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Abstract
It is generally conceded that duration variability has huge
effects on the biometric performance of speaker recogni-
tion systems. State-of-the-art approaches, which employ i-
vector representations, apply adaptive symmetric (AS) score-
normalizations to improve the performance of the underlying
system by using specific statistics on reference and probe tem-
plates obtained from additional datasets. The incorporation of
duration information turns out to be vital in order to prevent a
significant raise of entropy, since variation and likely a reduc-
tion of the signal duration from reference to probe samples is
unpredictable.

In this paper we propose a duration-invariant extension
of the AS-Norm, which is capable of computing more robust
scores over a wide range of duration variabilities. The pre-
sented technique requires less computational effort at the time
of speaker verification, and yields a 19% relative-gain in the
minimum detection costs on the current NIST i-vector challenge
database, compared to the provided NIST i-vector baseline sys-
tem.
Keywords: biometrics, speaker recognition, i-vector, score nor-
malization, duration invariance

1. Introduction
In past years speaker recognition has been incorporated in gov-
ernmental, forensic, and industry applications [1] with a wide-
spread scope ranging from court-cases [2] over preventing con-
tact center frauds [3] to key security solutions for high-secure
financial transactions [4]. Within conventional speaker recog-
nition systems characteristic traits of an individual’s voice are
extracted in order to compare them against voice templates of
known identities, i.e. speakers can either be verified or identi-
fied.

Recent studies demonstrated the feasibility of text- and lan-
guage-independent speaker recognition by clustering the acous-
tical features space using Gaussian Mixture Models (GMMs),
where the resulting universal cluster is referred to as Universal
Background Model (UBM) [5, 6]. A speaker’s feature space is
then derived by a mean-only UBM adaptation with respect to
the speaker’s sample where the resulting mean-vector charac-
terising a speaker’s sample is defined as supervector [5, 6]. By
analysing characteristic factors of the supervector offset from
the UBM means, denoted by ~µUBM, Dehak et al. [7] intro-
duced the identity-vector (i-vector) approach, which decom-
poses a speaker- and sample-dependent supervector ~s into a

low-dimensional high-discriminative i-vector ~i by using a to-
tal variability matrix T which is trained by all prior-observed
variational speaker and channel effects:

~s = ~µUBM + T~i. (1)

Consequently, i-vectors represent adequate features within a
speaker-personalized space.

1.1. Motivation and Contribution

Presence of speech signal noise, which can occur due to
e.g., environmental noise, different microphones, channel-
effects, within-speaker variabilities such as ageing, or duration-
mismatches resulting in bad-estimated speaker subspaces,
causes insufficiently estimated supervectors and i-vectors. In
order to establish a robust speaker recognition systems increas-
ing intra-class speaker variabilities need to be reduced towards
a minimum.

This paper places emphasize on the reduction of i-vector
noise arising due to duration variabilities. Effects of duration
mismatches between enrollment and verification samples on i-
vectors have been evaluated in past years pointing out that es-
pecially on short-term samples entropy rises much more than
on long-term samples, which deliver sufficient statistics for i-
vector extraction [8, 9].

Recently, i-vector performances have been analyzed with
respect to sample durations and the according acoustical space
[10]. A linear interrelation between the logarithmic duration
and the amount of unique phone classes has been reported, i.e.
the existence of so-called acoustic holes has been claimed de-
pending on a sample’s duration, which actually strongly influ-
ences the statistical sufficiency of estimating speaker subspaces.
As a consequence, it has been suggested to evaluate score-
calibration methods according to logarithmic duration classes.

Since there are different variations according to the duration
classes, duration-based processing is very effective as we will
show on the 2013–2014 NIST i-vector challenge where we ap-
plied a standard AS-norm to the NIST baseline system and ex-
tended the AS-norm by duration-sensitive development i-vector
comparisons. By comparing i-vectors of the same duration-
range, variations due to duration mismatches can be estimated
and normalized more effectively.

1.2. Organization of Work

This paper is organized as follows: Sect. 2 summarizes rele-
vant related work regarding duration mismatch compensation.
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In Sect. 3 the proposed duration-based extension of the stan-
dard AS-norm will be presented in detail. Experimental results
in terms of biometric performance and evidence strength are
presented in Sect. 4. In Sect. 5 conclusions are drawn and fu-
ture work is discussed.

2. Related Work
Karam et al. [11] analyzed cohorts, which are the nearest to one
speaker for the purpose of performing AS-norm on the i-vector
system suggested by Dehak et al. [7]. Mandasari et al. [8] eval-
uated i-vector systems using AS-norm1 with respect to different
sample durations. The authors demonstrated that basic i-vector
systems significantly suffer from duration mismatches in terms
of forensic applications. By employing the standard AS-norm,
gains in evidence strength and performance could be obtained
over several duration mismatch groups, by limiting evaluations
to full-duration i-vectors. However, although gains were also
yielded on short-duration samples, the vast majority of these
systems tend to suffer from mis-calibration [8, 10, 12].

Kanagasundaram et al. [9] and Sarkar et al. [13] examined
Gaussian Probabilistic Linear Discriminant Analysis (GPLDA)
as a scoring alternative to the basic cosine comparator with fo-
cus on short-duration samples. GPLDA scores the likelihood
of two i-vectors by a prior trained Gaussian model of i-vector
between- and within-variances. Therefore, GPLDA assumes
hidden speaker within- and between-variation factors ~x, ~yr for
an extracted i-vector ~i. Additional i-vector noise is compen-
sated by these factors together with a-priori trained within- and
between-variabilities Ur,V, such that a more robust i-vector
representation can be obtained by [14]:

~i = ~µ+ Ur~yr + V~y + ~εr, (2)

where ~µ represents the development i-vector’s mean, and ~εr are
standard Gaussian distributed residuals. A log-likelihood ratio
(LLR) score is then obtained by estimating, whether the two
i-vectors were emitted by same speaker or not, by assuming
Gaussian distributed i-vectors. In order to compensate duration
mismatches and variabilities as additional noise, GPLDA was
additionally trained with low-durational samples in [9, 13, 14].
In general, more robust systems could be established, however,
these systems yield huge performance losses with respect to
lower durational probe samples.

Hasan et al. [10] analyzed effects of template and probe
samples with respect to the acoustical feature space. They re-
ported a linear dependency between the logarithmic duration
and the amount of unique phone classes observed within a sam-
ple. Hence, they evaluated i-vector GPLDA performance with
respect to duration groups, which were set up logarithmically.
They improved the recognition robustness in terms of the actual
detection cost by using score-calibration methods employing
template and probe durations as quality measurements. Cumani
et al. [15] performed a linear i-vector length normalization
before GPLDA, which uses posterior distribution information
of a-priori known i-vectors and accordingly projects i-vectors.
Performance gains were reported on duration-variant scenarios.

Building on the approach in [10], Mandasari et al. [12]
proposed more score-calibration methods taking template and
probe durations dt, dp into account by using Quality Model
Functions (QMFs) in order to reduce recognition entropy. For

1In the paper they refer to AS-norm as normalized cosine kernel.

this purpose they trained calibration function parameters by lin-
ear regression, i.e the original score S is recalibrated to S′,

S′ = x0 + x1 S + x2 QMF(dt, dp), (3)

where x0,1,2 are parameters to be determined by linear regres-
sion using an additional database. Both, Hasan et al. [10] and
Mandasari et al. [12], improved recognition robustness by re-
ducing entropy employing score-calibration methods and the
GPLDA scoring in order to compensate for noise.

Other researches emphasized on earlier processing stages:
Fatima and Zheng [16], and Zhang et al. [17] propose phone-
based speaker modeling by Gaussian-Mixture-Models which
could be extended to phone-based i-vectors that would ex-
tend computational costs on signal processing compared to the
standard i-vector approach. Stadelmann and Freisleben [18]
discussed the usage of dimension-decoupled UBMs to reduce
over-fitting of the acoustical space clustering. Hautamäki et
al. [19] suggested minimax i-vector extractors to reduce mis-
matches within an i-vector neighbourhood. Since all these ap-
proaches are applied on processing stages before an i-vectors
exists, they are not applicable towards the 2013–2014 NIST i-
vector challenge, thus we emphasize later-stage noise reduction
techniques.

However, if noise was produced by system processing, then
score-calibration and exhaustive GPLDA training phases might
deliver more significant gains in reducing error-propagation ef-
fects than in increasing i-vector performance abilities. In this
paper we follow on a rather simple yet effective approach,
extending the standard AS-norm by duration-invariant statisti-
cal treatments, which increase performance and omit entropy-
emission.

3. System Architecture
The proposed system relies on (1) an i-vector baseline system
on which (2) AS score-normalization is applied. In order to
compensate for effects of varying durations after i-vector ex-
traction the AS-norm will be applied in a (3) probe-duration-
sensitive manner. Fig. 1 depicts the general system design,
which will be described in detail in the following subsections.

3.1. i-Vector Baseline System

The i-vector baseline system is designed according to the NIST
baseline system of the 2013–2014 i-vector challenge which
takes benefits of recent methodologies in i-vector processing
such as mean-subtraction, whitening transformation and length-
normalization [20, 21, 22], i.e. i-vectors can be interpreted as
unit-vectors.

The i-vector means~iµdev-set represent an a-priori average off-
set of characteristic factors obtained from the UBM. By apply-
ing mean-subtraction the i-vector space is centered. However, i-
vector elements, as the space axes, are correlated due to GMM-
supervector element-correlations which occur due to the mean-
concatenation of the GMM joint-mixtures. Hence, whitening is
applied in order to transform correlated data into uncorrelated
data exhibiting uniform variance, i.e. i-vectors are transformed
to an uncorrelated space where the origin represents the average
UBM-supervector deviation. Accordingly a whitening matrix
Wdev-set is computed on a-priori known i-vectors of the devel-
opment set (dev-set), such that an eigen-decomposition of the
i-vector variances is used to transform the i-vector covariance
matrix into an identity matrix.
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Figure 1: Basic operation mode of the proposed duration-sensitive speaker recognition system.

In order to deal with non-Gaussian behaviors, in the base-
line system length-normalization is applied on the i-vectors as
well [20], i.e. i-vectors can be also interpreted as features rep-
resenting unit vectors in a speaker-characterizing space. Raw
i-vectors ~iraw are transformed into unit i-vectors ~iunit applying
the following equation:

~iunit =
(~iraw −~iµraw,dev-set )Wraw,dev-set

||(~iraw −~iµraw,dev-set )Wraw,dev-set||
(4)

where we will further denote~i =~iunit to ease notations.
Speaker references are created by averaging multiple en-

rollment i-vectors resulting in noise-robust templates [22, 23],
which can be further interpreted as a sample-concatenated sim-
ulation where higher-sufficient Baum-Welch statistics are av-
eraged, such that more speaker-characterizing i-vectors are ex-
tracted. At the time of verification the cosine similarity compar-
ison between template and probe i-vectors~it,~ip is used accord-
ing to the NIST baseline system [22]:

S(~it,~ip) =
~iTt ~ip

||~it|| ||~ip||
(5)

where the i-vectors are already length-normalized, i.e. only the
numerator term of Eq. 5 is required for score computations.

3.2. AS-Norm

For the purpose of applying standard score-normalization meth-
ods by preserving the symmetry between i-vectors, Kenny [24]
introduced the symmetric normalization (s-norm). Thereby
the zero score-normalization (z-norm) computes the score
mean µz-norm and standard deviation σz-norm of a template i-
vector compared against an i-vector collection Z, and the
test score-normalization (t-norm) compares similar parameters
µt-norm, σt-norm of a probe i-vector against an i-vector collection
T. Hence, a verification score S can be normalized by centering
impostor scores having unit variance by known impostor score
distributions with respect to a template i-vector and of a probe
i-vector as if it was an impostor i-vector,

S′ =
1

2

(
S − µz-norm

σz-norm
+
S − µt-norm

σt-norm

)
. (6)

The AS-norm S′ differs from s-norm by the scores which are
used to compute the z/t-statistics: rather than using all scores,
only the most competitive scores (e.g. top-100) are applied to
model according speaker cohorts. Dehak et al. [25] applied the

AS-norm on i-vectors and showed that the score normalization
can be already applied on comparison-level as a normalized co-
sine scoring,

S(~it,~ip) =
(~it −~iµz-norm )T (~ip −~iµt-norm )

||Σz-norm~it|| ||Σt-norm~ip||
(7)

where ~iµz-norm ,~iµt-norm denote mean i-vectors of z- and t-norm
sets, and Σz-norm,Σt-norm are the square ”‘root of”’ of accord-
ing diagonal covariance matrices.

3.3. Proposed Duration-invariant Approach

In order to build upon the idea of only taking significant com-
parisons into account, AS-norm is adapted to differentiate be-
tween probe sample durations. As previously mentioned, the
presence of acoustic holes increases the entropy of shorter voice
samples, which motivates the construction of different i-vector
sufficiency-classes. Hence, the AS-norm is extended such that
only comparisons are used for AS-parameter estimation that
have the same quality as the current probe presented for veri-
fication.

In terms of duration as a quality metric, Q quality classes
can be denoted as: Q = {Λ0, . . . ,ΛQ} representing i-vector
sufficiency classes. Samples are then associated by their loga-
rithmic duration ds to a sufficiency class Λc by the lowest log-
duration distance,

argΛc
min | log(ds)− log(dΛc)|. (8)

3.3.1. i-vector sufficiency classes

In the proposed system duration-based groups are defined for
the sufficiency classes, where we limit the number of quality
classes to Q = 5, i.e. obtained results can be directly compared
to those reported in [10, 12]. It was found that evaluations car-
ried out for the adaptive log-duration range from Eq. 8 yielded
no significantly different results. Thus, sufficiency classes are
denoted according to the researches on acoustic holes of Hasan
et al. [10] and Mandasari et al. [12] and summarized in Table 1,
where Λfull is intended to comprise all expected high-sufficient
i-vectors which might cause non-optimal results, but preserves
low-computation efforts. This configuration is adequate for the
purpose of verifying the method.

3.3.2. Parameter Estimation

For the z- and t-norm parameter AS-cohorts are pre-selected in
various ways:
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Table 1: Sufficiency classes and corresponding durations.

Sufficiency class Duration

Λ5 0–5 sec
Λ10 5–10 sec
Λ20 10–20 sec
Λ40 20–40 sec
Λfull ≥ 40 sec

• z-norm simulates impostor verifications on averaged en-
rollment templates, thus only Z i-vectors will be used
which are belong to the same sufficiency class as the
probe i-vector:

Z = {~iΛdp
|max

top100
S(~it,~iΛdp

)}, (9)

• t-norm simulates impostor verifications comparing the
probe i-vector to templates of the development set, where
enrolled speakers have full i-vectors, where the vast ma-
jority of durations are higher than 60 seconds, i.e. only
T i-vectors will be used extracted from samples with
longest durations:

T = {~iΛ>60 |max
top100

S(~it,~iΛ>60)}. (10)

3.3.3. Score estimation and expected improvements

The proposed duration-adaptive extension of AS-norm nor-
malizes the scores according to Eq. 6. By placing emphasis
on duration-based sufficiency classes, recognitions are treated
duration-invariant, i.e. normalized scores are expected to be dis-
tributed without creating entropy due to duration-mismatches.
Further, an overall improvement can be expected, since scores
of all sufficiency classes are normalized to more similar distri-
butions of genuine and impostor scores. As a consequence, no
additional entropy is expected,which could arise due to score-
distribution mismatches by fixed across-classes thresholds.

Fig. 2 illustrates how duration-differing samples will be
processed by the proposed AS-norm extension.

Development set 

i-vectors

Subset

z-norm

Subset

t-norm

Probe i-vector

with duration

Λsubset

dprobe == dΛ

Λ>60

Figure 2: Processing duration-differing samples by suggested
duration-based AS-norm extension.

4. Experimental Evaluation
Experiments are carried out on the 2013–2014 NIST i-vector
challenge dataset [22] in order to evaluate the baseline, the
standard AS-norm, and the duration-based AS-norm extension.
We performed ten 5-fold cross-validations2 on the enrollment
database, and we submitted each system also on the i-vector
challenge where preliminary results were computed by NIST

2On each validation run one enrollment i-vector was randomly taken
as a probe while the remaining i-vectors were used to create a template.

using 40% of the whole evaluation set. The data sets were only
used to evaluate the method and not to tune the submitted sys-
tem.

4.1. Experimental Set-up

The NIST i-vector challenge dataset consists of 1 306 speaker
identities within enrollment and verification sets. For each iden-
tity 5 enrollment i-vectors are given with the according sam-
ple duration. The verification set contains 9 634 probe i-vectors
with the according sample duration as well. Further, a develop-
ment set of 36 572 independent i-vector with sample durations
is given for feature space estimations, independent of the eval-
uation data3.

Focusing on performance evaluation, we place emphasize
on the biometric recognition performance in terms of the Equal-
Error-Rate (EER), and the false non-match rate at a 1% false
match rate (FMR100). In accordance to the ISO/IEC IS 19795-
1 [26] the FNMR of a biometric system defines the proportion
of genuine attempt samples falsely declared not to match the
template of the same characteristic from the same user supply-
ing the sample. By analogy, the FMR defines the proportion of
zero-effort impostor attempt samples falsely declared to match
the compared non-self template. As score distributions overlap
EERs are obtained, i.e. the system error rate where FNMR =
FMR. Further, we estimate the entropy and biometric perfor-
mance in terms of the application-dependent4 minimum detec-
tion cost function [22]

minDCF = min FNMR + 100 FMR, (11)

and the application-independent entropy by the log-likelihood
ratio cost [28] of genuine and impostor scores SG, SI

Cllr =

∑
g∈SG ld(1 + 1

eg
)

2|SG| +

∑
i∈SI ld(1 + ei)

2|SI| . (12)

In accordance to ISO/IEC IS 19795-1 [26], we refer to FMR
and FNMR instead of FRR and FAR, since we are evaluating
the algorithmic performance without knowing the actual failure
to enroll (FTE) and failure to capture (FTC) rates, which are
effecting the biometric system performance rates FRR and FAR,
respectively.

4.2. Data Analysis

The provided i-vectors exhibit 600 dimensions, and their ac-
cording sample durations are log-normal distributed as shown
in Fig. 3. Most of the development sample durations are in the
20–40 second range, i.e. these samples are influencing devel-
opment set based i-vector processing such as mean-subtraction
and whitening.

The vast majority of development samples are located in
Λfull (34.7%), Λ40 (31.1%), and Λ20 (23.1%), then: Λ10

(9.0%), and Λ5 (2.1%). Intentional, all i-vectors have been cen-
tralized to the origin by mean-subtraction in the preparation of
the baseline system, but an unpaired Student t-test of indepen-
dence showed that i-vector elements have significantly different
mean-values compared between all development set i-vectors
and with respect to each sufficiency class. Table 2 compares the

3The usage of information about other trials within the evaluation
data is not allowed by the NIST challenge protocol [22].

4NIST set the i-vector challenge operating point similar to NIST
SRE’10 at an effective prior π̃ = 1

101
[22, 27] with a Bayes threshold

of η ≈ 4.6.
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Figure 4: Biometric performance of i-vector sufficiency classes: (a) minDCF, (b) EER.
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Figure 3: Log-normal distributed sample durations of develop-
ment set data with respect to i-vector sufficiency classes.

amount of significantly independent i-vector elements accord-
ing to their sample durations assuming equal variance5.

Table 2: Student t-test of independent i-vector elements with
respect to sufficiency classes.

dev-set all Λfull Λ40 Λ20 Λ10

Λ5 84 141 91 66 44
Λ10 142 230 140 70
Λ20 132 246 118
Λ40 35 180
Λfull 172

Once mean-subtraction and whitening has been applied,
Λ40 i-vectors exhibit the lowest significant offset to the space

5Results of an unpaired Student t-test assuming un-equal variances
yielded negligible differences in the results.

origin by having the second most impact on both i-vector pro-
cessing due to their representative amount. Further, the most-
sufficient i-vectors have the greatest gap compared to all devel-
opment set i-vectors and to each sufficiency class with at least
140/600 significant different mean positions. Hence, within
the subspace of Λ40 i-vectors seem to be between the subspaces
of high-insufficient and high-sufficient i-vectors. An opposite
effect could be observed on short-duration samples, where the
according i-vectors have larger mean-differences to i-vectors of
more than 20 seconds than to i-vectors of comparable short
duration samples (less than 20 seconds). This effect may be
caused due to high variability of insufficient estimated i-vectors
of short-duration samples, i.e. i-vectors of less than 20 sec-
ond samples are distributed in subspaces that are more close to
themselves than to more-sufficiently estimated i-vectors.

That is, offset vectors can be assumed for each sufficiency
group, which effect the cosine score values due to angle changes
between i-vectors6. These facts underline the need for compen-
sating scoring statistics with respect to sample durations.

4.3. Performance Evaluation

Focusing on the baseline system the highest performance loss
in terms of minDCF is observed for low-durational samples, see
Table 3. As it can be seen, Λ5 i-vectors yielded the most expen-
sive detection costs with 0.932 which is very close to a random
recognizers performance of minDCF = 1. I-vectors stem-
ming from the class with the longest sample duration yielded the
best observed minDCF, i.e. 0.219. However, on all other qual-
ity classes of insufficient i-vectors both AS-normalizations yield
significant gains where the duration-invariant AS-norm outper-
forms both other systems on samples shorter than 20 seconds.
On 20–40 second samples both normalizations could outper-
form the baseline approach, where AS-norm without duration-
sensitive extension achieved the best minDCF for Λ40 i-vectors.
Hence, AS-norm is necessary on insufficiently estimated i-
vectors, and the proposed duration-based extension can yield
up to 19.1% more relative-gain than the standard AS-norm.

In terms of biometric recognition performance both AS-

6Which actually is additive noise that should be well-compensable
by, e.g. GPLDA scoring.
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Table 3: Duration group performances: avg. minDCF.

System Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 0.932 0.721 0.520 0.327 0.219
AS-norm 0.824 0.592 0.434 0.288 0.236
dAS-norm 0.646 0.494 0.413 0.303 0.279

norm approaches outperform the baseline as well, see Table. 4.
Again, the proposed duration-invariant AS-norm yields sig-
nificant gains on samples shorter than 20 seconds on which
a performance break-down for the standard AS-norm can be
observed. However, on higher-sufficient i-vectors the stan-
dard AS-norm outperforms both other systems, which could
be caused due to the non-duration-invariance within the Λfull

i-vectors. EER and minDCF performance comparisons among
quality classes Q are shown in Fig. 4.

Table 4: Duration group performances: avg. EER.

System Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 8.74 3.92 2.68 1.10 0.83
AS-norm 10.51 4.35 2.32 1.04 0.71
dAS-norm 5.63 3.35 2.32 1.09 1.05

Across the entire set of classes the proposed duration-based
AS-norm outperforms both other systems, see Table 5. In sum-
mary, the proposed duration-invariant AS-norm yields a 19.5%
relative-gain in EER, a 32.6% relative-gain in FMR100, and a
15.0% relative-gain in minDCF compared to the baseline sys-
tem on the cross-validation. Further, the duration-invariant AS-
norm significantly outperforms the standard AS-norm which
can also be seen in Fig. 5.

Table 5: System performances: avg. EER, FMR100, minDCF.

System EER FMR100 minDCF Challenge7

Baseline 2.56 5.15 0.428 0.386
AS-norm 2.49 4.48 0.378 0.331
dAS-norm 2.06 3.47 0.364 0.312

The results were approved by the preliminary evaluation of
the 2013–2014 NIST i-vector challenge, where the application
of the standard AS-norm resulted in a 14.2% relative-gain, and
the duration-invariant extension resulted in a 19.2% relative-
gain in minDCF.

Fig. 5 compares the best cross-validation systems accord-
ing to minDCF within a Detection Error Trade-off diagram.
The duration-invariant AS-norm improves the biometric perfor-
mance of the baseline system at all operating points, while the
standard AS-norm mainly yields gains in high-secure regions,
i.e. operating points at low FMRs. In this regions both AS-
normalizations exhibit equal recognition accuracy.

Hence, the proposed duration-invariant AS-norm extension
is applicable to a larger range of scenarios compared to the
standard AS-norm. While the duration-invariant AS-norm only
obtains slightly lower error-rates on minDCF-operating points
compared to the standard AS-norm, another advantage of the

7The results were obtained by the 2013–2014 NIST i-vector online
leaderboard which comprised 40% of the total evaluation data.

0.10.2 0.5 1 2 5 10 20 30 40

0.1
0.2

0.5

1

2

5

10

20

30

40

False Match Rate (in %)

Fa
ls

e
N

on
-M

at
ch

R
at

e
(i

n
%

)

Baseline
AS
dAS
30 FNMs

Figure 5: Systems detection error tradeoff: best systems from
10 cross-validations according to their minDCF.

duration-invariant treatment is observed within entropy evalua-
tions.

4.4. Entropy Evaluation

Table 6 compares the total Cllr of the three systems over all
scores, and among each quality class. On Λ5 i-vectors the base-
line and the standard AS-norm perform similar to or worse than
a random recognizer, and on samples having more than 5 sec-
onds the standard AS-norm significantly outperforms the base-
line system. On high-sufficient i-vector the lowest application-
independent entropy was measured for the standard AS-norm
with Cllr = 0.05, representing a very low cost of the LLR-
scores. However, on sample durations lower than 40 sec-
onds the duration-invariant AS-norm outperforms both other
approaches by yielding a maximum LLR cost of Cllr = 0.35 on
high-insufficient Λ5 i-vectors. Overall the suggested AS-norm
extension exhibits the lowest application-independent entropy
by yielding relative-gains of 88.8% and 41.2%, respectively.

Table 6: Average entropy comparison: all scores & duration-
groups.

System all Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 0.89 0.95 0.93 0.92 0.89 0.86
AS-norm 0.17 1.18 0.41 0.18 0.08 0.05
dAS-norm 0.10 0.35 0.20 0.11 0.07 0.07

Fig. 6 illustrates the Cllr gains on normalized DCFs or like-
wise normalized Bayesian entropy plots, where the actual DCF
(actDCF) represents application-dependent entropy, and the
minDCF represents application-dependent entropy on a well-
calibrated system — in these terms Cllr represents the area un-
der actDCF, since we want to place emphasize on robustness,
i.e. systems which do not require score-calibration. Due to
the cosine scoring most scores of the baseline system lie within
the range [−1,+1], hence, the lowest DCF. The smallest dif-
ference between actual and minimum DCF was observed on
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Figure 6: Entropy comparison of (a) the baseline system, (b) the standard AS-norm and (c) the proposed duration-invariant AS-norm.

η ≈ 0, on any other operating point the baseline system is
effected by huge mis-calibrations. Calibration-improvements
were gained by the standard AS-norm, which delivers adequate
calibration for a different application-points (actDCF curve be-
ing equal to minDCF curve). However, the suggested duration-
invariant score-normalization yields well-calibrated scores on
the vast majority of application-points, which have significant
error-rates. That is, the proposed duration-invariant enables an
enhanced statistical treatment of quality classes, which is ap-
proved by a very low overall entropy emission in terms of Cllr.

4.5. Discussion

Quality classes of i-vector sufficiency were motivated by as-
suming acoustical holes depending on the logarithmic sample
duration. By observing i-vector mean offsets between the qual-
ity classes Q, the need of duration-invariant recognition pro-
cesses were empirically motivated in order to compensate for
i-vector subspace mismatches. Hence, the AS-norm was ex-
tended with respect to duration-based quality classes as pro-
posed in Sect. 3.3.

The experimental results showed that statistical effects of
acoustical holes causing entropy are easy-compensable by an-
alyzing their i-vector subspace variations according to same-
shaped quality classes. Hence, additional processing-entropy
was prevented for many operating points, and significant per-
formance gains were yielded on short-duration samples as well.
However, on high-sufficient i-vectors the standard AS-norm
provides slightly better results, thus combined systems are con-
sidered promising with respect to recognition performance.
Furthermore, more detailed separation of quality classes within
Λfull are expected to yield further gains within the proposed
duration-invariant AS-norm.

Placing emphasize on the computational complexity the
standard AS-norm requires all 36 572 development set i-vectors
for either of the z-norm and t-norm sets in order to determine
the top100 cohorts. In contrast, the duration-invariant extension
utilizes at most 34.7% of the data amount for z-norm for Λfull

quality class normalizations, and 19.4% of the complete devel-
opment set. Thus, proposed extension turns out to be highly
suitable to units having less computational resources.

5. Conclusion and Future Work
The proposed duration-invariant extension of AS-norm is
shown to exhibit high performance by robust evidence strength,
hence we assume the method to be suitable for industry and
forensic application use cases. Entropy in short-term dura-
tion classes could be reduced significantly, and a 19% relative-
gain in biometric performance can be observed compared to the
baseline system, proving the soundness of the presented ap-

proach. Further, the overall forensic evidence strength could
be significantly increased, reducing the actual LLR cost to
Cllr = 0.10. The dAS-norm applies additional information
of verification attempts with known speaker identities that are
very similar according to the used comparator, e.g. by the co-
sine similarity score, such that comparator-based entropy can be
significantly reduced, e.g. measured by the minDCF metric: the
i-vectors are analyzed w.r.t. similar conditioned i-vectors sub-
spaces, rather than to i-vector collections of various extraction
sufficiency.

Building upon our reproducible technique, future research
might investigate template and probe normalizations as per-
formed by Eq. 7 where quality-class-dependent mean offsets are
vanished to achieve higher recognition performances. Though,
limitations are expected in terms of the i-vector subspace cov-
erage by the dAS-norm i-vector collection and in terms of
the comparator’s performance potential which might be out-
performed by considering more fitted speaker comparison tech-
niques. Hence, more sufficient comparators such as GPLDA or
the two-covariance model [29], GPLDA’s dot-product variation
for fast scoring, can be applied on low-entropy i-vectors to con-
cern more signal-based rather than processing-based entropy.

Further, duration-based quality classes can be investigated
on invariant treatments towards their specific characteristics as
i-vector subspaces on earlier processing stages such as duration-
based i-vector extraction techniques. The proposed method
should be easy transferable to other scoring techniques, such
as the GMM-UBM or GPLDA comparators.
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