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Abstract

To model the speech utterance at a finer granularity, this paper

presents a novel state-alignment based supervector modeling

method for text-independent speaker verification, which

takes advantage of state-alignment method used in hidden

Markov model (HMM) based acoustic modeling in speech

recognition. By this way, the proposed modeling method can

convert a text-independent speaker verification problem to a

state-dependent one. Firstly, phoneme HMMs are trained.

Then the clustered state Gaussian Mixture Models (GMM)

is data-driven trained by the states of all phoneme HMMs.

Next, the given speech utterance is modeled to sub-GMM

supervectors in state level and be further aligned to be a final

supervector. Besides, considering the duration differences

between states, a weighting method is also proposed for

kernel based support vector machine (SVM) classification.

Experimental results in SRE 2008 core-core dataset show

that the proposed methods outperform the traditional GMM

supervector modeling followed by SVM (GSV-SVM), yielding

relative 8.4% and 5.9% improvements of EER and minDCF,

respectively.

1. Introduction

Text-independent speaker verification refers to determining

whether the claim of identity is correct or incorrect to

a text-unknown speech utterance. Nowadays, Gaussian

mixture model (GMM) adapted from universal background

model (UBM), as a classic method to cover the space of

acoustic speech context, have been commonly used in speaker

verification [1, 2]. This method can implicitly align the

speech content to its corresponding mixture of UBM through

maximum a posteriori probability (MAP) adaptation. However,

in many practical applications, the acoustic components in

training or testing speech data are limited even short, leading

to the inadequate mixture cover. To make it up, some phonetic

based methods [3, 4, 5] and some text-constraint based methods

[6, 7] are proposed at a finer granularity. One typical work is

phonetic GMM (PGMM), which models the sub-GMM-UBM

systems for phonemes and does score fusion at final decision

stage, performing slightly better than the GMM baseline

[8, 9]. Another typical work estimates an MLLR transform

per acoustic class to model speakers’ characteristics [10, 11].

In fact, from the viewpoint of acoustic phoneme modeling by

hidden Markov model (HMM) in speech recognition, different

phoneme HMMs always share some common states and these

states are considered to be the basic modeling units of speech

context and can reflect more fundamental granularity.

On the other side, modeling the speech utterance to be a

vector or supervector has been proved to be an efficient and

popular way to present a varying number of feature vectors by

a single vector, such as the input to support vector machine

(SVM) [2, 12]. Among several proposed vector modeling

methods , GMM supervector, which is derived by bounding the

Kullback-Leibler (KL) divergence measure between GMMs,

is still commonly used in practice so far, due to its well-done

performance and simplicity, even though the i-vector based

system can perform better in latest NIST speaker recognition

evaluations (SRE) [13, 12].

Due to these considerations, this paper firstly present

a state alignment based supervector modeling method for

text-independent speaker verification. The proposed method

try to convert a text-independent speaker verification problem

to be a state-dependent one by taking advantage of state-

alignment technologies commonly used in speech acoustic

modeling. Firstly, phoneme HMMs are trained. Secondly, the

clustered state Gaussian Mixture Models (GMM) is data-driven

trained by the states of all phoneme HMMs. Next, the given

speech utterance is modeled to sub-GMM supervectors in

state level and be further aligned to be a final supervector.

Besides, considering the duration differences between states, a

weighting method is also proposed for kernel computation. In

this paper, we use the SVM as the classifier for state-aligned

supervectors because of its well robustness and simplicity

without affecting its extensibility.

The paper is organized as follows. In Section 2, the

proposed state aligned supervector modeling method is

presented in details. Section 3 introduces the application as

input to SVM classifier in text-independent speaker verification.

In Section 4, experimental results are presented. Section 5

concludes the paper and outlines areas for future work.

2. State alignment based supervector
modeling

2.1. State alignment based supervector modeling

At the beginning, we need to train the phoneme HMMs using

Baum-Welch algorithm by some speech data with transcripts.

Then, we train the state GMMs by data-driven clustering from

phone HMMs as shown in Fig. 1. After that, all utterances

of training and testing are decoded to state-labeled transcripts

using the Viterbi HMM decoder.

After the state GMMs are well trained, each state-

dependent Universal Background Model (UBM) is obtained

through Maximum A Posterior (MAP) adaptation from

a common state-independent UBM. In this process, each

physical state is treated as a cluster and the data with the same

physical state labels are used to train a state-dependent UBM.

Then, for every utterance with its state labels and the common

state UBMs, their state GMMs can be obtained through MAP

adaptation. At the end, sub GMM supervectors of all the states
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Figure 1: The process of training clustered state models.

are aligned and stacked to be a final state aligned supervector.

The whole process is shown as Fig. 2.

Let’s suppose that the number of state models is S and

the feature dimension is D. the i-th state is modeled by a

D-dimension GMM denoted as λi = {ωi,j ,µi,j ,Σi,j ; j =
1, . . . ,Mi}, as shown in (1):

p(x|λi) =

Mi
∑

j=1

ωi,jN (x|µi,j ,Σi,j), (1)

where Mi is the mixture number of Gaussian components. The

mixture weights ωi,j satisfies the constraint
∑Mi

j=1 ωi,j = 1.

The D-dimension Gaussian density function with mean vector

µ and covariance matrix Σ can be expressed as in (2):

N (x|µ,Σ) =

1

(2π)
D

2 |Σ| 12
exp

{

− (x− µ)TΣ−1(x− µ)

2

}

. (2)

We also modeling the Gaussian supervector of every

state by bounding the KL divergence measurement between

two GMMs derived by Campbell [13]. And we can get the

state aligned supervector v by stacking all S sub Gaussian

supervectors state by state as shown in (3) and (4):

v = [vT
1 ,v

T
2 , · · · ,vT

S ]
T
, (3)

vi = [
√
ω1,iΣ

(−1/2)
i,1 µ

T
i,j , · · · ,

√
ωi,Mi

Σ
(−1/2)
i,Mi

µ
T
i,Mi

]T . (4)

From the implementation point of view, this just means that

all the Gaussian means need to be normalized before stacked

into supervector.

2.2. Duration weight supervector modeling

Considering the duration difference between states, this

paper also proposes a duration weight supervector modeling

method for classification. The process of constructing weight

supervector as follows. Given the i-th state specific UBM and
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...
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Figure 2: The process of state-aligned supervector modeling.

feature vector xt from the utterance, we can first determine the

probabilistic alignment of the feature vector xt into the j-th

UBM mixture component of i-th state as shown in (5):

Pr(j-th mix|xt, i-th state) =
ωi,jN (xt|µi,j ,Σi,j)

∑Mi

k=1 ωi,kN (xt|µi,k,Σi,k)
.

(5)

Then the zeroth-order sufficient statistic by ni,j using

Pr(xt) can be computed in (6):

ni,j =
T
∑

t=1

Pr(j-th mix|xt, i-th state). (6)

And the weight value wi,j , which stands for the

contribution to the j-th mixture components in i-th state of

duration information, can yield by nk,i as in (7):

wi,j = (
ni,j

ni,j + γ
)1/2, (7)

where γ is a fixed factor for weight scaling. Then, we can get

the weight supervector w by stacking all wi,j of all S states as

shown in (8) and (9):

w = [wT
1 ,w

T
2 , · · · ,wT

S ]
T
, (8)

wi = [wi,11, wi,21, · · · , wi,Mi
1]T , (9)

which is the weight supervector of i-th state, 1 is a D-dimension

vector, in which all elements are 1. This just means that the

Gaussian supervector of every state need to be weighted by their

duration information before putting them into a classifier.
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3. Application as input to SVM classifier

The typical application of supervector is using them as input

to support vector machine (SVM) [13] and it is still one of the

good classifier for speaker verification and is used commonly

in practice, even though some current technology like i-vector

can perform better in latest NIST speaker recognition evaluation

(SRE). In this paper, we still use the SVM as the classifier for

proposed method because of its well robustness and simplicity

without affecting its extensibility. As one of the most robust

classifiers for speaker verification, SVM is a binary classifier

which models the decision boundary between two classes as a

separating hyperplane as shown in (10) and (11):

f : RN 7→ R

x 7→ f(x) = a
T
x+ b, (10)

f(x) =
∑

k

a
T
k K(x,xk) + b. (11)

One of the most important thing in SVM is the selection of

the kernel function. The kernel function k(x, y) is designed so

that it can be expressed to k(x,y) = 〈φ(x), φ(y)〉, satisfied to

the Mercer’s theorem, where φ(·) is a mapping function from

the input space to kernel feature space of high dimensionality.

In our work, we select the linear kernel for fair comparison

with the well-known baseline GSV-SVM, except that

combining the weight supervectors in kernel construction.

Furthermore, because of having weight supervectors for

matching the state-aligned training supervector and testing

utterance, we need to train the SVM model for every trial pair.

In kernel function, φ(x) and φ(y) can be rewritten as in (12)

and (13), respectively:

φ(x) = wx ◦wy ◦ x, (12)

φ(y) = wx ◦wy ◦ y, (13)

where the operator ◦ denotes as element-wise multiplication of

vectors.

4. Experimental results

4.1. Experimental setup

In this paper, all experiments are carried out on NIST SRE 2008

telephone male dataset for both training and testing. The core

condition is named short2-short3 [14].

In experimental setup, 39-dimension Mel Frequency

Cepstral Coefficient (MFCC) feature vectors (13 static + ∆
+ ∆∆) are extracted from the speech signal at frame shift 10

ms with 20 ms Hamming window and are subjected to feature

warping.

The standard GSV-SVM system is built as the baseline. A

1024 mixture UBM is trained using SRE2004 1-side training

dataset. Speaker models are obtained by maximum a posteriori

(MAP) adaptation.

We use the Switch Board I data to train 47 phonemes

HMMs with 3 valid states. Each state is modeled to 32-mixture

GMM by HTK tools so that all the 3*47 logical states GMMs

are clustered to 32 physical state GMMs.

We use LibSVM interface in Shogun toolkit [15] as

our SVM classifier. HVite is used to decode all the speech

utterances in SRE dataset [16]

The system performance are evaluated in terms of Equal

Error Rate (EER) and Minimum Detection Cost Function

(MinDCF) [14].

4.2. Results and discussions

We first give the duration distribution of states after decoding all

utterances in the dataset as shown in Fig.3. It can be seen that

different states actually have obviously different durations. So

it is very necessary to weighting the supervector during training

and testing.
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Figure 3: The duration of per state in data set.

Firstly, without considering the affection of language, the

performance in SRE 2008 tel-tel English trial is shown in

Table 1. The proposed method is not as good as the baseline

without weighting. Through adjusting the weight factor to

80, experimental results show that the proposed supervector

modeling method consistently outperforms the traditional

method yielding relative 8.4% and 5.9% improvements of EER

and minDCF, respectively.

Table 1: Performance comparison on tel-tel English dataset.

System EER (%) minDCF

(%)

weight

factor (γ)

Baseline 5.23 2.71 –

State aligned 6.43 3.17 –

State aligned 5.38 2.65 8

State aligned 4.98 2.53 64

State aligned 4.93 2.57 70

State aligned 4.79 2.55 80

State aligned 5.38 2.78 90

In addition, we also evaluate the performance in SRE 2008

tel-tel dataset. As shown in Table 2. It can also be presented

that the proposed supervector method is comparable with the

baseline. The reason of gain in Table 2 not as good as it in Table

1 may be that different language affects the accuracy of labels

during the state decoder. Thus, we need to add some language

compensation method to make it up.

As shown in the experimental result, one problem is that

the weighting factors γ plays an important role in the approach

such that the best gamma value need to be trained using the

development dataset and then fixed and tested in the testing

dataset in practical application.
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Figure 4: DET Performance comparison of baseline and

proposed methods on tel-tel English dataset.

Table 2: Performance comparation on tel-tel dataset .

System EER (%) minDCF

(%)

weight

factor (γ)

Baseline 7.54 3.97 –

State aligned 7.73 3.86 70

State aligned 7.62 3.84 80

State aligned 8.04 3.98 90

5. Conclusion and future work

In order to model the speech utterance at a finer granularity,

this paper presents a novel state-alignment based supervector

modeling method for text-independent speaker verification,

which takes advantage of the state-alignment method in hidden

Markov model (HMM) based acoustic modeling in speech

recognition. The sub-supvectors obtained by data-driven

clustered states are stacked to be a final state-alignment

supervector. By this way, the proposed modeling method can

convert a text-independent speaker verification problem to

a state-dependent one. In addition, considering the duration

differences between states, a weighting method is also

proposed for kernel. In this paper, we still use the SVM

as the classifier for proposed method because of its well

robustness and simplicity without affecting its extensibility.

Experimental results in SRE 2008 tel-tel English dataset show

that the proposed methods outperform the traditional GMM

supervector modeling followed by SVM (GSV-SVM), yielding

relative 8.4% and 5.9% improvements of EER and minDCF,

respectively. In the future, we intend to extend the proposed

state-alignment idea to factor analysis such as i-vector based

text-independent speaker verification.
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