DEFINITION OF VECTOR SPACE
(V,Å, ·)
is a K-vector space if (0) - (iii) hold:
(0) V is a non-empty set and K
is a field.
(i) (internal binary operation, "addition")
Å is a function V×V
® V, i.e. for each (u,v)
Î
V×V
there is exactly one element
u Å v
: = Å(u,v) Î
V.
(ii) (scaling function, "multiplication by scalars")
· is a function K×V ®
V,
i.e. for each (a,u)
Î
K×V there is exactly one element
a·u
: = ·(a,u) Î
V.
(iii) For addition and multiplication by scalars the
following Axioms hold:
A1. u Å v
= v Å u
for all u,
v Î V
(commutativity).
A2. (u Å v)
Å
w
= u Å (v Å
w)
for all u, v,
w Î V
(associativity).
A3. There exists an element e Î
V,
for which u Å e = u
and e Å u = u
for all
u Î V
(existence of neutral or null element e).
A4. For every u Î V
there is -u Î
V,
for which u Å (-u)
= e and (-u) Åu
= e
(existence of inverse or negative of u).
A5. a·(u Å
v)
= a·u Å
a·v
for all a Î K,
for all u, v Î V.
A6. (a+b)·u
= a·u Å
b·u
for all a,
b Î
K,
for all u Î V.
A7. a·(b·u)
= (ab) ·u
for all a,
b Î K,
for all u Î V.
A8. 1·u = u
for all u Î V.
If (V,Å,·)
is a K-vector space, the field K is called the scalar space
or scalar field.
If K = R, then (V,Å,·) is a
real vector space; if K = C, then (V,Å,·)
is a complex vector space.
In what follows we talk simply about vector space
V instead of a triple.