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Abstract
Data selection is an important issue in speaker recognition. In
previous studies, the data selection for universal background
model (UBM) training and for the background dataset of sup-
port vector machines (SVM) have been addressed. In this paper,
we address the data selection for a probabilistic linear discrimi-
nant analysis (PLDA) model which is one of the state-of-the-art
methods for i-vector scoring. We first show that the data se-
lection using the conventional k-NN method indeed improves
the speaker verification performance. We then propose a ro-
bust way of selecting k by using a local distance-based outlier
factor (LDOF). We name our method as flexible k-NN or fk-
NN. Our fk-NN obtained significant performance improvements
on both male and female trials of the NIST speaker recogni-
tion evaluation (SRE) 2006 core task, NIST SRE 2008 core
task (condition-6) and NIST SRE 2010 coreext-coreext task
(condition-5).

1. Introduction
A background model plays an important role in speaker verifi-
cation either by providing a prior distribution for the parameters
of the speaker-specific model or by acting as an alternate model
for scoring of a trial. In previous studies, it has been shown that
for UBM training [1, 2] and SVM background models [3, 4],
relevant training data is more important for better performance
than the amount of training data. In this paper, we address the
relevant data selection issue for PLDA [5] modeling.

PLDA is one of the state-of-the-art methods for separating
speaker factors of i-vectors[6] from irrelevant factors such as
the transmission channels or the speaker’s emotion. In order
to train parameters of PLDA models, multi-session recordings
from several hundred speakers, resulting in several thousands
of recordings, are typically used. For example, research groups
involved in the NIST speaker recognition evaluation (SRE) typ-
ically use utterances from all NIST 2004-2005 data along with
the Switchboard II, Phases 1, 2 and 3; Switchboard Cellular,
Parts 1 and 2 data and Fisher data. However, there is no evi-
dence that using all the data available would guarantee the best
PLDA model. Based on the experiences from the other models
such as UBM, SVM or joint factor analysis (JFA), researchers
typically use gender-dependent PLDA models. In [7], it was
empirically shown that gender-dependent PLDA models outper-
formed gender-independent PLDA models. Kanagasundaram
et al. [8] showed that the PLDA model trained by utterances
whose lengths matched with those utterances in the evaluation
set performed better than that trained by full-length utterances.
These studies indicate that if we have information about the tar-
get evaluation set, it is better to take into account that informa-
tion for selecting training data of PLDA models.

In many NIST SREs, we cannot access information about
the whole evaluation set consisting of speakers enrolled to the

system, i.e., enrollment set, and speakers participated in the au-
thentication phase, i.e., test set, during the development phase
of the system. However, in many applications such as on-line
bank services for registered customers, we can access the enroll-
ment set during the development phase of the system. Targeting
that kind of applications, we use the enrollment set for selecting
suitable training data for the PLDA model in this study.

We show that by selecting a training set whose i-vectors are
close to the i-vectors of the enrollment set, we can improve the
PLDA modeling. We first use the conventional k-NN method
in order to choose the k-nearest neighbors of each enrollment
speaker in the training set of the PLDA model. We show that
this method performs remarkably well when the optimal k is
known. However, it is difficult to estimate the optimal k. We,
therefore, propose a robust way of selecting k which uses local
distance-based outlier factor (LDOF).

Although our data selection method does not offer an im-
pressive reduction in computational expense as some data se-
lection methods for UBM training, it helps improving the ver-
ification accuracy. Since the training time of the PLDA model
is very small (a couple of seconds), we can re-train the PLDA
model quickly after adding relevant data for newly added en-
rollment speakers, which is not practical for UBM training or
total variability matrix training.

Using the enrollment set for system development was al-
lowed in the NIST SRE 2012 but not in the earlier NIST
SREs. However, we evaluated our proposed data selection
method for the NIST SRE 2006 core task, NIST SRE 2008 core
task (condition-6) and NIST SRE 2010 coreext-coreext task
(condition-5), because we wanted to focus on the data selec-
tion process rather than paying extra attention on processing the
huge amounts of SRE 2012 data. Our experiments showed that
our method obtained significant performance improvements on
both male and female trials.

2. i-vector and PLDA based speaker
verification

In an i-vector based speaker verification system [6], it is as-
sumed that a GMM-supervector, µ, corresponding to an utter-
ance can be modeled as

µ = µ̄+ Tω, (1)

where ω is a random vector known as the i-vector, T is a basis
for the total variability space for speaker and channel variability
of µ, and µ̄ is the mean of µ. It is assumed that ω follows a
standard normal distribution and its dimension, d, i.e., the rank
of T , is lower than that of µ̄.

In [9], it was proposed to use PLDA in speaker verification
with i-vectors as features. In that study, a modification of the
original PLDA model [5], suitable for low-dimensional features
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was suggested. According to that modification, i-vectors, ω,
can be modeled as

ω = m+ V y + �, (2)

wherem is the mean ofω and y is a random variable depending
on speaker factors. The elements of y follow standard normal
distribution and � ∼ N (0,Σ). V is a basis for the between-
speaker subspace.

3. i-Vector selection
Given the i-vectors of the enrollment set, we would like to find
i-vectors in the training set that are useful for learning a good
PLDA model, i.e., a model that clearly separates speaker and
channel effects of the i-vectors in the enrollment set as well as
in the unseen test set. Our assumption is that the i-vectors in the
training set of the PLDA model which have similar characteris-
tics as in the enrollment set will be a better choice for training a
good PLDA model over the whole training set. Further, we as-
sume that i-vectors that have high cosine similarity have similar
characteristics. In [6], it was shown that cosine similarity can
be applied to decide whether two i-vectors are from the same
speaker or not. Session compensation techniques like linear
discriminant analysis (LDA), within-class covariance normal-
ization (WCCN), and nuisance attribute projection (NAP) were
applied in order to keep only the information about the speaker
factors. However, we are more interested in finding i-vectors
that are similar in the total variability space. Therefore, we do
not apply any session compensation techniques before our i-
vector selection process. Empirically, we show that k-nearest
neighbors (k-NN) based on cosine similarity can find the best
training set of a PLDA model (Table 4).

In the conventional k-NN, the optimum value of k may vary
between different enrollment sets. If we use a k optimized for
a different enrollment set, we sometimes end up in the situation
that the selected i-vectors in the training set are much closer
to each other than to the enrollment i-vector. In other words,
the enrollment i-vector is an outlier compared to its k-nearest
neighbors. In such situations, those neighbors cannot be ex-
pected to be similar to the enrollment i-vector. In order to solve
this problem, we propose a modification of the k-NN method
which we denote flexible k-NN (fk-NN). In this method we
use the local distance outlier factor (LDOF) defined in the next
section to measure to what extent the enrollment i-vector lies
inside the cluster made by its k-nearest neighbors. We then in-
crease k until all enrollment i-vectors lie inside the clusters of
nearest neighbors according to the LDOF criteria.

3.1. LDOF

In [10], Zhang et al., proposed the local distance-based outlier
factor or LDOF. LDOF captures the degree to which an object
deviates from its neighborhood system. When LDOF of any
object is smaller than a threshold, t, we can say that object is
surrounded by a data cloud. In data mining applications, LDOF
is used for capturing the outlierness of an object among a scat-
tered neighborhood. In this paper, we use it to control the value
of k in the k-NN based data selection process by checking how
far any i-vectors of the enrollment set lie from their k-nearest
training i-vectors of the PLDA model.

Let Np be the set of the k-nearest neighbors of the enroll-
ment i-vector ωp. The LDOF of an i-vector, ωp, can be defined
as

LDOFk(ωp) =
d̄ωp

D̄ωp

, (3)

where d̄ωp is the k-NN distance of ωp and D̄ωp is the k-NN
inner distance of ωp defined as

d̄ωp =
1

k

�

ωi∈Np

dist(ωi, ωp), (4)

D̄ωp =
1

k(k − 1)

�

ωi,ωj∈Np,i �=j

dist(ωi, ωj), (5)

3.2. Algorithm of fk-NN

Let the i-vector sets for training the PLDA model and enroll-
ment speakers be R and S, respectively. The steps of our data
selection process using fk-NN are given as :

1. Estimate dist(ωi, ωp) where ωi ∈ R and ωp ∈ S .
2. Sort dist(ωi, ωp) in the ascending order.
3. Estimate dist(ωi, ωj) where ωi, ωj ∈ R and i �= j.
4. Initialize k.
5. Put the k-nearest neighbors of ωp from ωi ∈ R into Np.
6. For each ωp ∈ S , do

(a) Estimate d̄ωp by using Eq. (4).
(b) Estimate D̄ωp by using Eq. (5).
(c) Estimate LDOFk(ωp) by using Eq. (3).
(d) i. If LDOFk(ωp) ≥ t, then

• k = k + δ
where δ is any integer value for increas-
ing the value of k.

• Go to Step-5.
ii. Else, go to the Step-6a for the next i-vector.

7. Np will be the cloud of k-nearest neighbors of ωp for
each p. Take unique set of i-vectors from {Np}p∈S to
make relevant training data of PLDA model.

The initial value of k can be set to 2. Our proposed fk-NN
will increase k until all i-vectors of the enrollment set are sur-
rounded by their neighborhood. With fk-NN, it is possible to
set different k for different i-vectors of the enrollment set. How-
ever, if initial k is too small for all enrollment i-vectors, then the
selected training set will end up having insufficient number of
i-vectors. By controlling t we can solve this problem. However,
for simplicity, in this paper, we set t equal to 1 and keep k the
same for all i-vectors of an enrollment set in our experiments.

4. Experiments
4.1. Experimental setup

We conducted experiments on the NIST SRE 2006 core task
(SRE06), NIST SRE 2008 core task condition-6 (SRE08) and
NIST SRE 2010 core task condition-5 (SRE10). The number
of enrollment i-vectors, E, and the number of trials, R, of three
evaluation sets that we used after discarding corrupted files, are
shown in Table 1.

For UBM and T training, NIST SRE 2004 (sre04) and
NIST SRE 2005 (sre05), Switchboard II Phase 1(sb2p1),
Switchboard II Phase 2 (sb2p2) and Switchboard II Phase 3
(sb2p3), Switchboard Cellular Part 1 (sbCp1) and Switchboard
Cellular Part 2 (sbCp2) were used. For PLDA training we used
the same sets with the number of i-vectors as shown in Table 2.

For features we used 15 PLP coefficients and log-energy
plus their first-order and second-order derivatives, resulting in
48 features per frame. For removing non-speech, we used a
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Table 1: The number of enrollment i-vectors,E, and the number
of trials,R, of three evaluation sets, SRE06, SRE08 and SRE10.

Eval set Male Female
#E #R #E #R

SRE06 349 22123 459 28945
SRE08 648 12356 1140 22957
SRE10 1906 179338 2361 236781

Table 2: The number of i-vectors, V , and the number of speak-
ers, S, of datasets used for training gender-dependent PLDA
models.

Dataset Male Female
#V #S #V #S

sb2p1 391 125 455 191
sb2p2 1868 283 2134 307
sb2p3 1399 277 1921 337
sbCp1 236 78 290 94
sbCp2 1038 157 1595 232
sre04 1906 126 2651 188
sre05 2705 245 3792 336

spectral subtraction-based voice activity detector (VAD) [11].
We applied feature warping [12] before applying VAD. We used
gender-dependent systems. The dimension of the i-vector, d,
was set to 400. The i-vectors were centered, whitened, and
length-normalized as proposed in [13] prior to PLDA training.
We trained the parameters of the PLDA model by the ML cri-
teria. The rank of V was set to 250. We used equal error
rate (EER) and the minimum value of the normalized detec-
tion cost function (DCF) as evaluation metrics. We used DCF
as defined in the evaluation plans of NIST SRE 2006, 2008, and
2010 [14, 15, 16] for SRE06, SRE08 and SRE10, respectively.

4.2. Results

First we tried to find a relevant database for the SRE06, SRE08
and SRE10 evaluation sets. We trained two gender-dependent
PLDA models for each database. For sb2p1 and sbCp1, PLDA
training failed due to an insufficient amount of training data.
This problem can be avoided by applying regularization to the
channel covariance during PLDA training, but we did not at-
tempt this in this study. From the results shown in Table 3, we
can assume that SRE04 and SRE05 have more relevant data for
the male enrollment speakers of SRE06 and SRE08 than the
Switchboard databases. Using only NIST SRE data (allsre), we
got the lowest EER and the minimum DCF. It reveals that using
all the data available did not guarantee the best PLDA model
for the target evaluation set. The presence of unrelevant data in
the training set of the PLDA model may deteriorate the system’s
performance. However, for SRE10, we got the lowest EER and
the minimum DCF when we combined Switchboard data with
NIST SRE data (sre+sb). The same phenomena was also seen
for female trials. It indicates that relevant data differs in differ-
ent target evaluation sets.

Instead of checking each combination of different training
sets one by one, we tried to select relevant data from the whole
training set of the PLDA model by choosing k neighbors in
three ways. At first we optimized k for the k-nearest neighbors

Table 3: EER and minimum DCF of male trials of SRE06,
SRE08 and SRE10. Empty entries mean that PLDA training
failed due to insufficient amount of training data. For SRE06
and SRE08, DCF is in 10−2 whereas for SRE10, DCF is in
10−4. For all tasks, EER is in %.

Data SRE06 SRE08 SRE10
EER DCF EER DCF EER DCF

sb2p1 - - - - - -
sb2p2 13.26 5.54 13.26 5.54 17.96 8.56
sb2p3 14.30 5.65 14.31 5.65 18.19 8.78
sbCp1 - - - - - -
sbCp2 15.16 5.79 15.16 5.79 12.47 9.81
allsb 8.17 3.86 9.65 4.83 5.38 6.54
sre04 6.96 3.29 6.96 3.29 4.88 7.51
sre05 5.73 2.99 5.74 2.99 2.81 5.65
allsre 2.07 0.97 4.58 2.36 2.28 4.20
sre+sb 2.30 1.16 4.92 2.55 2.01 3.73

Table 4: The performance of the gender-dependent PLDA mod-
els trained by selecting k neighbors of the enrollment set in the
training set for SRE06. k-NN: k-nearest neighbors were se-
lected, k-FN: k-farthest neighbors were selected, and k-RN: k
neighbors were selected randomly. For male, k = 37, and for
female, k = 25. EER is in % and DCF is in 10−2.

Data Male Female
EER DCF EER DCF

Baseline 2.30 1.16 3.42 1.85
k-NN 1.84 1.05 2.71 1.43
k-FN 2.47 1.30 4.02 2.27
k-RN 2.37 1.20 3.56 1.96

(k-NN) case and it was 37 for male and 25 for female trials of
SRE06, respectively. Then we chose the k-farthest neighbors
(k-FN) and the k-random neighbors (k-RN). We used the sys-
tem trained by the whole training set as the baseline in order
to compare the performance of k-neighbor based systems. As
shown in Table 4, the PLDA model trained either by k-FN or
by k-RN selected data was worse than the k-NN based PLDA
model. This result indicates that i-vectors of the training set
of the PLDA model that were close to the enrollment set were
more relevant than any other i-vectors; especially more relevant
than those far from the enrollment set.

As shown in Fig. 1 and Fig. 2, the optimum k varies from
data set to data set. For SRE06 male, the optimum value of k
was 37, whereas for SRE10, the optimum k was 18. As shown
in Fig. 3, if we choose 37 as the value of k for SRE10, we
would end up covering almost the whole training set. On the
other hand, if we choose k around 18, for SRE06 we would not
get a sufficient amount of i-vectors for training a good PLDA
model. One of the reasons behind this phenomena may be that
there is a large difference between the number of enrollment i-
vectors of SRE06 and SRE10. SRE06 has 349 male enrollment
i-vectors, whereas SRE10 has almost three times more enroll-
ment i-vectors.

From Table 5, we can see that data selection by either k-
NN or fk-NN improved the PLDA model. k-NN performed
remarkably well on the development set, SRE06, where k was
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Figure 1: The effect of the value of k on the EER(%) of male
trials of SRE06, SRE08 and SRE10.
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Figure 2: The effect of the value of k on the DCF of male trials
of SRE06, SRE08 and SRE10.

Table 5: EER and DCF for baseline, k-NN and fk-NN. In k-
NN, k was optimized considering SRE06 as the development
set. For male, k = 37, and for female, k = 25. For SRE06 and
SRE08, DCF is in 10−2 whereas for SRE10 DCF is in 10−4.
For all tasks EER is in %.

Male SRE06 SRE08 SRE10
EER DCF EER DCF EER DCF

Baseline 2.30 1.16 4.92 2.55 2.01 3.73
k-NN 1.84 1.05 4.76 2.44 2.05 3.68
fk-NN 2.08 1.12 4.73 2.43 1.92 3.53
Female SRE06 SRE08 SRE10

EER DCF EER DCF EER DCF
Baseline 3.42 1.85 5.97 2.85 3.02 4.94
k-NN 2.71 1.43 5.81 2.82 2.93 4.74
fk-NN 2.71 1.43 5.78 2.84 2.91 4.74

optimized. fk-NN, which did not need any tuning, was better
or equal to k-NN on all evaluation sets and equally good on the
development set for female.

From Table 6, we can see that for the male, fk-NN reduced
the training data more than k-NN. For female, the reduction is
similar. We can conclude that fk-NN finds relevant data with-
out the need for parameter tuning.

Table 7 shows that we can get k close to the optimum k
in k-NN by using fk-NN. Finding optimum k by using k-NN
for each evaluation set was more time consuming than select-
ing k by fk-NN. For k-NN, we need to train the PLDA model
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Figure 3: The effect of the value of k on the data reduction rate
of training data of PLDA model by k-NN method for male trials
of SRE06, SRE08 and SRE10.

Table 6: Data reduction rate of k-NN and fk-NN. In k-NN, k
was optimized considering SRE06 as the development set. For
male, k = 37, and for female, k = 25.

Male SRE06 SRE08 SRE10
Baseline 0 0 0
k-NN 41.69 21.27 8.34
fk-NN 55.16 28.64 25.77
Female SRE06 SRE08 SRE10
Baseline 0 0 0
k-NN 57.90 26.31 14.66
fk-NN 57.90 22.96 15.70

Table 7: Optimal k and processing time. k finding by k-NN and
fk-NN for male and female systems for SRE06, SRE08, and
SRE10. Time is in sec.

Male SRE06 SRE08 SRE10
k Time k Time k Time

k-NN 37 593 28 1298 18 1092
fk-NN 24 35 29 64 18 64
Female SRE06 SRE08 SRE10

k Time k Time k Time
k-NN 25 906 26 2656 22 1671
fk-NN 25 61 28 136 24 137

every time after setting k in the range 10-45, whereas for fk-
NN, we trained the PLDA model only once after deciding k
by LDOF. The experiments were performed on a 3.4GHz Intel
i7-3770 CPU.

As shown in Fig. 4, k-NN and fk-NN selects data from all
data sets. The most noticable trend is that SRE08 and SRE10
use much more of the Switchboard corpora than SRE06. In
particular, they use almost all of swbCp1. Table 8 shows the
number of speakers and the number of i-vectors in the original
training data and the data selected by fk-NN. Overall, fk-NN
reduces the number of i-vectors more than the number of speak-
ers.
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Figure 4: y-axis shows the number of i-vectors used by the baseline, k-NN and fk-NN based systems for male and female trials of
SRE06, SRE08 and SRE10.

5. Conclusions
In this paper, we proposed a data selection method for a PLDA
model, which is one of the state-of-the-art methods for i-vector
scoring. We showed that by using k-NN we can reduce the
amount of training data substantially and improve the system
performance for both male and female trials of the NIST SRE
2006 core task, NIST SRE 2008 core task (condition-6) and
NIST SRE 2010 coreext-coreext task (condition-5). In order to
avoid the difficulty of optimizing k on a development set, we
developed a robust way of selecting k, named fk-NN, which
uses a local distance-based outlier factor (LDOF). Our pro-
posed fk-NN reduced the amount of training data as much
as the conventional k-NN without depending on any parame-
ter tuning. In NIST SRE 2010 male trials, fk-NN performed
significantly better than the conventional k-NN.

In the future, it would be interesting to see whether it is pos-
sible to replace a gender-dependent PLDA model by a gender-

independent PLDA model which is trained using data selected
by our proposed fk-NN. In that case, we would be able to
get more relevant data for the PLDA model for the enrollment
speakers who are closer to the opposite gender. Our proposed
data selection method does not depend on any channel compen-
sation techniques as used in i-vector based systems. Therefore,
it would be a good idea to explore whether an i-vector based
system using methods such as WCCN, NAP, LDA etc., can be
benefited by our data selection procedure. We should also ex-
plore how much data is required for training an efficient PLDA
model. Taking the number of times an i-vector from the training
set was selected by our proposed method into account can also
be an interesting consideration for the future.
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Table 8: Comparison of the data in the whole training set and
the training set selected by fk-NN. #S: number of speakers,
#SS: number of selected speakers by fk-NN, #V: number of i-
vectors and #SV: number of selected i-vectors by fk-NN.

Male SRE06 SRE08 SRE10
#S 1278
#SS 1029 1187 1224
#V 9543
#SV 4279 6810 7084
Female SRE06 SRE08 SRE10
#S 1665
#SS 1328 1569 1615
#V 12838
#SV 5404 9891 10822
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