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Abstract 
 
Recently we have introduced a method named inter-dataset 

variability compensation (IDVC) in the context of speaker 

recognition in a mismatched dataset. IDVC compensates dataset 

shifts in the i-vector space  by constraining the shifts to a low 

dimensional subspace. The subspace is estimated from a 

heterogeneous development set which is partitioned into 

homogenous subsets. In this work we generalize the IDVC method 

to compensate inter-dataset variability attributed to additional  

PLDA hyper-parameters, namely the within and between speaker 

covariance matrices. Using the proposed method we managed to 

recover 85% of the degradation due to mismatched PLDA training 

in the framework of the JHU-2013 domain adaptation challenge. 

   

1. Introduction 
 
Recent advances in speaker recognition, namely the introduction of 

i-vectors [1] and Probabilistic Linear Discriminant Analysis 

(PLDA) [2, 3] resulted in very low error rates in the recent NIST 

speaker recognition evaluations (SREs) [3]. However, the success 

of i-vector based PLDA is dependent on the availability of a large 

development set with thousands of multi session speakers for 

estimating the PLDA hyper-parameters. Moreover, the 

development data must be matched to the evaluation data.  

For domains that differ from the standard NIST SREs, the use 

of i-vector based PLDA is less successful. For instance, for text-

dependent speaker recognition it has been shown that the NAP 

framework [4] was more successful [5], unless an unrealistically 

large text-dependent development dataset is available [6].  

In the summer of 2013, two speaker recognition workshops 

were concurrently held at the Johns Hopkins University (JHU) [12, 

13]. The cross domain speaker recognition task was addressed in 

both workshops and was named the Domain Adaptation Challenge 

(DAC). The challenge was motivated by preliminary experiments 

that showed that a PLDA system built on the Switchboard [7] 

corpus had a 3 times larger equal error rate (EER) on the NIST 

2010 SRE (condition 5), compared to a system built on a subset of 

the MIXER corpus (NIST 2004-2008 SREs).  

The work reported in this paper was done in the framework of 

the DAC. The main goal addressed in this paper was improving the 

accuracy of a system built on Switchboard and evaluated on NIST 

2010 SRE, without any adaptation stage (using MIXER) 

whatsoever.  

The research challenge of coping with dataset mismatch has  

been previously addressed using some amount of adaptation data 

[6, 8, 9]. In contrast to these methods,  source normalization (SN) 

[10] and inter dataset variability compensation (IDVC) [15] do not 

require adaptation data to be effective. SN addresses the case when 

the development data originates from several sources but most 

speakers lack samples from each source. This causes dataset 

differences to be captured as inter-speaker variability rather than 

within-speaker (channel) variability. IDVC aims at explicitly 

modeling dataset shift variability in the i-vector space and 

compensating it as a pre-processing cleanup step, and was shown 

in [15] to outperform SN in the framework of the DAC. 

In this paper we investigate types of mismatch other than mere 

shifts in i-vector space, and generalize the IDVC method to cope 

with dataset variability in additional hyper-parameters of the 

PLDA model, namely the within-speaker covariance matrix and the 

between speaker covariance matrix. We present empirical results 

that indicate that compensating the variability of these hyper-

parameters across datasets improves robustness to dataset 

mismatch under the DAC setup. 

The rest of the paper is organized as follows: Section 2 

provides an overview of the experimental setup. Section 3 

describes the proposed method. Section 4 reports the experiments 

and results. In Section 5 we discuss the results and compare to 

related work. Finally, Section 6 concludes. 

 

2. Experimental setup 
 
We use the JHU-2013 speaker recognition workshop DAC setup 

which can be downloaded from [12]. Following is a description of 

the datasets used, the speaker recognition system baseline, and the 

experimental protocol. 

 

2.1. The SWB dataset 

 

The SWB dataset consists of all telephone calls taken from 

Switchboard-I and Switchboard-II. This dataset serves as the 

mismatched development dataset. The dataset consists of 3114 

speakers and 33039 sessions. 

 

2.2. The MIXER dataset 

 

The MIXER dataset consists of a subset of telephone calls taken 

from SREs 2004-2008. For SRE 2008 only interview data is 

included. This dataset serves as the matched development dataset. 

The dataset consists of 3790 speakers and 36470 sessions.  

 

2.3. The NIST-2010 dataset 
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The NIST 2010 SRE [11] condition 5 core extended trial list 

(single telephone conversations for both test and train with normal 

vocal effort) is used for evaluation. The dataset consists of 7169 

target trials and 408956 impostor trials. 

 

2.4. I-vector extractor 

 

The i-vectors used in this work were created by the organizers of 

the workshop for the common use of the participants, and may be 

downloaded from [12]. A detailed description of the i-vector 

extractor is given in [14]. The i-vector extractor uses 40-

dimensional MFCCs (20 base + deltas) with short-time mean and 

variance normalization. It uses a 2048 mixture gender independent 

(GI) UBM to obtain 600 dimensional GI i-vectors. The UBM and 

i-vector extractor were trained using the whole SWB dataset.  

 

2.5. I-vector centering  

 

A standard processing method for i-vector-based systems is to 

center the i-vectors of given datasets at the origin. In our baseline 

system we compute the center of the development data and use it to 

center both the development and evaluation data.  

 

2.6. PLDA based back-end 

 

Prior to PLDA modeling [3], the dimensionality of the i-vectors is 

reduced using GI-LDA to 400. The next steps are within class 

covariance normalization (WCCN) [3] and length normalization 

[3]. Standard gender-dependent (GD) PLDA is then used with full 

rank between and within covariance matrices. 

 

2.7. The Domain robustness task 

 

In the domain robustness task, SWB is used for system training 

and NIST-2010 is used for evaluation. No use of MIXER (not even 

for i-vector centering) is allowed whatsoever. In this work we 

address the domain robustness task. Note that most other works 

addressing the DAC use the unlabeled MIXER for i-vector 

centering and unsupervised adaption of the PLDA system.  

 

2.8. Evaluation measures 

 

We report results by pooling male and female trials. Three error 

measures are used: EER, minDCF (old) and minDCF (new) as 

specified in [11]. 

 

3. Inter Dataset Variability Compensation 

 
IDVC aims at estimating and removing dataset mismatch in the i-

vector domain. This is done by first partitioning the development 

data into subsets corresponding to different sources, and then 

training a PLDA model for each subset. The variability in the 

PLDA hyper-parameters across the subsets is analyzed and a low-

dimensional subspace in i-vector space accounting for most of that 

variability is pursued. The estimated low-subspace is then removed 

from all i-vectors as a pre-processing step before other processing 

(such as length normalization, LDA), PLDA training and scoring. 

The method is described in detail in the following subsections. 

 

3.1. Two covariance model 

 

The PLDA framework assumes that the i-vectors distribute 

according to Equation (1): 

 

                            cs ++= µφ                                        (1) 

 

where ϕ denotes an i-vector, s denotes a speaker component, c 

denotes a channel (or within-speaker variability) component, and µ 

denotes the center of the i-vector space. Components s and c are 

assumed to distribute normally with zero mean and covariance 

matrices B (between speaker) and W (within-speaker) respectively. 

The PLDA model is thus parameterized by {µ, B, W} and the 

goal of any PLDA training or adaptation algorithm is to estimate 

(or adapt) these hyper-parameters. 

 

3.2. Motivation for the proposed method 

 

We hypothesize that some directions in the i-vector space are more 

sensitive to dataset mismatch than other directions. In order to 

make a PLDA system robust to dataset mismatch, we aim at 

finding and removing a low-dimensional subspace which is 

spanned by directions in i-vector space which are relatively 

sensitive to dataset mismatch. 

For a homogenous development dataset, it is unclear if the 

mismatch-sensitive subspace can be estimated without any use of 

adaptation data. However, in our setup (SWB as a development 

set) and in many other setups, the development dataset is 

heterogeneous (it contains for instance both landline and cellular 

data) and consists of relatively homogenous subsets. These 

relatively homogenous subsets of the development dataset may be 

used to estimate the PLDA hyper-parameters for each subset 

independently, and the mismatch-sensitive subspace may be 

estimated from the collection of PLDA models.  

 The hope (verified in the experimental section) is that the 

subspace estimated from the development dataset can be 

generalized to the unseen evaluation dataset. 

 

3.3. Outline of the proposed method 

 

Following is an outline of the proposed method. Details are given 

in following subsections. 

 

Inter-dataset variability subspace estimation 

1. Partition the  development dataset into n  homogenous 

subsets. 

2. Estimate PLDA hyper-parameters {µ i, Bi, Wi} for each 

subset i. 

3. Estimate i-vector subspace Sµ corresponding to the set {µ i} 

4. Estimate i-vector subspace SW corresponding to the set {Wi} 

5. Estimate i-vector subspace SB corresponding to the set {Bi} 

6. Join subspaces to form a single subspace: 

BW SSSS ∪∪= µ
 

PLDA training 

1. Remove subspace S from the i-vectors of the development 

set. 

2. Train PLDA using the standard scheme. 

 

PLDA scoring 

1. Remove subspace S from the i-vectors of the evaluation set. 
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2. Score using the standard scheme. 

 

3.4. Defining homogenous subsets 

 

Given a development dataset (such as SWB), the dataset is split 

into subsets according to available metadata. In this work SWB 

was divided into 12 subsets (6 per gender). The subsets were 

defined according to the different LDC distributions (Table 1). 

Similarly, for some additional experiments, MIXER was also 

partitioned into 8 gender dependent (GD) subsets for SRE 2004, 

2005, 2006 and 2008 (interview).  

 

Table 1. SWB is partitioned into 6 subsets. Each subset is 

then partitioned into two GD subsets. 

Code Description 

97S62 SWB-1 Release 2 

98S75 SWB-2 Phase I 

99S79 SWB-2 Phase II 

2001S13 SWB Cellular Part 1  

2002S06 SWB-2 Phase III 

2004S07 SWB Cellular Part 2  

 

 

3.5. Estimation of the PLDA hyper-parameters for each subset 

 

PLDA hyper-parameters are estimated independently for each 

subset using the standard method [2] . Limited training data may 

become an issue as data is partitioned. In our setup, it is no longer 

possible to reliably estimate the full rank B matrices without some 

sort of smoothing. We therefore smooth the estimation of the B 

matrix by linearly interpolating with its estimated diagonal giving 

the diagonal a weight of 0.1. 

 

3.6. Estimation of  i-vector subspace Sµ  

 

As done in [15] we apply Principal Component Analysis (PCA) to 

the set of vectors {µ i}. The choice of the dimension of the 

subspace is investigated in the experimental section. 

 

3.7. Estimation of i-vector subspaces SW and SB 

 

The following subsection addresses the estimation of SW. The 

estimation of SB is done in a similar manner. For a set of n 

covariance matrices {Wi} we denote the mean of the set by W. We 

use the following recipe for estimating subspace SW. 

 

Estimating subspace SW  of dimension d: 

1. Whiten the i-vector space with respect to matrix W by 

applying Wi→TWiT
t with TTt=W-1 

2. Compute  ∑=Ω 21 Win
 

3. Find the k largest eigenvalues of  Ω. The corresponding 

eigenvectors span subspace SW 

 

The motivation for the proposed scheme is that after whitening 

with the mean within covariance W, the within-speaker variance 

along every axis equals to one for the whitened mean within 

covariance W. For whitened covariance matrix Wi, the variance 

along an axis defined by unit vector v equals to vtWiv. The quantity 

we choose to maximize is the variance of the variances along the 

axis. This is formulated in Equation (2): 
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The solution for Equation (2) is the first eigenvector of matrix 

∑
i

n i

21 W . 

 

3.8. IDVC with unlabeled data 

 

Estimation of  IDVC for the W and B hyper-parameters requires 

the availability of speaker labels. However, a common use case for 

IDVC would be when labeled data is available for PLDA training 

from one source only, and the multi-source data available for 

IDVC training is unlabeled. In this case we propose to apply IDVC 

on the µ hyper-parameter and on the total covariance matrix 

denoted by T which is the covariance of the i-vectors distribution.  

 

4. Experiments and results 
 

4.1. Baseline results 

 

The effect of dataset mismatch is illustrated in Table 2 which 

shows the degradation due to using mismatched data for estimating 

the PLDA hyper-parameters. The degradation due to mismatch in 

estimating µ is up to 50% relative when B and W are estimated on 

SWB. The degradation due to mismatch in estimating B and W is 

up to a factor of 3 when µ is mismatched and a factor of 2 when µ 

is matched. 

Table 2.  The effect of dataset mismatch for estimating 

PLDA hyper-parameters. Results are for pooled male and 

female trials.   

W and B µ 
EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

SWB 

SWB 8.20 0.325 0.687 

MIXER 7.03 0.297 0.676 

NIST-10 training data 4.58 0.218 0.606 

NIST-101 3.96 0.189 0.546 

 MIXER 2.41 0.119 0.374 

MIXER NIST-10 training data 2.30 0.110 0.345 

 NIST-10 2.27 0.110 0.346 

 

 

4.2. IDVC applied to the µ hyper-parameter 

 

The effect of IDVC applied to the µ hyper-parameter is reported in 

Figure 1. The main setup investigated is using SWB for parameter 

estimation (PLDA and IDVC). Furthermore, we examined how a  

                                                 
1
 NIST-10 training data is used to center the training  i-vectors, and NIST-

10 test data is used to center the test i-vectors. 
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Figure 1: The effect of IDVC applied to the µ hyper-

parameter is analyzed for both SWB and MIXER-based 

training. 

 

 

 

 

                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: The effect of IDVC applied to the W and B 

hyper-parameters is analyzed for both SWB and MIXER-

based training. 
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MIXER-based PLDA system is affected by IDVC estimated either 

from SWB or from MIXER itself.  

The results for the SWB setup indicate ~50% relative reduction 

in EER and minDCF(old), and a very significant reduction in 

minDCF(new). The optimal subspace dimension is the maximal 

possible (which is limited by the number of subsets of datasets 

used to estimate  the IDVC subspace). 

For the MIXER setups, no significant change in accuracy is 

observed for dimensions lower than 5. Starting from a dimension 

of 5, a slight degradation is observed. This degradation may be 

explained by the fact that dataset shift is not very severe for 

MIXER. On the other hand, some speaker discriminative 

information evidently resides in the removed subspace. Selected 

results are reported in Table 3. 

 

4.3. IDVC applied independently for the W and B hyper-

parameters 

 

The effects of IDVC applied independently for the W and B hyper-

parameters are reported in Figure 2. As for µ ,the main setup 

investigated is using SWB for parameter estimation (PLDA and 

IDVC). Furthermore, we examined how a MIXER-based PLDA 

system is affected by IDVC estimated from SWB.  

The results indicate quite similar results for applying IDVC for 

both the W and B hyper-parameters. The results for the SWB setup 

indicate even larger accuracy improvements compared to those 

achieved for the µ hyper-parameter. These good results are 

obtained for a subspace dimension in the range of 50-150. 

For the MIXER setups, no significant change in accuracy is 

observed for a subspace dimension lower than 50. For higher 

dimensions, significant degradation is observed. This degradation 

indicates that the eigenvectors corresponding to dimensions higher 

than 50 contain speaker discriminative information. Selected 

results are reported in Table 3. 

 

4.4. IDVC applied jointly for the µ, W and B hyper-parameters  

 

The effect of IDVC applied jointly for the µ, W and B hyper-

parameters is reported in Figure 3. We investigate the setup of 

using SWB for parameter estimation (PLDA and IDVC).  

The results show that additional reduction in error can be  

obtained by applying IDVC on all three hyper-parameters. Selected 

results are reported in Table 3. 

 

Table 3.  Selected results for IDVC applied on the hyper-

parameters µ, B and W. Training of  PLDA and IDVC is 

on SWB. The first three columns list subspace dimension. 

µ W B 
EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

0 0 0 8.202 0.325 0.687 

 10 0 0 3.753 0.192 0.533 

 0 100 0 3.37  0.155 0.496 

 0 0 100  3.53 0.164  0.510 

 10 50 0 3.09  0.138 0.454 

 10 0 50 3.39  0.154 0.469 

 10 30 30 3.15  0.138 0.463 

                                                 
2 Baseline results without using IDVC 
3
 Result from our previous ICASSP paper [15] 

                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The effect of IDVC applied on the hyper-parameters µ, 

W and B is analyzed for SWB-based training. The dimension for 

the µ subspace is 10. 
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4.5. Exploring different data partitions for IDVC training 

 

The experiments reported so far were made using a partition of  

SWB into 12 subsets, following the work in [15]. In this 

subsection we investigate the sensitivity of the IDVC algorithm to 

other partitions which may represent other useful setups. 

We denote the partition used so far by GD-12. We consider 

two additional partitions. First, we create a gender independent 

version of GD-12, denoted by GI-6. 

Second, we select from GI-6 two subsets (SWB Cellular Part 2 and 

SWB-1 Release 2) and create a partition containing these two 

subsets only. We denote this partition by GI-2. We repeat selected 

experiments training IDVC on the two new partitions.  

Table 4 reports the results for IDVC training on the 3 different 

partitions. For µ-based IDVC, the full partition GD-12 is better 

than GI-6 and clearly outperforms GI-2. However, for IDVC 

applied on the hyper-parameters sets {µ, W} and {µ, W, B} the 

differences in accuracy between the partitions are quite small.  

These results indicate that IDVC was able to successfully 

estimate the IDVC subspace from 2 data subsets only.  

 

Table 4.  Selected results for IDVC applied on the hyper-

parameters µ, B and W. Training of  PLDA and IDVC is on SWB. 

Three different partitions for IDVC training are evaluated.     

 

Partition µ W B 
EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

Baseline 0 0 0 8.20 0.325 0.687 

GD-12 10 0 0 3.75 0.192 0.533 

GI-6 5 0 0 4.22 0.197 0.562 

GI-2 1 0 0 5.28 0.231 0.612 

GD-12 10 50 0 3.09  0.138 0.454 

GI-6 5 50 0 3.05  0.141 0.450 

GI-2 1 50 0 3.38 0.154 0.487 

GD-12 10 30 30 3.15  0.138 0.463 

GI-6 5 30 30 3.00  0.138 0.466  

GI-2 1 30 30 3.30 0.152 0.494 

 

 
4.6. IDVC applied without speaker labels 

 

When speaker labels are unavailable IDVC  may be  applied for 

the µ and T hyper-parameters. Table 5 reports results for SWB 

training (PLDA and IDVC) on the GI-2 partition. Comparison of 

Tables 4 and 5 shows that replacing B and W with T results in  

comparable error rates.  

  

Table 5.  Selected results for IDVC applied on the hyper-

parameters µ, and T on the GI-2 partition. Training of  PLDA and 

IDVC is on SWB.     

 

µ T 
EER 

(in %) 

minDCF 

(old) 

minDCF 

(new) 

1 0 5.28 0.231 0.612 

1 25 3.49  0.146  0.477 

  

5. Discussion  
 

Standard PLDA addresses two types of variability: between 

speaker variability and within-speaker variability. Gaussian-PLDA 

which is currently the state-of-the-art assumes that both of these 

types of variability are multivariate Gaussian distributions. 

For heterogeneous data, the Gaussian assumptions are 

inappropriate. Real life data is usually heterogeneous and may 

contain different channels (landline, cellular, microphone), 

different audio durations, different textual content (for text 

dependent speaker verification), etc. 

Source normalization [10] and the preliminary IDVC work 

[15] have addressed dataset shifts differently. SN estimates the 

inter-dataset covariance in i-vector space from labeled subsets of 

the data and transfers it from the between speaker covariance 

matrix to the within-speaker covariance matrix. IDVC [15] 

estimates the same inter-dataset covariance matrix in i-vector space 

and removes the subspace containing that variability. IDVC is 

therefore more effective when the evaluation dataset is highly 

mismatched to the development dataset. 

In this work we extended our original IDVC work to cope with 

dataset mismatch that is not purely an additive shift in i-vector 

space. We look for directions in the i-vector space that have 

between or within-speaker variances that highly differ across 

subsets of the development set. These directions are evidently not 

robust to dataset mismatch and we therefore remove them. More 

generally, we strive at removing directions in i-vector space that 

contribute to high variability in PLDA hyper-parameters across 

different datasets.  

The tuning of our proposed method is still an open issue. It is 

clear from our experiments that a good configuration for the highly  

mismatched SWB-based PLDA system is not suitable for the 

reasonably matched MIXER-based PLDA system. This issue will 

be a topic for future research.  

Finally, we have shown that IDVC applied for the W and B or 

T hyper-parameters can be sufficiently estimated from two subsets 

only. This is a positive indication that IDVC may be useful for 

other setups. 

 

6. Conclusions 
 

In this work we extended the inter dataset variability compensation 

method firstly introduced in [15] to capture variability in the 

hyper-parameters of the PLDA model, namely the center µ, the 

within-speaker covariance matrix W, and the between speaker 

covariance matrix B. 

IDVC has shown to effectively reduce the influence of dataset 

variability on the investigated i-vector PLDA system in the context 

of the JHU-2013 domain adaptation challenge. When evaluated on 

a system trained on the Switchboard corpus, EER was decreased 

by 62%, DCF (old) by 58% and DCF (new) by 33%. These error 

reductions recover 85% of the degradation due to mismatched 

PLDA training (MIXER training is considered to be the matched 

condition). 

Experiments conducted with 3 different data partitions for 

IDVC training indicate that the method works well even when 

trained on two subsets of data only and without speaker labels. 
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