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Abstract
In this paper, we explored the use of Gaussian Mixture
Model (GMM) weights adaptation for speaker verifica-
tion. We compared two different subspace weight adap-
tation approaches: Subspace Multinomial Model (SMM)
and Non-Negative factor Analysis (NFA). Both techniques
achieved similar results and seemed to outperform the
retraining maximum likelihood (ML) weight adaptation.
However, the training process for the NFA approach is
substantially faster than the SMM technique. The i-vector
fusion between each weight adaptation approach and the
classical i-vector yielded slight improvements on the tele-
phone part of the NIST 2010 Speaker Recognition Eval-
uation dataset.

1. Introduction
The i-vector approach has been proven to be a power-
ful speech representation for audio classification prob-
lems. It was first introduced for speaker verification [1]
and was then applied successfully in several other appli-
cations such as language recognition [2] and speaker di-
arization [3]. This technique was proposed in the context
of the Gaussian Mixture Model (GMM) framework in or-
der to model all the variability between several GMMs
corresponding to different speech recordings into a low
dimensional representation space.

Since the early work on speaker recognition based
on the GMM-Universal Background Model (UBM) ap-
proach and until the i-vector representation was intro-
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duced, it was shown that only adapting the means is lar-
gely enough for speaker recognition [4]. However, in
other application such as language identification, updat-
ing both the GMMmeans and variances seems to be help-
ful [5]. In more recent studies, adapting the weight seems
to provide some complementarity information for many
applications such as speech recognition [6] and age esti-
mation [7, 6].

In this paper, we applied two different subspace adap-
tation techniques to update the GMMweights for speaker
recognition, the first approach named Subspace Multino-
mial Model was first introduced to model prosodic fea-
tures [8] and later it was successfully applied to phonotac-
tic systems for the language identification task [9]. The
second approach, named Non-Negative factor Analysis,
is a variant of a factor analysis modeling [10]. Both sub-
space approaches were recently compared and applied for
adapting the GMM weights for language identification
[10] [11].

The remainder of the paper is organized as follows.
Section 2 describes the i-vector approach. We present
both GMM weights adaptation techniques in Section 3.
Section 4 presents the experimental setup and the results.
Section 5 includes conclusions and avenues for future
work.

2. The i-vector framework
The i-vector approach [1] is a very powerful technique
that summarizes all the updates happening during the adap-
tation of the UBM mean components (named also GMM
supervector) to a given utterance sequence of frames. All
this information is modeled in a low dimensional space
named the total variability space. In the i-vector frame-
work, each speech utterance has a corresponding GMM
supervector that is assumed to be generated as follows:

M = m+ Tw (1)

where m is the speaker independent and channel inde-
pendent supervector (which can be taken to be the UBM
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supervector), T is a rectangular matrix of low rank, andw
is a random vector having a prior standard normal distri-
bution N (0, I). The i-vectors are Maximum A Posteriori
(MAP) point estimates of the latent variable w adapting
the corresponding GMM (supervector m) to a given ut-
terance. The process of extracting the i-vector serves as a
features extraction step and i-vectors extracted from indi-
vidual speech segments are used as an input to a classifier
to obtain the final speaker verification scores.

3. Weight adaptation approaches
Applying subspace approaches for weight adaptation is
different frommeans adaptation because of the constraints
imposed to the weights. For each GMM the weights should
be always positive and sum to one. These two constraints
make weight adaptation harder. Several approaches have
been proposed such as Non-negative Matrix Factoriza-
tion [6], Subspace Multinomial Model [8] and more re-
cently a factor analysis approach named Non-negative
factor Analysis (NFA) [10]. The auxiliary function of
data for the GMM weight adaptation is given as follows.

Ω (ω, �ω) =
N�

i=1

C�

c=1

γc,i logωc,i (2)

where γc,i is the occupation count for Gaussian c and seg-
ment i. N denotes the total number of observations and
ωc,i are the probabilities of multinomial distribution for a
segment i. In the next two subsections, we will present
two different subspace approaches for GMMweight adap-
tation allowing us to adapt the weights in a ML sense to
a specific segment.

3.1. Subspace Multinomial Model

The SMM approach assumes that the parameters of the
corresponding multinomial distributions ωc for a given
speech utterance obtained in equation 2 can be repre-
sented as

ωc =
e(µc+Lcr)

C�
j=1

e(µj+Ljr)

(3)

where µc is the cth element of the origin of the super-
vector subspace, Lc is the cth row of the subspace matrix
and r is a low dimensional vector representing speaker
and channel.

In this method, L and r are estimated using an Ex-
pectation Maximization (EM) algorithm. In each E- and
M-step, an iterative optimization approach similar to the
Newton-Raphson paradigm is applied to maximize the
objective function (2). Details of parameter re-estimation
can be found in [8]. In our experiments, we used the
new r vector as a representation for a speaker verifica-
tion system. After the model is trained, it can be used to
extract ML estimates of the low-dimensional vector r for

any segment and use it just like i-vectors (i.e. as features
for the following classifier).

3.2. Non-Negative factor Analysis

The basic assumption of this framework is that the cth

Gaussian weight of the adapted GMM can be decom-
posed as follows:

ωc = bc + Lcr (4)

where bc is the UBM weight of the corresponding com-
ponent. Lc denotes the cth row of the matrix L, which is
a matrix of dimension C×ρ spanning a low-dimensional
subspace. r is a low dimensional vector (rho dimension)
that best describes the utterance-dependent weight offset
Lr. This r vector will be used as input to a speaker ver-
ification system similar to the i-vector approach. In [10],
we also find that imposing a standard normal distribution
prior on the r vector similar to the classical i-vector did
not help to improve the performances for language iden-
tification. The subspace matrix L is estimated via factor
analysis to represent the directions that best model differ-
ent speech recordings in a large training data set.

In this method, Lc and r are estimated using an EM
algorithm. Each E-step and M-step of the EM algorithm,
a gradient-ascend optimization scheme is applied to max-
imize the auxiliary function of Equation (2). The training
process consists of optimizing the following problem:

max Ω (ω, �ω)
Subject to g (b+ Lr) = 1 (5)

b+ Lr > 0

where g is a row vector of ones. Details of parameter
re-estimation can be found in [10].

3.3. Comparison between SMM and NFA

In NFA, the adapted weights are assumed to be the UBM
weights b offset by Lr, maximizing the likelihood of the
data. The SMM replaces this simple and linear relation
by the non-linear relation of (3), where the offset exp (Tw)
is multiplied to the UBM weights b and the result of mul-
tiplication is normalized so that the adapted weights sum
up to one.

Figures 1, 2 and 3 demonstrates the GMM weights
modeling using the subspace techniques SMM and NFA.
Figures 1 shows weights of a UBMwith 3 Gaussian com-
ponents, which is ML adapted to different speech seg-
ments. In this figure, each dot represents weights for one
segment. Since the adapted weights are constrained to be
positive and sum up to one, they are constrained to live on
a two-dimensional simplex. Note that the weights shown
in the figure are derived from the occupation counts γc,i,
which were artificially designed in such a way that SMM
can fit this data well.
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This is demonstrated on Figure 2 showing one dimen-
sional manifold (the red curve) learned using SMM from
the same occupation counts. Once the SMM subspace
L is learned, different vectors r (in this simple case one
dimensional) corresponds to different multinomial distri-
butions (GMM weights), which are in our example con-
strained to live on the red curve. Our task is to derive such
vector r for each speech segment that produces GMM
weights fitting the occupation counts the best in the ML
sense.

Figure 3 demonstrates the subspace learned using NFA.
In this case, the GMM weights adapted to the individual
speech segments are constrained to live in a linear sub-
space (red line in our example) of the simplex. Since
the data in our example were handcrafted specifically for
SMM, NFA cannot fit the data that well (red line does
not approximate well the blue dots in the simplex cor-
ners). We believe that this simple example reflect well
what is happening in the real high dimensional cases.
We have observed that SMM generally lead to higher
improvements of the objective function (2) compared to
NFA. This was caused by the inability of NFA to repre-
sent multinominal distributions with many small (close
to zero) probabilities. On the other hand, avoiding very
small probabilities can be seen as a natural smoothing
property of NFA, which might help to avoid over-fitting.
It is known that SMM can suffer from over-fitting that
has to be addressed by adding a regularization term as
in [9] . However, the regularization parameter requires
fine-tuning over a development data set. Our experiments
show that using either NFA or SMM results in a compa-
rable speaker recognition performance.

The procedure of updating subspace matrix and sub-
space vectors is also different between the SMM and the
NFA frameworks. In our implementation, NFA uses a
simple and very fast gradient ascend technique to esti-
mate the subspace matrix and the subspace vectors. The
gradient descent optimization was not found effective for
SMM. An optimization resembling Newton-Raphson tech-
nique is applied in the SMM case [9], which requires
to calculate costly approximations to the Hessian matrix
making the optimization significantly slower compared to
NFA.

4. Experiments and Results for Speaker
Recognition

4.1. Experiment Setup

Our experiments operate on cepstral features, extracted
using a 25ms Hamming window. 19 mel frequency cep-
stral coefficients together with log energy are calculated
every 10ms. Delta and double delta coefficients were
then calculated using a 5 frame window to produce 60-
dimensional feature vectors. This 60-dimensional feature
vector was subjected to feature warping using a 3s sliding

Figure 1: Adapted weights using the ML approach.

window. We used a gender independent UBM contain-
ing 2048 Gaussians. It was trained on Switchboard data
and NIST 2004,2005,2006 and 2008 SRE.The extractor
for classical 600-dimensional i-vectors was trained on the
same data as the one used for training the UBM. The ob-
tained i-vectors were projected first by Linear Discrimi-
nant Analysis (LDA). Probabilistic LDA [12, 13, 14] is
then used to compute the final verification score. The
results are reported on both genders of the core and eight
conversations conditions of the telephone part of the NIST
2010 SRE dataset.

4.2. Varying the dimensionality of weight subspace
approaches

The first set of experiments that we carried out is to ver-
ify the effect of different subspace dimension on both
NFA and SMM for speaker verification task. Figure 4
and 5 show the performance obtained with dimension
500,1000 and 1500. These results are only with the best
LDA dimensionality reduction for each dimensionality
space. From both figures, we notice than varying the di-
mensionality of the subspace does not affect the results
obtained by both weights adaptation approaches.

4.3. Comparison results

A comparison of results between three different techni-
ques of weights adaptations for the speaker verification
task is shown in Figure 6. The results of both subspace
techniques outperform the performance achieved by the
classical maximum likelihood estimation. However the
results obtained by the NFA approach are very close to
the ones obtained with SMM technique. The results are
given on Equal Error rate (EER), old (SMM08, NFA08,
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Figure 2: Adapted weights using the SMM approach.

...) and new minDCF (SMM10, NFA10, ...) operating
point for both gender of the core and 8 conversations con-
ditions. The new minDCF is the cost function adopted
by NIST-SRE since 2010, the old minDCF is the previ-
ous one [15]. Another remark from Figure 6 is that the
performances for both subspace approaches on 8 conver-
sations task are very promising with EER less than 2%.
Although the SMM and NFA achieved very comparable
results, the NFA approach however has the advantage to
have a training process that is very fast compared to the
SMM technique.

Figure 7 shows a comparison between the i-vector
system and both GMMweight subspaces adaptation meth-
ods. We can notice that both weight adaptation approaches
achieved a comparable results with I-vector method espe-
cially for 8 conversation task.

4.4. I-vector fusion Results

In this section, we present the fusion of the classical i-
vector system and each of the two subspace approaches.
We carried out the fusion on the i-vector level because
the score fusion did not achieve any improvements. The
obtained results are reported in Table 1 and 2.

Table 1: Fusion results on Female part core condition of
the NIST 2010 SRE

New Old
Cond 5 Female minDCF minDCF EER (%)
Baseline 0.4467 0.1269 2.42
+ NFA 0.4251 0.1227 2.50
+ SMM 0.4197 0.1218 2.24

Figure 3: Adapted weights using the NFA approach.

Figure 4: Results obtained with different NFA subspace
dimensions on the telephone part of the core condition of
the NIST 2010 SRE for both genders (M,F).

We notice from both Tables that SMM gives nice im-
provement in the new minDCF for Female trials when
fused with the i-vector. However the NFA approach ob-
tained better results when combined with the classical i-
vector for Male.

4.5. Varying the number of UBM Gaussian compo-
nents

The complexity of GMM means adaptation is related to
both the number of Gaussians in the mixture and the di-
mensionality of the feature frames. This complexity can

Table 2: Fusion results on Male part core condition of the
NIST 2010 SRE

New Old
Cond 5 Male minDCF minDCF EER (%)
Baseline 0.3869 0.1114 2.20
+ NFA 0.3896 0.1023 2.07
+ SMM 0.3890 0.1033 2.16
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Figure 5: Results obtained with different SMM subspace
dimensions on the telephone part of the core condition of
the NIST 2010 SRE for both genders (M,F)

Figure 6: Comparison results obtained for both genders
(M, F) between three different approaches for the GMM
weights adaptation.

increase dramatically if the number of components is in-
creased a lot and therefore the majority of GMM systems
for speaker verification does not exceed 2048 Gaussians.
However the GMM weights adaptation is only related to
the number of Gaussian in the mixture. For this reason,
we can experiment using a UBM of size 4096 Gaussians.
In this section, we varied the number of Gaussians from
1024 to 4096 components. These UBMs were tried with
NFA approach because as we stated earlier it is much
faster to train NFA than SMM.

Table 3: NFA results with different UBM sizes. Results
obtained on Female part for telephone data core condition
of the NIST 2010 SRE

New Old
Cond 5 Female minDCF minDCF EER (%)
1024 Gaussians 0.7169 0.2465 5.29
2048 Gaussians 0.6320 0.2287 5.24
4096 Gaussians 0.6021 0.2120 5.07

The results reported in Table 3 and 4 show a nice im-
provement when increasing the number of UBM Gaus-
sians to 4096 compared to a smaller number.
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Figure 7: Comparison results obtained for both genders
(M, F) between SMM, NFA and IVector approaches.

Table 4: NFA results with different UBM sizes. Results
obtained on Male part for telephone data core condition
of the NIST 2010 SRE

New Old
Cond 5 Male minDCF minDCF EER (%)
1024 Gaussians 0.6806 0.2350 4.704
2048 Gaussians 0.6493 0.2112 4.44
4096 Gaussians 0.550 0.1818 3.81

Table 5: Fusion results between a classical i-vector and
NFA approach with different UBM sizes. Experiments
carried out on Female part core condition of the NIST
2010 SRE

New Old
Cond 5 Female minDCF minDCF EER (%)
Baseline 0.4467 0.1269 2.42
+ NFA (4096) 0.4375 0.1325 2.65
+ NFA (1024) 0.4592 0.1255 2.37

Table 6: Fusion results between a classical i-vector and
NFA approach with different UBM sizes. Experiments
carried out on Male part core condition of the NIST 2010
SRE

New Old
Cond 5 Male minDCF minDCF EER (%)
Baseline 0.3869 0.1114 2.20
+ NFA (4096) 0.4090 0.1109 2.01
+ NFA (1024) 0.3856 0.1031 1.98

From both tables 5 and 6, we can notice that varying
the number of Gaussians in the UBM improve in some
cases the i-vector baseline with a UBM of size 2048.
If we look to the new operating point (newDCF), 4096
Gaussians obtained the best improvement for Female and
1024 Gaussians for Male. However if we compared those
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results with the one obtained in Tables 1 and 2, we can
see that there is no improvement by varying the size of
the UBM. It seems that using the same number of Gaus-
sians in the UBM for both i-vector and weight adaptation
is enough to carry information fusion between the GMM
mean and weight components.

5. Conclusions
In this paper, we experimented with weights adaptation
for speaker recognition. Two subspace techniques were
compared. Both approaches obtained similar performan-
ces on NIST 2010 SRE. The performances of both GMM
weight subspaces are not as good as the classical i-vector
which operate on the GMM means. However, we also
show a slight improvements by combining both the i-
vector approach and each weights adaption approach. Si-
milar conclusions were also found in [16][17]. As future
work we would like to find a better way to combine both
GMM weights and means information.
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