
Linear functions in the plane

A function L : R2 → R2 is a linear function or linear transformation, if
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Matrix and linear function in the plane We use the abbreviation L
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Let L : R2 → R2 be a linear function. Then we can calculate
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This means that the matrix AL of the function L is the matrix formed from the images of the standard
base of R2 and
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Matrix AL eigenvalues and eigenvectors

Let L : R2 → R2 be a linear function with matrix A := AL. Let us denote x =
(
x1

x2

)
, so that

L(x) = Ax.
Then the eigenvalue equation of L, as well as of A, is the matrix-scalar equation L(x) = cx or, with
the matrix, Ax = cx, where the scalar c and vector x are the unknowns.
Every scalar solution c is an eigenvalue of L and A, and for each eigenvalue c the corresponding
solution vectors x form the eigenspace

Ec = {x | L(x) = cx }

Nonzero eigenspace vectors are eigenvectors corresponding to the eigenvalue c.

Characteristic equation

We have cx = cIx, where I is the identity matrix I =

(
1 0
0 1

)
.

Therefore
Ax = cx ⇐⇒ Ax− cIx = 0 ⇐⇒ (A− cI)x = 0.

The quadratic homogeneous equation (A− cI)x = 0 has non-trivial solutions if and only if

det(A− cI) = 0.


