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Abstract

In this paper, we propose an integration of random subspace
sampling and Fishervoice for speaker verification. In the
previous random sampling framework [1], we randomly sample
the JFA feature space into a set of low-dimensional subspaces.
For every random subspace, we use Fishervoice to model the
intrinsic vocal characteristics in a discriminant subspace. The
complex speaker characteristics are modeled through multiple
subspaces. Through a fusion rule, we form a more powerful
and stable classifier that can preserve most of the discrimina-
tive information. But in many cases, random subspace sam-
pling may discard too much useful discriminative information
for high-dimensional feature space. Instead of increasing the
number of random subspace or using more complex fusion rules
which increase system complexity, we attempt to increase the
performance of each individual weak classifier. Hence, we pro-
pose to investigate the integration of random subspace sampling
with the Fishervoice approach. The proposed new framework is
shown to provide better performance in both NIST SREOS and
NIST SRE10 evaluation corpora. Besides, we also apply Proba-
bilistic Linear Discriminant Analysis (PLDA) on the super-
vector space for comparision. Our proposed framework can
improve PLDA performance by a relative decrease of 12.47%
in EER and reduced the minDCF from 0.0216 to 0.0210.
Index Terms: supervector, joint factor analysis, random sam-
pling, Fishervoice, Probabilistic Linear Discriminant Analysis

1. Introduction

In the field of the speaker verification, Gaussian Mixture Model
(GMM) [2] based Joint Factor Analysis (JFA) [3] has become
a popular approach for many systems. It achieves performance
improvements by addressing issues relating to speaker charac-
teristics and channel variability. However, due to numeric in-
stability and sparsity of the supervectors in a high-dimensional
space, the approach also has over-fitting problems during the
model training process, which limits performance improve-
ment.

Based on JFA, Dehak et al. [4] proposes an i-vector feature-
based speaker verification system which not only reduces the
computational time but also achieves high performance on the
NIST evaluation. The system compressed both channel and
speaker information into a low-dimensional space called total
variability space, and accordingly projectes each supervector to
a total factor feature vector called the i-vector. Then Linear Dis-
criminant Analysis (LDA) [4] and Probabilistic LDA (PLDA)
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[5] are applied on the i-vectors for further dimension reduction.
To better model the data distribution, heavy-tailed PLDA [6]
was proposed by assuming that the priors on the latent variables
in the PLDA model follow a Student’s ¢ distribution. Later,
it was found that Gaussian based PLDA with length normali-
zation [7] achieves similar performance as heavy-tailed PLDA
with less computation resource.

Due to the complexity of the speaker recognition problem,
it is difficult to pursue a single optimal classifier to meet all
requirements. Therefore, instead of developing a single opti-
mal classifier, we proposed an ensemble learning framework
based on random subspace sampling [8][9] on JFA feature space
[1] (denoted hereafter by JFA + subspace). For every random
subspace, we use Fishervoice [10][11] to model the intrinsic
vocal characteristics in a discriminant subspace. The complex
speaker characteristics are modeled through multiple subspaces.
Random subspace [8] is a popular random sampling technique
to strengthen weak classifiers. Random subspace sampling can
alleviate the overfitting problem since it samples a set of low-
dimensional subspaces to reduce the discrepancy between the
training set size and the feature vector length. Then multi-
ple stable Fishervoice classifiers constructed in each random
subspaces are fused to produce a more powerful classifier that
covers most of the feature space. Such an algorithm is in-
spired by the success of subspace modeling in face recognition
[12][13][14].

In many cases, random subspace sampling may discard too
much useful discriminative information for a high-dimensional
feature space. Although increasing the number of random
subspace and using more complex fusion rules may address
this issue to maintain performances, the method will also in-
crease system complexity and computational burden. A better
approach to improve the combined classifiers is to increase
the performance of each individual weak classifier. Hence,
we propose to investigate the integration of random subspace
sampling with the Fishervoice approach (denoted hereafter by
Fishervoice + subspace). Such combination may lessen un-
necessary loss of information and maximize class separability
to build classifiers for the sampled features. Finally, we apply
linear fusion for the classifiers to produce the final classification
output.

The rest of the paper is organized as follows: In Section
2 we describe the background of JFA, PLDA and our previous
JFA + subspace method. Then we describe the details of the
proposed framework. Implementation and experimental results
on the NIST SREO8 male short2-short3 task of tel-tel condition



and NIST SRE10 core-core task of common condition 6 are pre-
sented respectively in sections 4 and 5. Finally, the conclusions
are presented in section 6.

2. Background
2.1. Joint Factor Analysis (JFA)

According to the JFA theory [3], the speaker and channel
noise components, which reside in the speaker- and channel-
dependent supervectors respectively, have Gaussian distribu-
tions. Given the Gaussian mean of the utterance h from the
speaker ¢ who has data from H; utterances, we get a G X F'
dimension supervector M; ;, by concatenating the GMM-UBM
speaker vectors.

(C))

where s; 1,4 is the F'-dimensional GMM-UBM speaker vector
for the g-th Gaussian mixture. Then M; j, is further decom-
posed into four supervectors:

T
M n = [Si,h,1 Sih,2 - Sijh,g - Si,h,G]

Min =m+Vy; + Dzin + Uzip 2

where m is the UBM supervector mean, U is the eigenchannel
matrix, V' is the eigenvoice matrix, D is the diagonal residual
scaling matrix, x;, is the channel- and session-dependent eigen-
channel factor, y; is the speaker-dependent eigenvoice factor
and z;p is the speaker residuals. Based on the result of [11],
the GMM speaker supervector is substituted by the first three
parts of Eq.(1) as follows:

sin =m + Vy; + Dz 3)

2.2. Probabilistic Linear Discriminant Analysis (PLDA)

Recently, Ioffe [15] and Prince et al. [5] proposed a novel
approach called probabilistic LDA (PLDA) which applied
generative factor analysis modeling to solve the subspace recog-
nition problem. Suppose each speaker ¢ has multiple H; utte-
rances. The PLDA theory assumes that each speaker vector 71,
can be decomposed as

nin = m + ®6; + Taup, + €ip, 4)

where m is a global offset, the columns of ® provides a basis
for the speaker-specific subspace (i.e. eigenvoices), I" provides
a basis for the channel subspace (i.e. eigenchannels), §; and
a;n, are corresponding latent identification vectors and €;5, is a
residual term. In [4], 3; and «;), are both assumed to have stan-
dard normal distributions, €;, is Gaussian with zero mean and
diagonal covariance matrix . Under Gaussian assumptions,
a;n, can always be eliminated and the modified model becomes:

nin = m + ®B; + ein (5)

Kenny et al. [6] introduced heavy-tailed PLDA which used
student’s ¢ distributions to model 3;, a;n and €;;,. Then a
simple length normalization [7] was proposed to deal with non-
Gaussian behavior of the speaker vector, which allowed the
use of probabilistic models with Gaussian assumptions. This
non-linear transformation simplifies the second step of Radial
Gaussianization proposed in [16] by scaling the length of each
whitening transformed speaker vector 7,5 to unit length. Most
frameworks based on PLDA work with i-vector representations.
Both the PLDA model and i-vector extractor involve dimension
reduction through similar methods of subspace modeling. In
[17], PLDA was proposed for use in the original supervector
space.
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2.3. Fishervoice

Since the dimension of the supervector is relatively high when
compared with the number of limited training samples, the con-
structed subspace classifier through Fishervoice [11] is often
biased and unstable. The projection vectors may be greatly
changed by the slight disturbance of noise in the training set.
Besides, the dimension of the final projected subspace is much
higher than the i-vector approach [4]. So the original JFA super-
vector is first processed by PCA dimension reduction to form
the principal feature space. Then we randomly sample the PCA
projected feature space into a set of low-dimensional subspaces.
Classifiers are built for each Fishervoice projected discriminant
subspace and their results are integrated to obtain the final de-
cision [1]. The Fishervoice projection can be described as three
components:

1. Perform PCA for dimension reduction with the subspace
projection Wi, producing the result fi:

T
f1 = Wi x,where Wi = arg max

Wil|w;||=1

o]

where z is an arbitrary supervector and W is the covari-
ance matrix of all of the supervectors in the training set.

2. Apply whitening to reduce intra-speaker variations with
the matrix Wa, producing fs:

f2 = W f1, where Wi S, Wo = I, Wq = PA”Z @)

where S, is the standard within-class scatter matrix, ®
is the normalized eigenvector matrix of S,,, and A is the
eigenvalue matrix of S,,.

3. Extract discriminative speaker class boundaries infor-
mation by subspace projection matrix W3 — from
the above whitened subspace, f3 is obtained using the
nonparametric between-class scatter matrix Sj, accor-
ding to Eqgs.(8-9) in [10]:

fs = WZ fo, where W3 = arg max HWTS{,WH ®)
W:flw[|=1
Finally, classifiers are constructed in each random subspace.
The overall subspace projection matrix W, for g-th random
subspace is given by:

Wq = Wi1qWaq W3, ©)

These relative weak classifiers are combined into a powerful
and stable classifier afterwards. Such algorithm can therefore
preserve nearly all the discriminative information.

3. Random subspace sampling in
Fishervoice

Following JFA + subspace framework [1], we propose an
integration of random subspace sampling and Fishervoice for
speaker verification. The first step of Fishervoice can perform
dimension reduction without losing as much discriminative
information compared to random subspace sampling, while the
second and third steps are most essential in reducing within-
class variations and emphasizing discriminative class boundary
information. So performing random sampling between the
first two steps is less likely to sample unfavorable information
after removing some useless information through PCA in the
first step. Besides, random subspace sampling would supple-
ment some discriminative information which will be dropped by



PCA. Such combination may lessen unnecessary loss of infor-
mation and maximize class separability for last two subspace
projection of Fishervoice to build more accurate individual
classifier for the sampled features.

Figure 1 illustrates the overall organization of the proposed
framework. The first three parts above the first dotted line are
preprocessing procedure similar to the JFA + subspace method
[1]. The middle parts between the two dotted lines are inte-
gration of random subspace sampling and Fishervoice. The de-
tails are illustrated as follows:
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Figure 1: The overall organization of the proposed framework.

3.1. Training stage

The training procedure is described as follows:

1. We believe that the structure of JFA speaker supervec-
tors can capture the probabilistic distribution of acoustic
feature classes in the overall acoustic space. So accor-
ding to the JFA-based supervector extraction process in
Section 2.1, the speakers’ feature supervectors (i.e., the
inputs in Figure 1) are extracted from each utterance in
the training set.

2. Since the dimensionality of supervector is to high for
direct subspace analysis, the high-dimensional super-
vectors are first divided into K subvectors equally for
PCA dimension reduction. The dimensionality of each
subvectors is reduced to L by Wpi(k = 1,2,..., K).
Then all projected subvectors are concatenated to con-
duct a second level PCA dimension reduction with Wp,,.
The dimensionality of the projected supervector O; , is
further reduced from K x L to J.
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3. We then perform integration of random subspace sam-
pling with Fishervoice. A set of random subspace
{fi1, f12,..., fig} is obtained from the projected
subspace f1 in section 2.2, each of them span (E1 + E»)
dimensions. The primary E; dimensions are fixed so
as to keep the first E largest eigenvalues in Wy, which
can preserve the main intrapersonal variations. The
remaining F> dimensions are randomly selected from
the remaining (P — E1) dimensional space, where P
is the dimensionality of the supervector after the first
step of Fishervoice. Then in each subspace fiq(q¢ =
1,2,...,Q), we perform the corresponding projection
matrices W2 W3. Thus we generate () classifiers in total.

4. During target speaker enrollment, we perform the inte-
gration of random subspace sampling and Fishervoice
on each projected target speaker supervector from step 2
and form the final @ training reference vector O¢rqin (q).

3.2. Testing stage

In the testing stage, we obtain the corresponding input feature
vector with similar method as the training stage. Then each
testing supervector is projected into the testing reference vec-
tor O¢est (1) via the qth random subspace in the same manner as
the enrollment process. After that, the distance score is calcu-
lated between Oyrqin (1) and Otcs¢ () in terms of the normalized
correlation (COR) as follows:

|| Otrain (T)Tetest (r) ||
\/etrain (T)Tet'rain (T)etest (T)Tetest (T)
10

D(etrai’n ("’)7 Otest (T)) =

Finally, the outputs are weighted and combined. The weights
are obtained by grid search based on the training set with values
giving the lowest EER.

4. Experimental setup
4.1. Testing protocol

All experiments are performed on the NIST SREO8 male
short2-short3 task of tel-tel condition and NIST SRE10 core-
core task of common condition 6. For NIST SRE08, each
training and testing conversation is telephone apeech with 1,285
true target trials and 11,637 imposter trials. For NIST SRE10,
they are also telephone speech utterances with 178 true target
trials and 12,825 imposter trials. There is no cross-gender trials.
The performance for NIST SRE08 is evaluated using the Equal
Error Rate (EER) the minimum decision cost function (DCF),
calculated using Chniss = 10, Cra = 1 and Piarger = 0.01.
For NIST SREI0, the performance is evaluated using the EER
and the new minimum decision cost function (DC F¢.,), cal-
culated using Cniss = 1, Cra = 1 and Piarge: = 0.001.

4.2. Feature extraction

First, ETSI Adaptive Multi-Rate (AMR) GSM VAD [18] is
applied to prune out the silence region of the speech file. Then
the speech signals are segmented into frames by a 25ms Ham-
ming window with 10ms frame shift. The first 16 Mel fre-
quency cepstral coefficients and log energy are calculated; to-
gether with their first and second derivatives. A 51-dimensional
feature vector is obtained for each frame (the frequency window
is restricted to 300-3400 Hz). Finally, feature warping [19] is
applied to the MFCC features.



4.3. The baseline system

The baseline system employs gender-dependent 2,048-
Gaussian UBMs with JFA. First, we trained the UBMs using
NIST 2004-2006 SRE male telephone speech utterances,
including 4,222 recordings.

Then, for the JFA part, we train the gender-dependent
eigenvoice matrix V' using Switchboard II Phase 2 and 3,
Switchboard Cellular Part 2, NIST 2004-2006 SRE, including
893 male speakers with 11204 utterances. The rank of the
speaker space is set to 300. The eigenchannel matrix U is also
trained in a gender-dependent manner from 436 male speakers
with 5,410 speech utterances from NIST 2004-2006 SRE. The
rank of the channel space is set to 100. We use the expecta-
tion maximization (EM) algorithm with 20 iterations for all of
the above training. The diagonal residual scaling matrix D is
extracted from the UBM covariance without EM estimation.

4.4. Subspace training

The gender-dependent Fishervoice projection matrices are con-
structed from telephone speeches in NIST 2004-2006, Switch-
board II Phase 2, Phase 3 and Switchboard Cellular Part 2.
Here, we create two training data sets: 1) 563 male speakers
each with 8 different utterances, same as in JFA + subspace
(denoted hereafter by standard set). 2) all useful utterances of
the above 563 speakers (some speaker with more than 8 utte-
rances) from the above corpus (denoted hereafter by full set).
The Fishervoice projection matrices, W1, W2 and W3, have
dimensions [J, P], [(E1 + E2),799], [799, 550], respectively.
These correspond to the upper limit of their matrix ranks. For
both Fishervoice + subsapce and JFA + subspace framework,
the parameter (R in Eq.8 of [10]) that controls the number of
nearest neighbors for constructing nonparametric between-class
scatter matrix Sj, was set to 4, according to the median number
of sessions for each speaker. The number of slices K is set to
16. The parameters L and J for the PCA dimension reduction
before Fishervoice are both set to 4,000. The number of random
subspaces @ is set to 5.

4.5. Score normalization

We use gender-dependent score normalization (TZ-norm) for
different speaker verification systems. The SRE04, SREO5 and
SREQ06 corpora are adopted as the T-norm corpus and Switch-
board II Phase 2 and 3 corpora as the Z-norm corpus. The
number of speakers is 400 for T-norm and 622 for Z-norm.

5. Results

In this section, we present the individual and combined results
based on the NIST SRE08 male short2-short3 task of tel-tel con-
dition and NIST SRE10 core-core task of cc6 for the systems
described above.

5.1. Integration of random
Fishervoice

subspace sampling and

We first explore the sensitivity of the Fishervoice + subsapce
approach under different dimensions of P, E; and E> on
NIST SREO8. The parameter of P is set at 1300, 1400 and
1500. (E1 + E?2) is constrained to a constant value of 800 for
dimension reduction and complementary discriminative infor-
mation. As mentioned before, we apply integration of random
subspace sampling and Fishervoice for final subspace analysis
along with the normalized correlation for distance metric. Table
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1 summarizes the results (EER and minDCF x 100) obtained
with the best and worst individuals and fused systems on the
seven combinations of (E1, E2) input for the proposed frame-
work.

From the table, we observe that: First, making full use of
data generates better performance both in EER and minDCF.
This is because when there are more samples for each speaker,
matrix S, can be better estimated. Second, P = 1400 shows
slightly better performance in most cases. Third, the best and
worst individual and fused systems all obtain better results, as
compared with random sampling on JFA feature subspace. This
verifies the prevous hypothesis stated in Section 1. Fourth, fu-
sion results under different combinations of E; and F-> vali-
date the stability of the fused classifiers. Fifth, the best EER
achieved across all individual systems is 3.97% in (500,300),
while the best minDCF obtained is 0.0201 in (300,500), both
for the full set. These results indicate that the best performance
is dependent on the selection of primary eigenvectors, which is
unknown to us.

5.2. Comparison with other systems

We also compared the Fishervoice + subspace method
with three existing standard approaches, namely, enhanced
Fishervoice[11], JFA + subspace[1] and PLDA [7]. The in-
put of these four frameworks are all the second level PCA
projected supervectors O; p, in section 3.1. In an attempt to
make the fusion process balanced and to avoid the risk of worst
system case, we also select all the best/worst individual systems
form each combination of (E1, E2) separately and fuse all of
them together to form total best/worst fusion. For enhanced
Fishervoice, we select dimension combination of (900,899,550)
which achieved the best performance. The best performance of
PLDA is obtained when the dimensionality of LDA is set to
900, the number of eigenvoices in PLDA is set to 550 and when
the log-likelihood ratio is used as the score metrics. The para-
meters under the best performances are similar for the enhanced
Fishervoice and PLDA. We think that it may be due to the
similarity in their processing. First, PLDA performs LDA for
dimension reduction initially, which is similar to the first step of
Fishervoice. Second, whitening is applied in both approaches.

Table 2: Comparison of the integration method with other stan-
dard systems on NIST SREOS8 male core task (tel-tel). The per-
Sformance is reputed in EER(%), 100 X minDCF.

standard full

System Type sef -
Enhanced Fishervoice [11](900,899,550) 4.36,2.09 | 4.04,2.03
JFA + subspace [1] Total worst fugion 4.28,2.11 4.03,2.08
Total best fusion 4.12,2.16 | 3.94,2.07
Fishervoice + subspace | Total worst fusion | 4.18,2.12 | 4.09, 2.05
(P = 1300) Total best fusion 4.09,2.09 | 3.93,2.06
Fishervoice + subspace | Total worst fusion | 4.17,2.12 | 4.10,2.09
(P = 1400) Total best fusion 4.00,2.10 | 3.87,2.07
Fishervoice + subspace | Total worst fusion | 4.19,2.15 | 4.02,2.08
(P = 1500) Total best fusion 4.09,2.09 | 3.95,2.07
PLDA (LDA+whiten+length) 4.75,2.33 | 4.28,2.20
PLDA (LDA+whiten+length+tznorm) 4.57,2.16 | 4.43,2.07

standard PLDA (whiten+length+tznorm)[17] 4.59,2.37

Table 2 shows that the Fishervoice + subspace method
generates the best performance. The best performing systems
by both EER and minDCF are highlighted in each column.
Compared with the JFA + subspace method, the Fishervoice +




Table 1: Results obtained with the best and worst individuals and fused systems on NISTOS male core task. EER(%), 100 x minDCF

Types of standard set full set
(1, Ey) P = 1300 ] P = 1400 ] P = 1500 P = 1300 ] P = 1400 P = 1500 ]
1, &2 best | worsf fused| best | worst fused] best | worst] fused| best | worst fused| best | worst] fused] best | worst] fused|
(300,500) 420 451 | 403 | 428 | 443 | 419 420 | 450 | 4.12| 409 | 436 | 4.03| 404 | 428 | 396 | 420 | 436 | 4.12
? 213 | 218 | 2.13 | 223 | 2.16 | 2.13 | 2.08 | 2.24 | 2.09 | 2.08 | 2.04 | 2.08 | 2.06 | 2.01 | 2.06 | 2.05| 2.02| 2.03
(350.450) 420 | 443 | 416 | 420 | 450 | 4.11 | 420 | 433 | 411 | 4.12| 443 | 404 | 4.12 | 436 | 4.03 | 4.18 | 4.28 | 3.96
’ 211 218 | 2.10| 2.12 | 220 | 2.14 | 2.18 | 2.18 | 2.14| 2.07 | 2.04| 2.06 | 2.16 | 2.11 | 2.11 | 2.10| 2.10 | 2.06
(400,400) 425 443 | 410 4.12 | 451 | 4.03 | 432 | 443 | 412 4.12 | 428 | 403 ]| 419 | 443 | 4.03| 4.04 | 428 | 3.97
’ 211 217 | 2.09| 2.09 | 2.14| 2.09 | 2.14| 2.17 | 2.13 | 2.08 | 2.05| 2.08 | 2.10| 2.13 | 2.10| 2.08 | 2.13 | 2.11
(450.350) 420 443 | 416 | 427 | 451 | 411 | 427 | 451 | 424 | 404 | 436 | 396 | 4.12 | 428 | 4.01 | 404 | 4.19| 3.96
? 215 211 | 2,14 | 212 | 2.16| 2.09| 221 | 2.16 | 2.10| 2.10 | 2.11| 2.09 | 2.08 | 2.07 | 209 | 2.10 | 2.02 | 2.09
(500,300) 425 436 | 4.19| 426 | 443 | 4.18| 425 | 451 | 418 397 | 426 | 396 | 4.11 | 427 | 3.95]| 4.18 | 4.25| 4.03
’ 2111 213 | 210 2.18 | 217 | 215 2.14 | 217 | 2.11 | 208 | 2.11 | 2.09 | 2.14 | 2.04 | 207 | 2.13 | 2.10| 2.13
(550,250) 428 | 436 | 419 425 | 428 | 411 434 | 450 | 419 4.11 | 443 | 403 ]| 404 | 428 | 396 | 4.12 | 428 | 4.08
? 208 | 217 | 2.14 | 212 | 2.14 | 212 | 2.09 | 218 | 2.12 | 2.12 | 2.15| 211 | 2.11 | 211 | 2,11} 2.12 | 2.11 | 2.11
(600.200) 433 | 451 | 427 | 428 | 443 | 424 | 428 | 440 | 419 404 | 420 | 3.94| 4.03 | 420 | 4.02| 4.11| 420 | 4.02
’ 2,13 | 213 | 2.08| 2.07 | 2.09| 2.06 | 2.15| 2.12| 2.12| 2.03 | 2.14 | 2.07 | 2.09| 2.11 | 2.09| 2.12 | 2.09 | 2.07

subspace framework can decrease EER by 2.91%. On the other
hand, the first two rows of PLDA results in the table demon-
strate that PLDA gives relative low performance when work-
ing with supervector representations. However, it still shows
a relative improvement compared to the results in [17], which
applies PLDA on the original supervector.

Table 3: Comparison of the integration method with other stan-
dard systems on NIST SRE10 male core-core task (cc6). The
performance is reputed in EER(%), 1000 X minDC Few)

System Type full set
Enhanced Fishervoice [11](900,899,550) 5.05,0.831
Total worst fusion | 4.93,0.814
JFA + subspace [1] oy usion | 4.48.0.819
Fishervoice + subspace Total worst fugion 4.49,0.831
Total best fusion 4.48,0.819
PLDA (LDA+whiten+length) 6.10,0.837
PLDA (LDA+whiten+length+tznorm) 5.48,0.758

We also take the NIST 2010 SRE male data for perfor-
mance comparision (see Table 3). The experiment setup is
the same as that performs on NIST 2008 SRE. Except that for
Fishervoice + subspace, P is constrained to a constant value of
1400. From the table, we can see that random subspace sam-
pling can improve the performance of Fishervoice method and
the Fishervoice + subspace framework is more stable than JFA +
subspace framework. Besides, the Fishrvoice + subspace frame-
work gives best performance in terms of EER.

5.3. Fusion with other systems

In the third experiment, we fuse the PLDA result on supervector
with our Fishervoice + subspace method (see Figure 2). The
weights are obtained by grid search with values giving the low-
est EER. Here we select the NIST SREOS results using full set.
According to the EER and minDCF metrics, the best perfor-
mance is achieved when the worst fusion of Fishervoice + sub-
sapce method is fused with PLDA. It improves PLDA perfor-
mance by a relative decrease of 8.17% in EER (from 4.28%
to 3.93%) and reduced the minDCF by a relative decrease of
9.54% (from 0.0220 to 0.0199).

92

Miss probability (in %)

Speaker Detection Performance

PLDA (LDA+whiten+length)
EER: 4.28%, minDCF: 0.0220
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EER: 3.95%, minDCF: 0.0207
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EER: 3.96%, minDCF: 0.0202
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Figure 2: Fusion results with other systems on NIST SREO8
male tel-tel task (projection matrix trained with full set)

6. Conclusions

This paper presents an enhancement of our previous work of the
JFA + subspace method for speaker verification. The proposed
framework is refered as the Fishervoice + subspace method.
The approach effectively stabilizes the Fishervoice classifier
and makes use of almost all the discriminative information in
the high-dimensional space, since multiple classifiers can cover
most of the speaker feature space. In this study, we use the
simplest linear fusion scheme to combine multiple classifiers
and achieve notable improvement. Extensive experiments on
the NIST SREO8 and NIST SRE10 male core test show the
advantage of the proposed framework over state-of-the-art al-
gorithms. In future work, we will investigate the relationship
between PLDA and Fishervoice and seek to combine their re-
spective advantages for further performance improvement.
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