |
0.0% |
|
 |
b. |
no Not correct. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
CORRECT ANSWER: YES. This is a constant function.
|
Score: | 0 / 2
|
|
|
|
|
Question 13 (2 points)
|
II Problem 3C3 (DIG) old 3C (DIG)
|
In the plane geometry dynamical Sketch below you see two vectors
u and v and the result u o v of an operation o .
Is this a binary operation in the whole plane V : = R2 ?
Alla olevassa dynaamisessa tasokuviossa näkyy
kaksi vektoria
u ja v ja erään
operaation o
tulos
u o v.
Onko tämä laskutoimitus koko tasossa V : = R2 ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
yes |
100.0% |
 |
 |
b. |
no CORRECT! |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
CORRECT ANSWER: NO. There are two results for (nearly) all choices of u and v.
|
Score: | 2 / 2
|
|
|
|
|
Question 14 (2 points)
|
II Problem 3C4 (DIG) old 3D (DIG)
|
In the plane geometry dynamical Sketch above you see two vectors
u and v and the result u o v of an operation o .
Is this a binary operation in the whole plane V : = R2 ?
Yllä olevassa dynaamisessa tasokuviossa näkyy
kaksi vektoria
u ja v ja erään
operaation o
tulos
u o v.
Onko tämä laskutoimitus koko tasossa V : = R2 ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
 |
a. |
yes Not correct. |
100.0% |
 |
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
CORRECT ANSWER: NO. The vector v is fixed, and for example there is no result for u o 0.
|
Score: | 0 / 2
|
|
|
|
|
Question 15 (2 points)
|
II Problem 3D2 (DIG)
|
In the plane geometry dynamical Sketch above you see two vectors
u and v and the result u o v of an operation o .
Is this a binary operation in the
disc seen in the figure ?
Yllä olevassa dynaamisessa tasokuviossa näkyy
kaksi vektoria
u and v ja erään
operaation o
tulos
u o v.
Onko tämä laskutoimitus kuviossa näkyvässä kiekossa (ympyrässä) ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! See the General Feedback. |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: YES. For all values of the variables in the circle the unique result stays in the same circle.
|
Score: | 2 / 2
|
|
|
|
|
Question 16 (2 points)
|
II Problem 3E1 (DIG)
|
In the dynamical Sketch above you see two points (variables)
x and y and the result x o y of an operation o .
Is this a binary operation in the set {P, Q, R, S, T, U} ?
Yllä olevassa dynaamisessa kuviossa näkyy
kaksi alkiota
u and v ja erään
operaation o
tulos
u o v.
Onko tämä laskutoimitus joukossa
{P, Q, R, S, T, U} ?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! See the General Feedback. |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: YES. For all values of the variables in {P, Q, R, S, T, U} the unique result stays in the same set.
|
Score: | 2 / 2
|
|
|
|
|
Question 17 (6 points)
|
III 1A (IVS) FI
|
Seuraavassa on määritelty erilaisia
kahden tasovektorin
u = |
æ è
|
u1
u2
|
ö ø
|
ja v = |
æ è
|
v1
v2
|
ö ø
|
|
|
välisiä operaatioita sanallisessa ja symbolimuodossa. Niissä
'='-merkin oikealla puolella on tavalliset
vektorilaskutoimitukset ja || || on vektorin pituus.
Yhdistä samaa tarkoittavat verbaaliset ja symbolimuotoiset ilmaukset:
|
Preview columns: |
- Tulos on vektorien tavallinen summa.
- Tulos on vektorien keskiarvo.
- Tulos on 1. vektorin ja toisen x-akselille muodostetun
projektion summa.
- Tulos on ensimmäisen vektorin ja toisen puolikkaan erotus.
- Lisätään 1. vektoriin toisen pituinen x1-akselin suuntainen vektori.
- Tulos on tuplasti 1. ja 2. vektorin kärkien välinen vektori.
|
|
u°v = |
æ è
|
u1
v2
|
ö ø
|
+ |
æ è
|
v1
u2
|
ö ø
|
|
|
u°v = |
æ è
|
u1
u2
|
ö ø
|
+ |
æ è
|
v1
0
|
ö ø
|
|
|
|

|
Student response: |
1
|
|
a |
Correct |
2
|
|
b |
Correct |
3
|
|
d |
Correct |
4
|
|
e |
Correct |
5
|
|
c |
Correct |
6
|
|
f |
Correct |

|
General feedback: |
Verbaalis-symbolisia tunnistamistehtäviä! |
Score: |
6 / 6
|
|
|
|
|
Question 18 (2 points)
|
III 2B (IGV) FI
|
Mikä seuraavista sanallisesti ilmaistuista
tason R2 laskutoimituksista
sopii yhteen ohessa esitetyn dynaamisen kuvion esittämän operaation
kanssa?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
 |
a. |
Vektorien tavallinen yhteenlasku. |
0.0% |
|
|
b. |
Tuplasti ensimmäisen ja toisen vektorin kärkien välinen vektori. |
0.0% |
|
|
c. |
Vektorien keskiarvo kierretynä 90 astetta vastapäivään. |
0.0% |
|
|
d. |
Vektorien keskiarvo. |
0.0% |
|
|
e. |
Ensimmäisen vektorin ja toisen puolikkaan erotus. |
0.0% |
|
|
f. |
Tulos on ensimmäisen vektorin puolikas. |
100.0% |
 |
|
g. |
Ensimmäiseen vektoriin lisätään
posiivisen x1-akselin
suuntainen, toisen vektorin pituinen vektori. |
0.0% |
|
|
h. |
Tulos on nollavektori. |
|
|
Score: | 0 / 2
|
|
|
|
|
Question 19 (2 points)
|
III 3B (IGS) FI
|
Mikä seuraavista symbolimuotoisesti ilmaistuista
tason R2 laskutoimituksista
sopii yhteen ohessa esitetyn dynaamisen kuvion esittämän operaation
kanssa?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
u o v := 2(v - u) |
0.0% |
|
|
b. |
u o v := v + u |
0.0% |
|
|
c. |
u o v := |
æ
ç
è |
u1
u2 |
ö
÷
ø |
+ |
æ
ç
è |
v1
0 |
ö
÷
ø |
|
|
100.0% |
 |
 |
d. |
u o v := |
æ
ç
è |
||v||
0 |
ö
÷
ø |
+ u |
|
0.0% |
|
|
e. |
u o v := |
æ
ç
è |
u1
v2 |
ö
÷
ø |
+ |
æ
ç
è |
v1
u2 |
ö
÷
ø |
|
|
0.0% |
|
|
f. |
|
0.0% |
|
|
g. |
|
|
|
Score: | 2 / 2
|
|
|
|
|
Question 20 (0 points)
|
|
Student response: |
Toinen vektori siirretään alkamaan ensimmäisen
päätepisteestä; tulos on vektori origosta tähän pisteeseen. |
Correct answer:
|
|
|
|
Question 21 (3 points)
|
|
Student response: |
Ensimmäisen vektorin puolikkaan ja toisen vektorin erotus. |
Correct answer:
|
Tulos on ensimmäisen vektorin puolikkaan ja toisen vektorin erotus.
The result is the difference of half of the first vector and the second vector.
|
|
|
|
|
Question 22 (4 points)
|
|
Student response: |
Otetaan ensimmäiseisestä vektorista y-koordinaatti ja toisesta x-koordinaatti, niin saadaan tulos. |
Correct answer:
|
1. Ensimmäinen vektori kierretään positiiviselle
x2-akselille ja lasketaan yhteen toisen kanssa.
2. Toisen vektorin toiseen koordinaattiin lisätään ensimmäisen vektorin pituus.
1. The first vector is rotated to the positive x2-axis and the second is added.
2. To the second coordinate of the second vector we add the length of the first vector.
|
|
|
|
|
Question 23 (0 points)
|
|
Student response: |
u o v = (u1,u2) + (v1,v2) = (u1+v1,u2+v2)
|
Correct answer:
|
|
|
|
Question 24 (3 points)
|
|
Student response: |
u o v=1/2(u1,u2)-(v1,v2)=(1/2u1-v1,1/2u2-v2) |
Correct answer:
|
u o v : = 1/2 u - v
|
|
|
|
|
Question 25 (4 points)
|
|
Student response: |
u o v=(u1,u2)+(v1,v2)=(v1,-u1) |
Correct answer:
|
u o v : = |
æ è
|
0
||u||
|
ö ø
|
+ v |
|
|
|
|
|
|
Question 26 (2 points)
|
|
Student response: |
a o b = (u1,u2)+(v1,v2)=(llu1-v1ll,llu2-v2ll) |
Correct answer:
|
a o b : = |a - b|
|
|
|
|
|
Question 27 (3 points)
|
|
Student response: |
u o v = (u1,u2)+(v1,v2)=(-u1,-v2)
OR
(u1 u2)^T o (v1 v2)^T = |
Correct answer:
|
u o v = |
æ è
|
-u1
u2
|
ö ø
|
+ |
æ è
|
v1
-v2
|
ö ø
|
|
|
|
|
|
|
|
Question 28 (2 points)
|
|
Student response: |
a o b on suurin luvuista lal, lbl tai 10 |
Correct answer:
|
Suurin operoivien lukujen itseisarvoista ja luvusta 10.
Maximum of the absolute values of the operands and the number 10.
|
|
|
|
|
Question 29 (2 points)
|
|
Student response: |
Toisesta vektorista vähennetään ensimmäinen vektori |
Correct answer:
|
Ensimmäinen vektori peilataan
x1-akselin yli ja
siihen lisätään toisen vektorin projektio
x2-akselille. Nimittäin:
u o v = |
æ è
|
u1
v2 - u2
|
ö ø
|
= |
æ è
|
u1
-u2
|
ö ø
|
+ |
æ è
|
0
v2
|
ö ø
|
|
|
The first vector is reflected over x1-axis, and added to the projection of the second vector
onto x2-axis. Namely
u o v = |
æ è
|
u1
v2 - u2
|
ö ø
|
= |
æ è
|
u1
-u2
|
ö ø
|
+ |
æ è
|
0
v2
|
ö ø
|
|
|
|
|
|
|
|
Question 30 (2 points)
|
I Problem 10E (OLS)
|
We define two operations o and *: R×R® R as follows:
x o y : = x + y + 1 and x*y : = |
min
| (x,y). |
|
We define a new operation © as follows:
x©y : = |
x*y
(y o x) + 1
|
. |
|
Is this an internal binary operation in R?
Määritellään kaksi operaatiota o ja *: R×R® R seuraavasti:
x o y : = x + y + 1 ja x*y : = |
min
| (x,y). |
|
Määritellään uusi operaatio © seuraavasti:
x©y : = |
x*y
(y o x) + 1
|
. |
|
Onko tämä operaatio laskutoimitus joukossa R?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
 |
a. |
yes Not correct, see the General Feedback. |
100.0% |
 |
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. For example 0©(-2) is not defined.
|
Score: | 0 / 2
|
|
|
|
|
Question 31 (2 points)
|
I Problem 11F (OLS)
|
Let A be a non-empty set and o and *: A ×A ® A two internal binary operation in A.
We define a new operation © as follows:
u©v : = (u*v) - (u o v).
Is this an internal binary operation in A?
Olkoon A epätyhjä joukko ja o ja *: A ×A ® A kaksi laskutoimitusta joukossa A.
Määritellään uusi operaatio © seuraavasti:
u©v : = (u*v) - (u o v).
Onko tämä laskutoimitus joukossa A?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
 |
a. |
yes Not correct, see the General Feedback. |
100.0% |
 |
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
ANSWER: NO. We do not have an operation - in A, at least we do not know there is, so that the definition is
mathematically nonsense.
|
Score: | 0 / 2
|
|
|
|
|
Question 32 (2 points)
|
I Problem 8C (PLS)
|
We define the operation o in Z as follows:
x o y : = 3xy + x.
Is this operation commutative?
Määritellään operaatio o
joukossa Z seuraavasti:
x o y : = 3xy + x.
Onko tämä operaatio vaihdannainen?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
0.0% |
|
|
a. |
yes |
100.0% |
 |
 |
b. |
no Correct! See the General Feedback. |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
Correct answer: NO. For example
0 = 0 o 1 ¹ 1 o 0 = 1.
|
Score: | 2 / 2
|
|
|
|
|
Question 33 (2 points)
|
I Problem 9D (PLS)
|
We define the operation o in Z as follows:
x o y : = xy + x + y.
Is this operation associative?
Määritellään operaatio o
joukossa Z seuraavasti:
x o y : = xy + x + y.
Onko tämä operaatio liitännäinen?
|
Student response: |
Percent Value |
Correct Response |
Student Response |
Answer Choices |
100.0% |
 |
 |
a. |
yes Correct! See the General Feedback. |
0.0% |
|
|
b. |
no |
0.0% |
|
|
c. |
I don't know |
|
|
General feedback: |
Correct answer: YES. We have (check yourself)
(x o y) o z = (yx + x + y)z + yx + x + y + z = x(yz + y + z) + x + yz + y + z = x o (y o z). |
|
|
Score: | 2 / 2
|
|
|
|
|
Question 34 (2 points)
|
|
Student response: |
1. Mielipiteeni näistä tehtävistä: Auttoivat ymmärtämään paremmin sisäisen laskutoimituksen.
2. Sain tehtävistä oikein _50_ prosenttia. |
Correct answer:
|
|
|
|
|
|
 |
|
|
|
|
Total score: |
50 / 75 = 66.7% |
Update grade
Reset attempt
Cancel
 |