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Abstract 

It is well known that the speaker discriminative information is 

not equally distributed over the spectral domain. However, it is 

still not clear whether that distribution is altered when the 

speech is transmitted through telecommunication channels, 

which introduce different kinds of degradations. In this paper 

we address the analysis of different frequency sub-bands when 

the speech is distorted with different bandwidth filters and 

channel codecs, considering narrowband and wideband 

communications. Our i-vector experiments on different sub-

bands with 782 speakers show that standard landline codecs 

perform generally better than wireless codecs due to their 

intrinsic coding algorithm, their performance being close to, 

but slightly worse than that of uncoded speech. Wideband 

signals offer significant benefits over narrowband for speaker 

verification. A smaller experiment with 21 speakers leads us to 

believe that the emerging super-wideband transmissions may 

provide even better results because it shows important 

speaker-specific content in the band 8-14kHz. 

1. Introduction 

The speaker-discriminative properties of different frequency 

sub-bands are of main interest to select the best performing 

features to perform speaker authentication. It has been widely 

asserted [e.g. 7-16] that the speaker individuality information 

is not equally distributed on the speech spectrum. Based on 

this assumption, a variety of methods have been developed to 

conveniently extract the most useful information from the 

speech signal for further modeling. The main findings of the 

reviewed literature are presented in the next section. However, 

most of these studies did not consider coded-decoded speech, 

present in the majority of today’s speaker verification 

applications, or did not focus on the differences in 

performance given by clean and distorted speech. 

Telecommunication networks have been deployed in the 

recent years at a rapid pace, allowing automatic speaker 

verification to be performed remotely after the transmission of 

speech signals. The drawback is that communication channels 

introduce various kinds of distortions that degrade the 

verification performance. Speaker recognition is further 

hampered if there exists mismatch between the distortion of 

training data and that of testing utterances.  

Two main transmission bandwidths are available 

nowadays: one is the conventional narrowband (NB), which 

limits the signal frequency range to 300-3,400Hz and is 

implemented in the public switched telephone network 

(PSTN). The second one is wideband (WB), offering the 

enhanced range 50-7,000Hz and supported by Voice over IP 

(VoIP) applications among others. Even more extended is the 

range of super-wideband (SWB) transmissions, 50-14,000Hz, 

intended for high-quality videoconferencing. It has been 

shown that the extensions of the NB frequencies contribute to 

better intelligibility, perceived quality [1], human speaker 

identification [2], and automatic speaker verification [3]. For 

efficient transmission, a speech compression algorithm, or 

codec, is applied to the signals. The bit rate of digital speech 

representations is reduced after the coding process resulting in 

loss of signal quality in NB and also in WB [1]. 

In this paper, different to past studies addressing sub-band 

analyses, we employ speech segments that have been 

transmitted through different NB and WB codecs in a 

controlled manner. NIST speaker recognition evaluation data 

is not suitable for our experiments because it is mostly limited 

to NB and the utterances present an uncontrolled variety of 

distortions caused by different handsets and different modes of 

transmission. Our aim is to apply only certain controlled 

distortions to audio segments and to compare their influence 

on the speaker recognition performance. We attempt to 

understand the effects of channel filters and codecs on 

different frequency sub-bands, which we subject to a series of 

speaker verification experiments and whose speaker 

discrimination efficacy we evaluate using F-ratios [4, 5] 

computed. These outcomes are compared to those obtained 

from identical experiments employing clean speech. The 

performances offered by NB and by WB signals have not been 

compared before in terms of the usefulness of the band of 

frequencies added in WB transmissions. Another novelty is 

that we employ state-of-the-art i-vector based speaker 

verification systems [6] in our analyses. After the partition of 

the whole spectral domain, the verification experiments are 

performed on each sub-band independently.   

2. Related work 

Extensive research in the last decades showed evidence that 

speaker specific information is not equally distributed among 

the spectral sub-bands, that is, certain sub-bands present more 

discriminative power than others. Overall, past studies agree 

that the lower frequency region (below 1kHz) and the higher 

frequencies (above 3kHz) provide better recognition accuracy 

than the middle frequencies. This is attributed to the 

occurrence of different phoneme events. For instance, vowel 

formants convey speaker individuality [7], nasals present 

discriminative power in low and mid-high frequencies [8, 9], 

and other consonants in the upper part of the frequency 

spectrum, above 6kHz [9]. The most discriminative 

frequencies found in different studies are shown in Table 1, 

along with the databases employed, indicating whether the 

speech was clean or distorted and its bandwidth. 
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Ref. 
Datasets (distortion, 

frequency range) 

Findings: most 

discriminative sub-bands 

[7]  TIMIT (clean, 0-8kHz) 
Below 0.6kHz and 

above 2kHz 

[10] 
Local set of 20 males and 

13 females (?,0.3-3.4kHz) 

Below 0.6kHz and 

above 2kHz 

[11] 
NTT-Voice Recognition 

(clean, 0-8kHz) 
0-2kHz and 6-8kHz 

[12]  

TIMIT (clean, 0-8kHz) and 

NTIMIT (narrowband, 0.3-

3.4kHz) 

Below 0.6kHz and 

above 3kHz 

 

 

[13]  
TIMIT, 5th dialect region 

(clean, 0-8kHz) 

Below 1kHz and 3-

4.5kHz 

[14] TIMIT (clean 0-4kHz) 
0.05-0.25kHz for all 

phoneme classes 

[15] 

TIMIT, 7th dialect region 

and Helsinki corpora 

(ulaw, 0-5.5kHz) 

Below 0.2kHz and 2.5-

4kHz (TIMIT) and 2-

3kHz (Helsinki) 

[16] 
BT Millar speech database 

(clean, 0.3-3.4kHz) 

1-2.5kHz and 

2.5-4kHz 

[17]  
NTT-Voice Recognition 

(clean, 0-8kHz) 

0.05-0.3kHz, 4-5.5kHz 

and 6.5-7.8kHz 

[8] 
NIST SRE 2008 (µ-law, 

0.3-3.4kHz). 

Around 0.3kHz and 

above 2kHz 

[18]  
Accent of British English 

(clean, 0-11.025 kHz) 

Below 0.77 kHz and  

3.4-11.025kHz 

[9] 
RyongNam2006 (clean, 0-

11.025kHz) 

Below 0.3kHz, 4-

5.5kHz, above 9kHz 

Table 1: Type of data and main findings of the literature 

To detect which frequencies convey speaker information 

the spectral domain is often partitioned into frequency sub-

bands and their effectiveness for speaker recognition analyzed 

in different manners. For instance, Besacier and Bonastre [7] 

applied a speaker recognizer to each sub-band separately and 

then combined their outputs to compute the global decision for 

text-dependent speaker identification. Some years later, they 

proposed an on-line feature selection procedure based on their 

analysis of the most discriminative frequency sub-bands [12]. 

In [16], the cepstral parameters from different sub-band 

systems were recombined with sub-band weighting. Optimum 

band splitting and recombination strategies were addressed in 

[11]. The authors of [10] employed linear and mel scale filters 

to analyze sub-band discrimination power and developed a 

new feature warping function (between linear and mel) that 

provided optimal speaker identification results employing a 

relatively small speaker dataset (20 males and 13 females). 

The speaker discrimination properties have been 

determined by means of Hidden Markov Model (HMM) 

experiments [16] or Gaussian Mixture Models (GMM) [12, 

18], although a very popular approach, adopted in [8, 9, 13, 

14, 15, 17], is to employ the F-ratio measure [4, 5], which 

accounts for the relation between the variance of features 

between speakers and the variance within a speaker. We chose 

to perform separate i-vector experiments on each sub-band to 

detect which frequencies enable better speaker verification and 

to contrast our results with an analysis of F-ratios employing 

the same clean and coded-decoded datasets, in NB and in WB. 

Other investigations were concerned with the design of a 

custom filterbank as an alternative to the conventional mel-

scaled filterbank to extract features that emphasize speaker-

specific information. In [13] the sub-band weights were 

determined using F-ratios and vector ranking.criteria. This 

work was extended by Kinnunen [14] by adapting the weights 

of each sub-band depending on the phone detected in the input 

speech frame, that is, his proposed filterbank emphasized the 

discriminative power of particular phonemes. In [17], the 

authors designed sub-band filters with non-uniform bandwidth 

which was inverse proportional to the F-ratio calculated on 

each frequency sub-band, whereas the filterbank developed in 

[9] was based on an F-ratio study considering different 

phoneme classes. All of these studies showed that the features 

extracted with custom filterbanks outperformed Mel-frequency 

cepstral coefficients (MFCCs), which evidences that the latter 

might not be optimal for the task of speaker recognition. The 

work in [17] was extended in [8] for telephone speech (NB), 

demonstrating the superiority of Linear Frequency Cepstral 

Coefficients (LFCCs) over MFCCs for the nasal and non-nasal 

consonant regions. Also [19] showed the advantages of LFCCs 

over MFCCs in NB speech, and that they were accentuated for 

female speakers. Indeed, the higher resolution of the linear-

spaced filters in the higher frequencies, where important 

speaker individuality is present according to these analyses, 

can capture more spectral detail and lead to better speaker 

recognition results compared to the mel-spaced filters. The 

authors of [17] mentioned that the frequencies outside the 

telephone bandwidth were more discriminative. In the sub-

band analysis of coded-decoded speech presented in this paper 

we would like to assess the good performance of the higher 

and lower frequencies of WB signals that are filtered out in 

NB channels, and also which codec scheme leads to the best 

results in each bandwidth. From this analysis we could derive 

a custom filterbank that would be targeted to the 

corresponding kind of distortion. This is one of our future 

work plans.   

The mentioned studies employed either clean data or 

coded-decoded data in NB only but no WB codecs were 

applied. Besides, no comparison between clean and distorted 

data was attempted. Only [12] detected a decrease of 

performance between TIMIT and NTIMIT (its NB version), 

which was attributed to handset, bandwidth filtering and 

telephone distortions, yet no further explanation was given. A 

number of other studies have addressed the effects of voice 

compression on the speaker verification performance but did 

not provide a sub-band analysis [20-24]. The earlier studies 

consider only NB coding [20, 21].  

Another gap in the literature is the study of how super-

wideband transmissions affect speaker recognition. It remains 

still unclear whether the frequencies beyond 11.025kHz are 

speaker discriminative and how this is altered if a SWB codec 

is applied. Our past work did not find advantages of SWB over 

WB regarding human speaker identification performance [2]. 

The last section of this paper is concerned with a preliminary 

discrimination study using F-ratios with SWB clean and 

codec-decoded speech.  

The remainder of this paper is as follows. Section 3 details 

the speech codec algorithms applied to voice segments while 

Section 4 explains our sub-band analysis procedure. Sections 5 

and 6 provide the results and the discussion, respectively. A 

preliminary super-wideband analysis is included in Section 7. 

Section 8 concludes this work. 
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3. Speech coding-decoding 

In our analyses we consider speech transmitted through NB 

and WB channels and clean speech sampled at 8kHz and at 

16kHz. Original databases of clean speech were downsampled, 

bandwidth-filtered, coded and decoded according to each kind 

of channel degradation and separate sub-band experiments 

were conducted employing each of the six created speech 

versions.  

3.1. Audio material 

As original data we selected only datasets with utterances 

which were recorded directly through microphones and not 

transmitted through communication channels so that we could 

control the degradations of the data. The data should have a 

sampling frequency of at least 16kHz, which would allow the 

study of WB codecs. Corpora meeting these requirements are: 

TIMIT Acoustic-Phonetic Continuous Speech Corpus 

(TIMIT), Resource Management Corpus 2.0 Part 1 (RMI), 

North American Business News Corpus (CSRNAB1), Wall 

Street Journal Continuous Speech Recognition Phase I 

(WSJ0), and Phase II (WSJ1). They contain only one 

language, American English, and only male speakers were 

considered in this analysis.  

The Universal Background Model (UBM) and the total 

variability matrix T of the i-vector extractor [6] were trained 

with combined speech from the train partition of TIMIT and 

the other four datasets, totaling 670 speakers and with 

approximately 89h of speech. We refer to this combined 

dataset as development data in this paper. The test partition of 

TIMIT, containing 112 speakers, was set aside for the 

evaluation of our systems, and thus we refer to it as evaluation 

data. The effects of codec or bandwidth mismatch among 

background training, enrollment and test segments are not 

considered in our analyses, that is, the i-vector experiments 

(background training of the i-vector extractor and 

enrollment/test via cosine distance scoring) were conducted 

separately for each kind of distortion. 

3.2. Speech codecs 

All the speech (for development and for evaluation) was 

transmitted through the four communication channels listed in 

Table 2. Besides, also clean, unprocessed speech with 

sampling frequency of 8kHz (4kHz bandwidth) and of 16kHz 

(8kHz bandwidth) was considered in our experiments. Hence, 

we created 6 versions of the data. 

The codecs of our study offer different speech quality, 

which was assessed in [1]. For the transmission through WB 

codecs the WB filter complying with International  

 

Bandwidth Codec Creator 
Bit rate 

(kbps) 
Algorithm 

NB 

G.711 ITU-T 64 
A-law 

PCM 

AMR-NB 3GPP 12.2 ACELP 

WB 

G.722 ITU-T 64 
SB-

ADPCM 

AMR-WB 3GPP 12.65 ACELP 

Table 2: Narrowband and wideband telephone channels 

through which the original clean speech was transmitted. 

Telecommunication Union (ITU)-T Recommendation P.341 

was applied to the speech sampled at 16kHz, thus band-

limiting the signal to 50-7,000Hz. Differently, for NB 

transmissions the original speech was downsampled to 8kHz 

and band-limited to 300-3,400Hz by channel filtering 

according to ITU-T Recommendation G.712. After applying 

the WB and NB filters simulated code-decode processes were 

applied1. The operation of each codec is briefly described in 

next sub-sections along with the expected effects on the 

frequency sub-bands for speaker recognition. Further 

information can be found in ITU Recommendations and in 

European Telecommunications Standards Institute (ESTI) 

documents.  

3.2.1. G.711 

This NB codec operates at a bit rate of 64kbps, which 

corresponds to 8kHz sampling rate and 8 bits per sample. Its 

encoding schemes can be µ-law pulse code modulation (PCM) 

(in use in North America) or A-law PCM (in use in the other 

source countries for our data). The difference between them is 

the method to sample the analog signal (both in a logarithmic 

way). G.711 encoding/decoding requires little processing (it is 

a low complexity codec) and produces high quality speech, but 

consumes more bandwidth than other NB codecs, for instance 

the AMR-NB. This trade-off between bandwidth, processing 

power required for the encoding/decoding function, and voice 

quality is common among the different compression 

algorithms. Its main applications are digital telephony (it is 

widely in use in PSTN) and VoIP. 

3.2.2. AMR-NB 

The Adaptive Multi-Rate (AMR) family of codecs was 

designed for GSM and UMTS cellular networks. AMR can be 

further categorized as AMR-NB and AMR-WB, depending on 

the bandwidth employed. These codecs are frequently used in 

VoIP and wireless telephony. The AMR-NB encodes the 13-

bit linear PCM signal at eight different bit rates in the range 

from 4.75 kb/s to 12.2kb/s and bases its coding scheme on 

Algebraic Code Excited Linear Prediction (ACELP).  

The parameters of the ACELP model are Linear Prediction 

(LP) filter coefficients, transmitted in the form of Line 

Spectral Pairs (LSPs), and fixed and adaptive codebook 

indices and gains, which encode the excitation (residual) 

signal. After the transmission of these parameters, at the 

decoder, the waveform is synthesized by filtering the 

reconstructed excitation signal through the LP synthesis filter. 

The LP coefficients represent the speech spectrum. ACELP is 

a more complex algorithm than PCM, hence it is expected that 

this codec, operating at a lower bitrate than the G.711, would 

introduce more distortions into the signal. 

3.2.3. G.722 

This ITU codec can operate at 48, 56, and 64kbps, although its 

main mode is 64kbps. It is used in the Integrated Services 

Digital Network (ISDN) and in VoIP applications. It applies 

the Adaptive Differential PCM (ADPCM) algorithm to encode 

two separate sub-bands (0-4kHz and 4-8kHz). 48kbps are 

dedicated to the lower sub-band, where most of the voice 

energy is concentrated, while the remaining 16kbps are 

dedicated to the higher sub-band. This difference in allocated 

bandwidth may cause a greater distortion of the high 

frequency components. 

1The source code for the ITU-T software tools is available at 
http://www.itu.int/rec/T-REC-G.191/_page.print 
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3.2.4. AMR-WB 

As AMR-NB, it is mainly used for speech compression in 

mobile telephony. It belongs to the same family of codecs. The 

operation bit rate chosen in our experiments was 12.65 kbps. 

This higher compression implies that it requires more 

processing cycles than G.722, i.e. more complexity, and it is 

likely to degrade the speech to a greater extent in comparison 

with the other WB codec. Voice Activity Detection and 

Comfort Noise Generation algorithms are adopted to decrease 

the bit rate, this is also expected to introduce degradations. 

Its coding algorithm is ACELP, as for AMR-NB. In this 

case, two frequency bands, 50–6,400Hz and 6,400–7,000Hz, 

are coded separately. The parameters of the encoder are: the 

Immittance Spectral Pair (ISP) vector built from the LP 

parameters, fractional pitch lags, Long Term Prediction (LTP) 

filtering parameters, innovative codevectors, and sets of vector 

quantized pitch and innovative gains [22]. The higher 

frequency band (6,400–7,000Hz) is reconstructed in the 

decoder using the parameters of the lower band and a random 

excitation when the codec operates at a bit rate lower than 

23.85kbps. Hence, the higher frequencies might be more 

distorted than those of the lower band. 

4. Spectral sub-band analysis 

We conducted a series of independent i-vector experiments 

considering feature vectors with cepstral coefficients (LFCCs) 

derived from each of the sub-bands. A linear filterbank of 32 

triangular filters with 50% overlap was employed to extract 

the cepstral coefficients. 28 overlapping groups of 5 filters 

were considered: the S-th sub-band consisted of the outputs of 

filters S to S+4, where S = 1,…,28. The spectrum was thus 

partitioned according to the distribution of the 32 filters, being 

the low cutoff frequency of the first filter at 0Hz, 0Hz, 300Hz, 

and 50Hz, and the high cutoff frequency of the 32th filter at 

4kHz, 8kHz, 3.4kHz and 7kHz, for clean 4kHz bandwidth, 

clean 8kHz bandwidth, NB coded-decoded, and WB coded-

decoded signals, respectively.   

After energy-based voice activity detection (VAD), four 

LFCCs were extracted from each group of filters with a 25ms 

Hamming window with 10ms frame shift. These coefficients 

constituted the feature vector, discarding the 0th coefficient 

and the log energy. A total of 168 i-vector experiments were 

performed with these features, resulting from 28 sub-bands x 6 

versions of our data.  

As baseline, we also performed a separated set of 6 

experiments, one with data of each distortion, in which the 

whole spectrum was considered, limited by the frequencies of 

the NB and WB filters as described above. 32 linearly-spaced 

triangular filters were employed and feature vectors of 60 

components computed: the first 20 LFCCs excluding the 0th 

coefficient and the log energy feature, extracted using a 25ms 

Hamming window with 10ms frame shift, and the 

corresponding delta and delta2 coefficients.  

We trained the 168+6 i-vector extractors separately, 

employing different versions of the development data 

accordingly. Hence, the UBM and the total variability matrix 

T were estimated from either clean or coded-decoded 

development data in NB or in WB. The UBMs were built with 

1024 Gaussian components and the T matrix estimated with 

400 total factors. Five iterations were used for the EM 

training. The i-vector extraction and the cosine distance 

scoring processes were implemented in Matlab. Of the 10 

utterances per speaker in our evaluation data, 5 were 

concatenated for speaker enrollment and 5 were used for 

testing. Confronting each possible pair of enroll/test 

utterances, this generated 5 client scores per speaker and (N-

1) x 5 impostor scores per speaker, where the number of 

speakers N is 112. 

Applying the Probabilistic Linear Discriminant Analysis 

(PLDA) compensation technique did not improve the 

performance given by cosine distance scoring. The PLDA 

model, estimated from the same development data as for the 

UBM and the T matrix, was not adequate for the 

compensation in our case, where feature vectors of only four 

components are employed. Further analyses to determine 

optimal training data and model parameters are needed. The 

PLDA compensation did benefit the performance in the case 

of the experiments on the full band, although we omitted 

these results in this paper. 

We also used the F-ratio [4] to measure the discriminative 

power of different regions of the spectra of our evaluation 

data. The same filterbank with 32 filters was applied to 

compute the spectral energy around the central frequency of 

each filter. They had an uniform bandwidth of 242Hz, 485Hz, 

188Hz, and 421Hz for clean 4kHz bandwidth, clean 8kHz 

bandwidth, NB-processed, and WB-processed signals, 

respectively.  

Given a sub-band k, the F-ratio was computed as: 
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The higher the F-ratio, the more speaker-specific 

information is conveyed by the spectral sub-band. However, 

the F-Ratio measure also presents some limitations [25]. If the 

classes – in our case, the speech from different speakers – 

have the same means or are multimodal the F-ratio 

discrimination power is weak and can be misleading. Since 

our data, pooled from all phoneme classes, is a mixture 

distribution with multiple modes, we do not expect that the F-

ratio to reliably indicate the speaker-discriminative regions of 

the spectra, although we use it thoughtfully in this paper to get 

an idea of the location of discriminative information. 

The F-ratios can also be derived from the divergence, a 

distance measure based on information theory, assuming the 

data is normally distributed and equal between-talkers 

covariance matrices [25]. 

5. Results 

The results of our experiments show the speaker-

discriminative properties of each group of frequency sub-

bands. The graphs of Figures 1 and 2 show the performance 

of our i-vector experiments in terms of the Half Total Error 

Rate (HTER), for clean and degraded signals sampled at 8kHz 

and 16kHz, respectively. This performance measure assumes 
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equal prior probabilities and detection error costs. The 

frequency of each of the dots plotted corresponds to the 

central frequency of the sub-band considered, e.g. for the first 

sub-band of NB speech (300-864Hz) the central frequency is 

(864-300)/2+300=582Hz. The extended range of frequencies 

of the non-filtered (clean) speech can be seen in the graphs.  

The superior performance of clean speech with respect to 

coded-decoded speech can be observed, as well as the 

consistent better performance of WB codecs compared to NB- 

 

 

Figure 1: HTER (%) for NB speech and clean (uncoded) 

speech of 4kHz bandwidth. Feature vectors of 4 LFCCs. 

 

Figure 2: HTER (%) for WB speech and clean (uncoded) 

speech of 8kHz bandwidth. Feature vectors of 4 LFCCs. 

Distortion HTER (%)  

TIMIT 

G.711 (NB) 6.29 

AMR-NB (NB) 8.56 

Uncoded 4kHz 3.75 

G.722 (WB) 2.03 

AMR-WB (WB) 2.89 

Uncoded 8kHz 0.88 

 Table 3: HTER (%) considering the whole spectrum. 

Independent experiments for each distortion.  

transmitted speech. This is in concordance with the overall 

HTERs of our 6 baseline experiments when the frequency 

bands were not separated, given in Table 3. A relative 

decrease of the HTER of 77% has been found comparing clean 

4kHz and 8kHz data. The frequencies beyond 4kHz account 

for this verification error reduction. 

The plots of the popular F-ratio measure computed on our 

evaluation data are shown in Figure 3, for clean and degraded 

signals sampled at 8kHz and 16kHz. The frequency on the x 

axis corresponds to the central frequency of each filter in the 

filterbank. It can be seen that the F-ratio values corresponding 

to clean data are higher than for transmitted data. However, 

only the comparisons of relative values between different 

frequencies are relevant in our case, since the voice 

transmission also involved a level-equalization process, 

characteristic of telephone channels, that “normalizes” the 

signal energy: the speech was level-equalized 26dB below the 

overload point of a 16-bit digital system using the voltmeter 

algorithm of the ITU-T Recommendation P.56.  

The frequency regions of clean speech exhibiting higher 

speaker discriminative ability are, as expected and in 

concordance with the literature, below 0.7kHz and between 2 

and 4 kHz [12, 13, 15]. The behavior found with coded-

decoded speech and the relation with our i-vector sub-band 

experiments are discussed in next section. 

6. Discussion 

The advantages of WB- over NB-transmitted speech are 

obvious comparing Figures 1 and 2. The low (50-300Hz) and 

the high (3,4-7kHz) frequencies bands carried by the 

enhanced bandwidth contribute to a better speaker verification 

performance in comparison to NB, as also manifested in the 

results of Table 3.  

From the clean data in Figure 1 it can be concluded that 

the frequencies filtered out in the NB channels provide better 

speaker verification accuracy. The performance of the first 

two sub-bands (0-727Hz and 121-848Hz) is especially good 

compared to the rest possibly due to the presence of glottal 

 

 

 

Figure 3: F-ratio values for NB, WB, and clean speech. 

112 males of the TIMIT test partition. The G.711 and 

AMR-NB lines are almost indistinguishable. 
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information and the first formant in this frequency region [13, 

17]. Comparing the performances of clean 4kHz bandwidth 

speech to that of clean 8kHz bandwidth speech below 4kHz, it 

can be appreciated that the latter leads to generally lower 

HTERs because the range of frequencies considered in each 

sub-band is doubled, that is, an experiment on a wider sub-

band results in better accuracy. The lower performance of 

coded-decoded speech compared to clean speech in individual 

sub-bands is partially due to this fact. 

Considering NB transmissions (Figure1), the G.711 codec 

exhibits a behavior closer to that of clean speech while the 

performance is more degraded by the AMR-NB codec, 

noticeably for frequencies beyond 1kHz. The performances of 

both codecs decrease from 0.3 to 1kHz (as for clean speech). 

In the frequencies 1 – 1.5kHz, the performances with clean 

speech and with G.711 improve while that of AMR-NB 

continues decreasing. This difference can be justified by the 

mode of operation of the codecs. As mentioned in Section 3, 

the low complexity of the G.711 results in higher quality 

audio compared to the more efficient AMR-NB [1]. It seems 

that the ACELP algorithm at the low bit rate of 12.2kbps 

induces some loss of speaker individuality in the signal 

synthesized from the transmitted LP coefficients and residual, 

and thus hampers automatic speaker recognition, in contrast 

to A-law PCM coding.  

In the case of WB speech (Figure 2), the landline codec 

G.722 shows better speaker verification performance 

compared to the wireless AMR-WB in every frequency sub-

band. This difference, as in the NB case, can be explained by 

the difference in coding algorithms and by the lower bitrate of 

AMR-WB. The precision of the description of the low sub-

band by the G.722 (0-4kHz) seems to be more accurate than 

that of the high sub-band (4-8kHz), where the speaker 

verification performance is worse in comparison to clean 

speech. The AMR-WB greatly degrades the performance for 

the frequencies beyond 6kHz, since the high-band speech 

signal was reconstructed using a random excitation, in 

contrast to the lower band, for which the residual was 

transmitted. However, the discrimination of the frequency 

band 3-4kHz, which conveys more speaker-specific content 

than other bands, is enhanced by this codec since the 

difference between the error of transmitted and the error of 

clean speech is lower than for other frequency ranges. This 

fact contributes to a better overall performance, which is close 

to that of the G.722 codec, as can be seen in Table 3. It has 

been found in [22] that improved verification results can be 

obtained from feature vectors with the AMR-WB encoded 

parameters than with MFCCs from the decoded speech. This 

implies that most of the distortion is caused by the signal 

reconstruction in the decoding process. 

The introduced frequency distortions are consistent with 

our F-ratio analysis. Considering NB, the distorted and the 

clean speech show a similar behavior. In WB, for the G.722, 

the discriminative power of the frequencies beyond 4.5kHz 

does not increase greatly from its value at 4.5kHz, as occurs 

for clean speech of 8kHz bandwidth. For the AMR-WB, the 

F-ratio values at the frequencies of the separately encoded 

high-band (6.4-7kHz) tend to decrease. This band is decoded 

employing a random excitation in the 12.65kbps operation 

mode, which presumably originates the higher distortion in 

comparison to other sub-bands. 

The speaker verification accuracy found for clean data 

above 4kHz is not as high as in the bands 0-700Hz and 2-

4kHz, as opposed to other results in the literature [7, 12, 17, 

18]. Their databases, however, comprised male and female 

speech and the reported results refer to the mixed set of 

speakers. It is possible that the female speech carries speaker-

discriminative information beyond 4kHz and that this affects 

the overall results reported in these studies. Differently, our 

experiments involved only male speakers, and provided 

results consistent with [13]. The authors of that investigation 

found little speaker individuality conveyed beyond 4kHz 

considering only clean male speech of the TIMIT database. 

For female speech, the F-ratios did not decrease dramatically 

beyond 4kHz and their female speaker recognition accuracy 

based on Vector Ranking (VR) was as high in the band 6-

8kHz as in the band around 3kHz, which did not occur for 

male speech. This suggests that female voices carry important 

speaker-specific high frequency content that may enhance the 

verification performance to a greater extent than for male 

voices when signals of bandwidth greater than 4kHz are 

considered. 

7. Preliminary super-wideband analysis 

While the frequency regions below 8kHz contain most of the 

speech energy and their importance has been extensively 

assessed for speaker recognition, very little attention has been 

paid to the role of frequency bands above this frequency.  

The studies in [9, 18], examining discriminative 

frequencies of clean speech up to a bandwidth of 11.025kHz, 

found important speaker-specific content conveyed beyond 

8kHz. Extending their studied bandwidth to 16kHz and 

considering channel transmissions, we employ the newly 

compiled database of Australian English, (AusTalk) [26], 

with audio sampled at 44.1kHz. The audio segments were 

downsampled to 32kHz and transmitted through a SWB 

channel. Only 21 male speakers were considered in this 

preliminary analysis. The SWB channel filter limits the 

bandwidth to 50-14,000Hz (14KBP in ITU-T 

Recommendation G.191), and the codec applied was 

G.722.1C, an ITU-T codec at 48kbps. The speech was also 

transmitted through the codecs described in Section 3. 

Figure 4 shows the F-ratio values calculated as indicated 

in Section 4 from the transmitted speech. They present some 

differences with respect to the other database considered in 

this paper. Looking at the clean 8kHz plot, the most 

discriminative frequencies are found below 0.7kHz (as 

before) and above 2.5kHz, with an important region between 

4.3 and 5.8kHz, approximately. This discriminative range 

might be originated by the piriform fossa, which is part of the 

pharynx and causes characteristic spectral structures [17]. 

This range is not noticeable in the analysis of the TIMIT 

database, probably due to the different male speaker 

populations. Interestingly, high F-ratio values can be found at 

9kHz and above 11kHz, possibly related to consonants with 

high-frequency energy such as fricatives. It can also be seen 

that the G.722.1C codec exhibits a behavior close to that of 

clean speech, introducing little distortion.  

The regions with speaker-specific content in the upper 

part of the spectrum are expected to improve speaker 

verification over WB. However, we could not perform i-

vector experiments with SWB data since all the speech 

datasets we have available are either too small, or sampled at 

a rate lower than 32kHz (required for SWB transmissions), or 

present already some sort of distortion. However, we are 

conducting more research in this direction employing the 

AusTalk database [26]. We foresee that SWB transmission 
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Figure 4: F-ratio values for NB, WB, SWB, and clean 

speech. 21 males of the AusTalk dataset [26]. The G.711 

and AMR-NB lines are almost indistinguishable. 

channels will be widely deployed in the future and intend to 

show that speaker verification can be considered as an 

additional criterion when judging the benefits of the extended 

bandwidths in comparison to the traditional NB. 

8. Conclusions 

In the present work we have examined the outputs of i-vector 

speaker verification experiments performed on different 

spectral sub-bands when the speech was degraded by NB and 

WB transmissions. In agreement with the results in the 

literature, the most discriminative frequency regions of our 

clean speech dataset are below 0.7kHz and between 2 and 

4kHz. When this dataset was transmitted through telephone 

channels, the landline codecs offered better results than the 

more complex mobile telephony codecs but performed 

slightly worse than clean speech. Each of the codecs caused 

various effects on the frequency bands, attributable to the 

different coding algorithms. The wireless codec AMR-NB 

provides significantly lower recognition results than G.711 

and than clean speech in the band 1-1.5kHz. G.722 generates 

some loss of speaker individuality content in the band 4-

8kHz. AMR-WB emphasizes the discrimination of the region 

3-4kHz but degrades the verification accuracy beyond 6kHz 

to a greater extent in comparison to other frequencies. 

Clearly, the frequencies beyond the NB telephone bandwidth 

improve speaker recognition. These effects are consistent with 

the F-ratio measures on degraded speech, although the latter 

are weak indicators of speaker-discriminative regions in our 

case [25].  

Our preliminary F-ratio analysis on clean and transmitted 

SWB signals reveals that important speaker-specific content 

is found in the region 8-14kHz. This finding is encouraging 

and indicates that speaker recognition may benefit from the 

frequencies beyond WB. Due to the limitations of the F-

ratios, it would be necessary to conduct such an experiment to 

verify the usefulness of an even more extended transmission 

bandwidth. 

In future work we would like to conduct similar 

experiments with different datasets including female speech 

and, if available, with an extended signal bandwidth. We will 

also examine the design of a custom filterbank that enhances 

the most important frequencies of transmitted speech. 
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