Linear functions in the plane

A function L : R? — R? is a linear function or linear transformation, if
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Matrix and linear function in the plane We use the abbreviation L (I1> =1L <($1 ))
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Let L : R? — R? be a linear function. Then we can calculate
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This means that the matrix Ay, of the function L is the matrix formed from the images of the standard

base of R? and
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Matrix A;, eigenvalues and eigenvectors

Let L : R?> — R? be a linear function with matrix A := A;. Let us denote x = (2) so that
L(x) = Ax.

Then the eigenvalue equation of L, as well as of A, is the matrix-scalar equation L(x) = cx or, with
the matrix, Ax = cx, where the scalar ¢ and vector x are the unknowns.

Every scalar solution c is an eigenvalue of L and A, and for each eigenvalue c¢ the corresponding
solution vectors x form the eigenspace

E.={x|L(x)=cx}

Nonzero eigenspace vectors are eigenvectors corresponding to the eigenvalue c.

Characteristic equation

We have c¢x = cIx, where [ is the identity matrix [ = <(1) ?)

Therefore
Ax =cx <= Ax—clx=0 <= (A—c)x=0.

The quadratic homogeneous equation (A — c¢I)x = 0 has non-trivial solutions if and only if

det(A—c¢l) =0.



