Roots of complex equation $z^n = a$

Lehman - Pesonen 2007

http://www.joensuu.fi/mathematics/MathDistEdu/SemProd/CaenActivitiesNov2007.html

1. What are the solutions of $z^n = 1$ (for n = 2, 3, 4)?

Let $z = x + iy = |z|e^{iC}$, with x, y and C real. Play with the dynamic figure (called *sketch*) by pushing the buttons and moving z in the plane.

Problems 1

Reset by pushing the computer keyboard 'R' button. 1a) Give the two solutions of the equation $z^2 = 1$. Answer 1a1): $z_1 = (__) + i(__)$ Answer 1a2): $z_2 = (__) + i(__)$ 1b) Give the four solutions of the equation $z^4 = 1$. Answer 1b1): $z_1 = (__) + i(__)$ Answer 1b2): $z_2 = (__) + i(__)$ Answer 1b3): $z_3 = (__) + i(__)$ Answer 1b4): $z_4 = (__) + i(__)$ 1c) The equation $z^3 = 1$ has three solutions: 1, j and j^2 . Give approximative values of j and j^2 : Answer 1c1): $j = (__) + i(__)$ Answer 1c2): $j^2 = (__) + i(__)$ 1d) For which values of z do the points z and z^4 lay on top of each other? Answer 1d1): $z_1 = (__) + i(__)$ Answer 1d2): $z_2 = (__) + i(__)$ Answer 1d3): $z_3 = (__) + i(__)$ Answer 1d4): $z_4 = (__) + i(__)$ 1e) For which values of z do the points z^2 and z^4 lay on top of each other? Answer 1e1): $z_1 = (__) + i(__)$ Answer 1e2): $z_2 = (__) + i(__)$ Answer 1e3): $z_3 = (__) + i(__)$ Answer 1e4): $z_4 = (__) + i(__)$ 1f) Explain why there are less than 4 solutions. Answer 1f): _____

2. What are the solutions of $z^n = a$ (for n = 2, 3, 4)?

Let $z = x + iy = |z|e^{iC}$, with x, y and C real. Play with the dynamic figure (called *sketch*) by pushing the buttons and moving z in the plane.

Problems 2

2a) Reset by pushing the computer keyboard 'R' button and do not move a. Use the variable point z to find the cartesian coordinates of a. Answer 2a1): Re a = () + i()Answer 2a2): Im $a = (__) + i(__)$ 2b) Use the variable point z to find the polar coordinates of a. Answer 2b1): $\arg a = (__) + i(__)$ Answer 2b2): $|a| = (__) + i(__)$ 2c) Reset again. Click the buttons Show z^2 and $|z| = |a|^{1/2}$. Find the two solutions of $z^2 = a$. Answer 2c1): $z_1 = (__) + i(__)$ Answer 2c2): $z_2 = (__) + i(__)$ 2d) Reset again. Click the button Show z^3 and $|z| = |a|^1/3$. Find the three solutions of $z^3 = a$. Answer 2d1): $z_1 = (__) + i(__)$ Answer 2d2): $z_2 = (__) + i(__)$ Answer 2d3): $z_3 = () + i()$ 2e) What can you say about the (algebraic) sum of the arguments of the solutions? Answer 2e): 2f) Reset again. Click the button Show z^4 and $|z| = |a|^1/4$. Find the four solutions of $z^4 = a$. Answer 2f1): $z_1 = (__) + i(__)$ Answer 2f2): $z_2 = (__) + i(__)$ Answer 2f3): $z_3 = (__) + i(__)$ Answer 2f4): $z_4 = (__) + i(__)$ 2g) What can you say about $z_2/z_1, z_3/z_1, z_4/z_1, z_2/z_4, z_1/z_3, z_p/z_q$? Answer 2g): 2h) What is the shape of the quadrangle $z_1 z_2 z_3 z_4$?

Answer 2h):

3. About the solutions of a complex number equation $z^x = a$, x real

Introduction to Problems 3

For a given complex number z there are q complex numbers that could be denoted $z^{p/q}$, namely the q solutions of the equation in w: $w^q = z^p$.

If x is an integer, there is only one complex number z^x , but if x is general real number, z^x may not mean anything.

Here the complex number denoted by z^x is the number $|z|^x e^{ixC}$, where C is the real number such that $\arg(z) = C + k2\pi$ and $-\pi < C < \pi$.

The locus shown on the screen is the curve $[0, x] \rightarrow \mathbf{C}, t \mapsto |z|^t e^{itC}$.

Problems 3

3a) Moving the point a, check that if r = |z| then $|z^x| = r^x$.

3b) Choose x = 0.5; where are the values of a such that there is a complex number z for which z^x is on top of a?

Answer 3b):

3c1) Choose x = 0.75; where are the points *a* for which two positions of *z* allows z^x is on top of *a* for some *x* ?

Answer 3c1):

3c2) Where are the points a for which there is only one position of z? Answer 3c2):