
231

Odyssey 2014:
The Speaker and Language Recognition Workshop
16-19 June 2014, Joensuu, Finland

STC Speaker Recognition System for the NIST i-Vector Challenge

Sergey Novoselov
1
, Timur Pekhovsky

1,2
, Konstantin Simonchik

1,2

1
 Department of Speaker Verification and Identification,

Speech Technology Center Ltd., St. Petersburg, Russia
2
ITMO, Russia

{novoselov,tim,simonchik}@speechpro.com

Abstract

This paper presents a Speech Technology Center (STC) system

submitted to the NIST i-vector Challenge. The system includes

different subsystems based on PLDA, LDA-SVM, RBM-PLDA

and DBN-PLDA. We propose an original iterative scheme for

clustering the NIST i-vector Challenge devset. We also introduce

the RBM-PLDA subsystem in the NIST i-vector Challenge.

Experiments performed on the progress dataset demonstrate that

although the RBM-PLDA and DBN-PLDA subsystems are

inferior to the other subsystems in terms of absolute minDCF, in

the fusion they provide a substantial gain into the efficiency of

the resulting STC system, reaching 0.239 at the minDCF point.

Index Terms: NIST, i-vector, PLDA, SVM, RBM.

1. Introduction

The NIST i-vector Challenge [1], like the earlier evaluations,

deals with the task of speaker detection. The aim of this task is to

determine whether or not the target speaker is speaking in a

given segment of dialog speech. At the same time, the current

evaluation differs from the previous evaluations in three

important aspects:

 Feedback is possible, which means that each time after

results are submitted, the participants are informed

about the minDCF of their systems.

 All the data allowed for training are not labeled, i.e.

they have no ID labels for gender, channel, language,

etc.

 All input data are represented as i-vectors obtained

using an i-vector extractor unknown to the participants.

The first condition allows participants to endlessly improve

their systems (tune their parameters, thresholds, etc), which

shifts the accent of the current research from theoretical novelty

of methods towards sophisticated empirical work.

The second condition forces researchers to deal with the

problem of clustering the training database of the NIST i-vector

Challenge as much as with solving the main task: speaker

detection. This is due to the fact that today the most successful

method is the generative PLDA model in i-vector space [2-4].

Training a PLDA model requires a labeled training database.

The third of the three conditions is caused by the organizers’

desire to interest the Machine Learning community in the

speaker detection task. This means that all NIST participants are

placed in equal conditions with regard to the ability to generate i-

vectors.

Studies [5-7] show that the use of models like Deep Neural

Networks (DNN) and Boltzmann Machines (BM), which were

very successful for Automatic Speech Recognition (ASR), fails

in the space of i-vectors for the speaker recognition task. These

models clearly perform worse than classical PLDA. In our

opinion, the use of acoustic features as input would give stimulus

to those participants who work on feature extraction on the basis

of new promising approaches, such as pseudo-i-vector extraction

from the sets of MFCC features using DNNs [8-10].

To sum up, it is our belief that under the conditions of the

current NIST i-vector Challenge, the most successful strategy is

using the classic PLDA model, assuming the task of efficient

training of the PLDA model on an unlabeled training dataset can

be solved, which means searching for reliable methods of

database labeling.

The aim of this paper is to provide a detailed description of

the text-independent speaker verification system developed at

Speech Technology Center Ltd for participation in the NIST i-

vector Challenge.

The NIST i-vector Challenge organizers provided the devset

as a set of telephone channel i-vectors of both genders, uniform

in terms of channel and language, so for our first PLDA

subsystem we used only one gender-independent Gaussian

PLDA analyzer, instead of using, for instance, a mixture of

PLDA analyzers [11] in order to capture a more complex

structure in data.

The second subsystem that could be useful in the NIST i-

vector Challenge was an SVM-based subsystem. For the SVM

subsystem the problems of an unlabeled training dataset are not

so critical, because it can use the whole development set, which

according to the NIST conditions does not overlap with the

evaluation set.

Our work has two key aspects that are marked by their

novelty. The first deals with the problem of clustering and the

search for the true labeling of the NIST i-vector Challenge

devset. We propose using a version of agglomerative clustering

in i-vector space as a clustering algorithm. The second is our

third subsystem, in which we tested the use of Boltzmann

Machines for the NIST i-vector Challenge.

The paper is organized as follows. A detailed description of

the STC speaker verification system is given in Section 2.

Section 3 shows how we performed the clustering of the NIST

development set. Section 4 describes our final experiments on

the test dataset of the NIST i-vector Challenge. Section 5

concludes the paper.

http://www.ifmo.ru/eng/

232

2. Description of the STC system

In this section we provide a description of all speaker

verification subsystems used in our work.

2.1. Baseline cosine i-vector scoring

State-of-the-art speaker verification systems are systems working

in the i-vector space. Each such vector is extracted using total

variability factor analysis (TV-FA) [12] from a whole speaker

utterance and is a good representation of the speaker for any

subsequent classifiers. The TV-FA method makes it possible to

obtain such a representation in the following way. In it the mean

supervector

iT  0 , (1)

where
0 is the mean supervector, T is the matrix that defines

the Total Variability subspace, and i is the low dimension vector

having the prior distribution N(0, I).

The baseline system provided by the organizers of the NIST

i-vector Challenge uses cosine evaluation, which is standard in i-

vector technology:

testenrol

testenrol

testenrol
ii

ii
ii






,
),(cos , (2)

where
testi is the i-vector of the test utterance,

enroli is the i-vector

of the target speaker from the evaluation dataset. Since

according to the conditions of the competition each target

speaker has five model i-vectors, in the baseline system the
enroli

vector is obtained by simply averaging those five vectors. We

should note that all i-vectors of the test set must be whitened.

2.2. PLDA subsystem

Among state-of-the-art speaker verification systems, leading

positions are occupied by PLDA systems [3,4,13] working in the

i-vector space. In our work we used a PLDA model both for

verification and for the clustering task. In the case of the PLDA

verification system we used the following model:

rrr UxsVymsi )()(0
, (3)

where)(sir
 is an F-dimensitional i-vector from set },...,{ 1 Rii ,

obtained from R utterances belonging to speaker s, and y, x,

),0( Nr are hidden speaker factors, channel factors and

Gaussian noise, respectively.

In this paper, we assume the Gaussian nature of the priors of

these variables. In (3) the model parameters are an [F × 1] mean

vector
0m ; a matrix V of dimension [F × N1] whose columns are

referred to as eigenvoices; a matrix U of dimension [F × N2]

whose columns are referred to as eigenchannels; and [F × F]

diag-covariance matrix of the noise covariance matrix Σ. In the

case of the PLDA clustering system, we used model

rr sVymsi )()(0
, (4)

without a channel term and full-covariance matrix  of the

noise. This choice of models will be explained in detail in

Section 3.5.

To obtain PLDA evaluations we used normalization of i-

vectors, as proposed in [4]. The PLDA model makes it possible

to calculate)|(tariP ,)|(impiP – the marginal likelihood for

target and impostor hypotheses and, correspondingly, the PLDA

score:

)|()|(

)|,(
ln

impiPimpiP

tariiP
Score

testenroll

testenroll

PLDA


 . (5)

In this paper we also obtained the target speaker i-vector

enrolli for the PLDA method using simple averaging of the given

five model i-vectors. For the PLDA subsystem we used i-vector

normalization proposed in [4].

2.3. LDA-SVM subsystem

It is well-known that using a discriminative SVM method in

combination with another generative method, for example

PLDA, produces a highly efficient speaker verification system

[14,15].

In our verification system SVM was applied to the i-vectors

after LDA projection (l-vectors). The distance from a test l-

vector
testl to the SVM hyperplane of the a-th speaker)(a

enroll is

given below:

0

1

)(,   
L

=k

ktestkk

a

enrolltest)l,K(ly=)(lf , (6)

where
kl are the i-vectors after LDA (the L support vectors

obtained by training the speaker’s SVM hyperplane),
ky are the

target values of two classes: {+1} for the Target class and {-1}

for the Imposter class for the given speaker. A linear kernel

),(ktest llK was used.

For the NIST i-vector Challenge our SVM system had three

specific features:

 SVM was applied in the space of LDA projections of i-

vectors.

 We used its own devset clustering algorithm for the

SVM subsystem, in contrast to the PLDA and RBM-

PLDA (see Section 2.4) subsystems, which yielded a

labeled data set for LDA matrix training.

 S-normalization of the resulting SVM scores was used.

In this paper we used s-normalization [16] for SVM subsystem

scores. In our case, if the enrollment is represented by R=5 mean

l-vectors, the s-normalized score is calculated using the Z-

normalized distance),()(R

enrolltest

normZ lf  obtained beforehand

from the test l-vector testl
 to the multi-session SVM hyperplane

)(R

enroll and the z-normalized distance),(testenroll

normZ lf 

from the mean l-vector of the enrollment
enrolll to the test SVM

hyperplane :

 ),(),(
2

1)(

testenroll

normZR

enrolltest

normZ lflfscore   , (7)

where the target speaker l-vector
enrolll was obtained using

simple averaging of the given five model l-vectors, and the target

test

233

speaker hyperplane)(R

enroll was obtained using the imposter set

and the target speaker l-vector
enrolll . The whole development set

was used as an imposter set for the SVM and as the s-

normalization set. This was done because the development and

evaluation sets have non-overlapping speakers.

It is known that an SVM system is typically weaker than

PLDA, but under the conditions of incomplete compensation of

automatic labeling noise for the PLDA system, it can be

expected that SVM, which does not need a labeled imposter set,

will have an advantage. That was what we observed in our final

experiments.

As a result of our submission on the NIST i-vector Challenge

progress set, our SVM subsystem obtained minDCF = 0.286.

2.4. RBM-PLDA subsystem

The recent success of Deep Neural Networks [17] for Automatic

Speech Recognition prompted the speaker recognition

community to try to use Restricted Boltzmann Machines (RBM)

for pseudo i-vector extraction [8-10].

We also decided to test this technology for the NIST i-vector

Challenge. Figure 1 shows the diagram of our RBM for pseudo

i-vector (b-vector) extractor. We will use this term further on,

even though, strictly speaking, we are dealing with non-linear

RBM transformation of the TV i-vector. We will call b-vector a

vector of log posterior probabilities of the softmax layer.

Figure 1. Diagram of the supervized learning of the proposed

RBM for pseudo-i-vector extractor.

The visible input layer consists of Gaussian units.

The binary hidden layer consists of H units. The softmax layer

consists of S=1745 units (the number of target speakers).

and are the weights of the corresponding links. As output

we use posteriors of the softmax layer:

 { }

∑ { }

, (8)

where the full input for the softmax unit is

∑

 , and are the states of the hidden units [18].

We did not use discriminative “fine-tuning” phase for

training our extractor, limiting ourselves to generative

pretraining of the extractor. This pretraining phase is the

standard procedure of generative RBM training using contrastive

divergence.

Following [18,19] we create a concatenated training set

X { }
 , where is the k-th input i-vector out of K

development set vectors that were earlier clustered in S = 1745

cluster speakers by means of PLDA (see Section 3.5.). The

binary vector that corresponds to the s-th target speaker

contains zeros, except for the s-th component, which equals 1.

Thus, we implement a supervised scheme for generative RBM

training, by feeding both the i-vectors and the labels of the target

speakers to the hybrid binary Gaussian input layer X. Such an

RBM is parametrized by joint distribution of hidden and

observed variables:

 (9)

where the energy function E is:

 ∑(

)

 ∑

 ∑

 ∑∑

 ∑∑

and Z is the partition function,

 ,

 are the biases

for the visible, hidden and softmax layers, respectively. Because

of i-vector normalization, we suppose that standard deviations

for the Gaussian visible layer . The posteriors are defined

in the following way:

 [

 ∑

], (11)

where sigm denotes the sigmoid function. This training scheme

allows us to model input data structure taking into account target

speaker labels. In models with a hidden layer, effects on visible

variables are highly correlated, so we can expect that the outputs

of our softmax layer will be highly correlated as well. For this

reason we apply PCA to the log of the 1745-dimensional vector

of the softmax layer output, in order to obtain a pseudo i-vector

with the dimension , which we will refer to as b-vector.

Our experiments demonstrated that the best efficiency of the

RBM-PLDA subsystem can be obtained when .

After obtaining the pseudo i-vectors of 1745 speakers from the

labeled part of the NIST i-vector Challenge development set (see

Section 3.5), we used them for maximum-likelihood training of

the standard PLDA model [2]. For the RBM b-vector PLDA

(RBM-PLDA) subsystem we took a Gaussian PLDA model in

the form (4), where the number of eigenvoices was .

However, in contrast to the TV i-vector PLDA subsystem, where

the noise covariance matrix  had a diagonal form, here it has

the full covariance form.

As a result of our submission on the NIST i-vector Challenge

progress set, our RBM-PLDA system obtained minDCF = 0.293.

2.5. Subsystems fusion

The fusion score over all subsystems was based on the linear

model. Consequently, for our three subsystems we had:





3

1k

kkk scorewCScore , (12)

where the index k ranges over the set {LDA-SVM, PLDA,

RBM-PLDA}, is the output value of the k-th subsystem,

kw is the weight coefficient for the k-th subsystem, Score is

the final score of the subsystems fusion. For PLDA and RBM-

234

PLDA subsystems we used  -normalizing coefficients
PLDAC

and
PLDARBMC 

 which were calculated on the clustered

development set as follows:

1 PLDAPLDAC  , (13)

1

  PLDARBMPLDARBMC  ,

(14)

where
PLDA and

PLDARBM  are the standard deviations of

imposter scores of the PLDA and RBM-PLDA methods

respectively. For LDA-SVM subsystem the  -normalization

coefficient was equal to 1 because of the use of s-norm (see

Section 2.3):

11  

SVMSVMC  . (15)

Weight coefficients
PLDAw ,

PLDARBMw 
 and

SVMLDAw 
 were

defined up to the second digit after the decimal by several

submissions with the aim of minimizing the minDCF value of

fused system.

2.6. Quality measure function

It is well-known that there is a dependence between the value of

the minDCF threshold of a verification system and the duration

of the speech segments that were used for extracting the enroll

and test i-vectors. Using a quality measure function (QMF) [20]

makes it possible to compensate the shift in minDCF thresholds

for different speech segment durations, which improves the

minDCF value of a verification system.

In the NIST i-vector Challenge we deal with 5 session

speaker models. The total duration of all 5 model segments on

average is much larger than the duration of the test segments. For

this reason we ignored the dependence between the threshold

shift and the durations of enroll fragrments and focused on

estimating the dependence of the minDCF threshold shift on the

test segment durations. QMF was examined in the PLDA

verification system.

We used the result of clustering the devset data, as will be

demonstrated in Section 3.5, and divided it into two subsets. One

subset consisting of 1000 speaker classes was used for PLDA

training. The other subset was used for testing and estimating the

minDCF threshold values for different durations of test speech

segments. In our experiments we also used 5 session speaker

models (selected from the second subset of the development set)

for making estimates at the minDCF point.

According to the competition conditions, segment durations

followed a log normal distribution. We examined several points

of test segment duration values around the maximum of the log

normal distribution (Figure 2).

Figure 3 shows the dependence of the minDCF

threshold on the log values of test utterance durations. We

applied linear approximation for describing such a dependence:

 . (16)

This allowed us to use (17) as the QMF function for PLDA:

 . (17)

In Formulas (16) and (17) t is the duration of the test

segment in seconds. Using the approximation (16) we also

calculated the expected value of the parameter ,

which was further specified by means of submissions on the

progress set of the NIST i-vector Challenge.

In our experiments we discovered that the function log in

(17) can be easily replaced with √ . Then the value
 provides the same minDCF on the NIST i-vector

Challenge progress set as in the case of the function log .

Figure 2. Log normal distribution of speech segment durations in

the development set and the points for QMF calculation.

Figure 3. Linear approximation of the dependence of the

minDCF threshold value on the log of the test utterance

duration.

Thus we used the function √ as QMF:

 √ , (18)

 √ , (19)

 √ . (20)

The coefficients and were further

specified by submissions as 6.1404 and 0.14, respectively.

235

3. The clustering problem

This section describes the clustering algorithms that we used in

our subsystems. Description of the experiments performed on an

in-House dataset is given.

3.1. In-House data

We assumed that the properties we revealed on the in-House data

could be generalized for the i-vector space from the NIST i-

vector challenge data. Our evaluation dataset consists of 600-

dimensional i-vectors (as in the data for NIST i-vector challenge)

created by our gender independent T-extractor based on the

previous NIST SREs. These vectors were obtained from

recordings of 500 speakers in the telephone channel, half of

whom were men and half women. Each speaker has several

sessions. The minimum number of sessions per speaker is one,

the maximum is 50. The total number of i-vectors in the

database is 5213.

3.2. Clustering error metrics

Let us introduce definitions that are relevant for the task of

effective PLDA training on an unlabeled dataset.

1. The i-vector of the speaker S is considered to be

clustered correctly if it belongs to a cluster in which

the majority of vectors belong to the speaker S.

2. If there is more than one cluster in which there are

vectors belonging to the speaker S, only vectors

belonging to the cluster with most of i-vectors of the

speaker S are considered to be clustered correctly.

3. In case such clusters have an equal number of vectors

of the speaker S, we consider vectors of only one

cluster to be clustered correctly.

Let us consider the value of clustering purity which

characterizes the portion of correctly clustered i-vectors in the

general dataset:

 [%], (21)

where is the number of correctly clustered vectors; is

the total number of vectors in the dataset.

Let us consider two clustering errors that influence training

quality of the PLDA model.

 is the error of assigning i-vectors of different

speakers to one cluster.

 is the error of separating the i-vector set of one

speaker into several clusters.

Let us define a “clean” speaker cluster as a cluster which

contains only the i-vectors of one speaker. Let us define a

“contaminated” cluster as a cluster which contains i-vectors of

different speakers (even only one i-vector of a different speaker).

Then the error of assigning i-vectors of different speakers to one

cluster equals:

 , (22)

where is the number of contaminated clusters after

performing the clustering; is the number of found clusters.

The error of separating the i-vector set of one speaker into

several clusters equals:

 [%], (23)

where
 is the number of erroneous clean speaker clusters

that appeared as a result of dividing the vector set of one speaker

into several clusters.

Let us define the total clustering error as:

 . (24)

3.3. Clustering algorithm for the PLDA subsystems

For automatic i-vector segmentation into speaker clusters we

used our own modification of the classic Agglomerative

Hierarchical Clustering (AHC) algorithm [21]. AHC has been

widely used as a speaker clustering strategy in many speaker

diarization systems [22-24].

In order to perform i-vectors clustering, we need to solve the

problem of choosing the similarity measure of i-vectors based

on the nature and specific characteristics of the i-vector space.

From verification tasks it is well-known that:

 First, the cosine metric [14] is a convenient

comparison metric in the i-vector space that does not

require training.

 Second, the model of averaging normalized i-vectors

(searching for the speaker center [25,26]) is considered

the most efficient multi-session model.

It follows that for initial clustering it is convenient to use the

cos metric. After this initial clustering step, it makes sense to use

the more efficient PLDA metric (5), which explicitly takes into

account between-speaker and within-speaker covariance. This

idea leads to an iterative clustering algorithm, which will be

described in 3.2. Consequently, the similarity measure of i-

vectors is defined as:

 (25)

or

 . (26)

Our two-stage algorithm for speaker clustering in the i-vector

space is given below.

At the first stage, cluster search with the threshold is

performed.

Algorithm 1 (Data,)

Input data:

Data[LxM] are the whitened and normalized i-vectors that need

to be labeled (is the i-vector dimension; is the number of

vectors), is the threshold for including the vector into a

cluster with the center :

 – including into the cluster with the center

 – not including into the cluster with the

center

Output data:

 Cluster Data [LxM] are the clustered vectors;

 Labels [1xM] are the clustering labels, Labels
 , where n is the number of found clusters.

Init:

236

while

1. We randomly select one of the Data vectors as the

center
 of the current cluster .

Init:

2. while

2.1 Using the threshold we collect vectors into

 so as
 ;

2.2 We re-evaluate the normalized center of the

current cluster

∑

 ; (K is the number of vectors

in the cluster)

‖
 ‖

.

2.3 We calculate

 ;

2.4 ;

end

3. We move the vectors of the cluster from the Data

set to the clustered set Cluster Data and add the label

of the new cluster for these vectors to Labels;

4. ;

end

Our first stage of the clustering is in fact similar to the

algorithm proposed in [27, 28], which implemented an extension

of the standard Mean Shift (MS) algorithm [29] to MS based on

the cos distance:

 . (27)

At the second stage we combine the obtained clusters with

the threshold . The cluster with the center and the cluster

with the center have to be combined if the following condition

is met:

 () . (28)

At this stage we used simple Repeat-Until loop algorithm.

This stage is necessary to compensate for the error of

dividing a set of vectors for one speaker into several clusters.

3.4. Clustering quality

In this section we examine the dependence between clustering

quality and its parameters, using the cos metric as an example.

In our in-House experiments we obtained the dependence

on the threshold values and , which is illustrated in

Figure 4. The maximum value of obtained on the in-House

database using the proposed algorithm is obtained with = 0.27

and , and equals 85%.

Figure 5 demonstrates the dependence of the total error

 on the value of the threshold , when = 0.27. This

condition maximizes . The figure shows that when the

threshold value is 0.2 < < 0.3 the total error reaches the

minimum value.

The condition of not using the second Bottom-Up stage is the

condition . As can be seen from Figure 5, the presence of

the minimum forces us to use this second clustering

stage. We also confirmed these conclusions after making several

submissions on the NIST i-vector challenge progress set.

Figure 4. The dependence of the clustering purity on the value

of the thresholds ,and

Besides, it follows from Figures 4 and 5 that it is sufficient to

use the condition in order to achieve the optimum both

for and for Q.

Figure 5. The dependence of the error on the value of the

 threshold .

We would like to note that the experiments performed on an

in-House data allowed us to formulate our clustering strategy.

But the selection of the thresholds and for the NIST i-

vector challenge devset clustering was performed experimentally

by means of several submissions on the NIST i-vector Challenge

progress set.

3.5. PLDA clustering

As mentioned above, in our work we used both stages of our

clustering algorithm, with the cos metric and with the PLDA

metric. Figure 6 shows the iterative scheme that we used for

clustering the NIST i-vector Challenge devset.

Before using this scheme, the NIST i-vector Challenge

devset was preprocessed to construct the . To do that,

237

we selected only those i-vectors that were produced from devset

segments longer than 20 seconds.

At the initialization step of the PLDA clustering (“COS

Clustering” block in Figure 6) we applied our clustering

algorithm with the cos metric to the 16 times, with

16 random clustering initializations. The thresholds for the two

stages = 0.29 were found by several submissions. As a

result of 16 passes we obtained 16 sets of speaker clusters. The

intersection of these 16 sets gave us a raw set of clusters. This

strategy allowed us to lower the dependence on the random

choice of the initial point of our clustering algorithm and to make

the raw set more robust. This raw set was then post-processed in

the following way. We selected from it only the speaker clusters

that contained no less than 2 and no more than 50 i-vectors, thus

obtaining . As demonstrated by the results of our

progress set submissions, such a choice of the interval of

possible cluster sizes led to the minimum minDCF. It follows

that the proposed cluster post-processing method results in

clustering purity that provides efficient PLDA model training.

The resulting set included 1542 speaker clusters containing

8682 i-vectors. Then on this “cleaned” set we trained

the PLDA model for the verification task. The configuration of

this model was as follows: the number of eigenvoices for the V-

matrix was N1 = 350, and the number of eigenchannels for the U-

matrix was N2 = 20. The noise matrix Σ was diagonal. As a result

of the submission on the NIST i-vector Challenge progress set

(not shown in Figure 6) this PLDA model achieved minDCF =

0.293 without using any QMF function. The choice of such a

model configuration for the verification task is motivated by high

labeling noise which will inevitably be present at the

initialization step. To make the PLDA model more robust it was

necessary to use a diagonal covariance and minimize the number

of eigenchannels.

The first iteration of the PLDA clustering starts with ML

training of the PLDA model on (see Formula (4)) for

the clustering task (see “PLDA Training” block in Figure 6). The

configuration of this model was as follows: the number of

eigenvoices N1 = 300, and the number of eigenchannels N2 = 0.

The noise matrix Σ was full covariance. Interestingly,

submissions on the NIST i-vector challenge progress set showed

that choosing a full-covariance PLDA model for the clustering

task turned out to be more efficient than choosing the diagonal

one.

Figure 6: The proposed scheme for clustering the NIST i-vector

Challenge devset.

Then we used this model for clustering and

applied our clustering algorithm with the PLDA metric (see

“PLDA Clustering” block in Figure 6). This process of PLDA

re-clustering can be continued iteratively, as shown in Figure 6.

We performed the first stage of our algorithm with = .

However, the second stage was again performed with the cos

metric (see Formula (28)) with the threshold = . These

thresholds were found simply by several submissions. We should

note that, in contrast to the initialization step, here we used not

16 initial points but only one. This departure from the sensible

strategy of the initialization step was motivated simply by saving

our resources.

After this PLDA clustering, we obtained new speaker

clusters, so that their number reached 2492 clusters, and the total

number of i-vectors in these clusters was 17186. After that we

performed the same post-processing as at the initialization step,

but with a different lower boundary. In this case we only used

speaker clusters that contained no less than 3 and no more than

50 i-vectors. In this way we obtained the set

consisting of 1745 speaker clusters with 13093 i-vectors. This

 was used to train the PLDA model with the

following verification configuration: N1 = 350, N2 = 55 , Σ was

diagonal. In this PLDA model configuration, increasing the

number of eigenchannels to N2 = 55 was motivated by the

decrease in clustering noise, which enabled us to make the

verification model more robust. The result of the submission on

the NIST i-vector Challenge progress set was that this PLDA

model achieved minDCF = 0.288 without using any QMF

function.

In our work only the one iteration of the iterative PLDA

clustering was performed. Increasing the number of iterations

further made them difficult to control, which meant difficulty in

finding the optimal model configuration at each iteration.

3.6. Clustering for the SVM subsystem

As mentioned before, the LDA-SVM subsystem used its own

clustering algorithm. This algorithm is in fact the Bottom-Up

stage of the classic AHC, but details of its implementation differ

from the algorithm for the PLDA and RBM-PLDA subsystems

described above. Let us call it Algorithm 2, in contrast to

Aglorithm 1 from Sections 3.3 and 3.5.

This overlap in Algorithms 1 and 2 is caused by the

independent development of the subsystems by different authors

of this paper during the whole time of the NIST i-vector

Challenge. As demonstrated by the subsequent fusion of the

subsystems, using different clustering algorithms increases

fusing efficiency. Clustering was performed only on those data

from the development set that had speech duration longer than

10 seconds. This constraint was selected a priori based on the

assumption that short recordings have very noisy i-vectors that

are difficult to cluster. We will call this set .

The clustering algorithm consisted of the following steps:

Algorithm 2

1. Each i-vector was taken as a separate cluster.

2. The two closest clusters were merged into one. The

degree of similarity between clusters was defined as

the value of the cos metric between the “averaged”

i-vectors of these clusters.

3. For the merged cluster, the “averaged” i-vector was

recalculated as the average value of all i-vectors in

this cluster.

4. Steps 2-3 were repeated while the value of the cos

metric was greater than the threshold 0.45.

The threshold for stopping clustering at the cos metric value

of 0.45 was based on the results of the submissions of the SVM-

LDA subsystem.

238

The result of this cos clustering was a set of about 3000

speaker clusters containing over 25000 i-vectors. After that, just

as in Section 3.5, a PLDA model was trained on this set. The

configuration of this model was as follows: the number of

eigenvoices was N1 = 300, the number of eigenchannels N2 = 0.

However, in contrast to the clustering algorithm in Section 3.5,

the noise matrix Σ was diagonal. In fact, we performed PLDA

clustering that corresponded to only the first PLDA iteration of

Section 3.5.

Then we used this model for obtaining the scores (5) on

 . We applied Algorithm 2 to these scores using the

PLDA metric and the threshold 0.43. The threshold for stopping

clustering at the PLDA metric value of 0.43 was based on the

results of the submissions of the SVM-LDA subsystem. The

final clusters were filtered by size (number of merged i-vectors):

clusters smaller than 2 and larger than 30 were deleted. The final

clustering was used for LDA module training.

4. Final experiments

The final experiments were conducted on the NIST i-vector

Challenge data. The data available for the NIST i-vector

Challenge are development data for training systems and a

separate evaluation set for the Challenge. The speakers used in

these datasets are disjoint. The i-vectors are obtained from

spoken telephone speech in the NIST Speaker Recognition

(SRE’s) from 2004 to 2012. The dimension of the i-vectors is

600. Each vector has meta information, namely the amount of

speech (in seconds) used to compute the i-vector. Segment

durations were sampled from a log normal distribution with a

mean of 39.58 seconds [1].

4.1. Development and evaluation sets of the NIST i-

vector Challenge

Development data contain a very large number of unlabeled i-

vectors obtained from segments of telephone speech. These

vectors are constructed from telephone recordings of various

male and female speaker voices.

Evaluation data consist of sets of 5 i-vectors defining the

target speaker models and of single i-vectors representing test

segments. The number of target speaker models is 1,306

(comprising 6,530 i-vectors) and the number of test i-vectors

9,634 (one i-vector each).

4.2. Trials for submission and scoring

The full set of trials for the Challenge consists of all possible

pairs involving a target speaker model and a single i-vector test

segment. Thus the total number of trials is 12,582,004.

The trials are divided into two subsets: progress subset and

evaluation subset. The progress subset comprises 40% of the

trials and is used to monitor progress in the scoreboard. The

remaining 60% of the trials forms the evaluation subset, and will

be used to generate the official final scores determined at the end

of the Challenge.

4.3. The influence of QMF functions

Even though, as described in Section 2.6, we explored QMF

functions only for the PLDA verification subsystem, we decided

to use the linear form of QMF (17) in all our other subsystems.

Table 1 shows the minDCFs of different subsystems with

and without QMF functions calculated with Formulas (18), (19)

and (20). Table 1 shows that using QMF for the SVM subsystem

leads to the highest reduction of minDCF by 10%. The same

reduction for PLDA and RBM-PLDA is 2% and 1.5%

respectively. The last row of the table shows the results for

fusing all three subsystems. Using QMF functions for the

resulting fused system results in minDCF = 0.241, which means

a 7% minDCF reduction.

It is obvious that for this NIST i-vector Challenge, taking

into account the variations in test utterance duration is one of the

key issues.

Table 1. Experimental results for the NIST i-vector Challenge.

Method of model

estimation

minDCF on progress set

without QMF with QMF

LDA-SVM subsystem 0.286 0.259

PLDA subsystem 0.288 0.282

RBM-PLDA subsystem 0.293 0.289

Fusion

(=

= = 0.33)
0.259 0.241

Table 1 also demonstrates that regardless of QMF, the most

efficient of our subsystems was SVM, which is somewhat at

odds with the state-of-the-art in past NIST SRE’s, where

discriminative SVM-based systems were outperformed by

generative PLDA-based systems. However, in the NIST i-vector

Challenge, a PLDA system requires a perfect labeling of the

development set in order to outperform an SVM system, which

must be very difficult to accomplish in practice. In contrast, an

SVM system can use the whole devset as an imposter set without

clustering.

4.4. Fusing different configurations

Tables 2-5 demonstrate the results of fusing all our subsystems

in different combinations. All results are shown with QMF

functions. Tables 2-4 show that the best combination of two

subsystems is fusing LDA-SVM and RBM-PLDA, which

achieves minDCF = 0.241. The least efficient combination was

fusing two PLDA subsystems (see Table 3), with minDCF =

0.263. We can explain it by two reasons.

First, the combinations of different PLDA subsystems with

LDA-SVM used two different clustering algorithms, while the

combination of PLDA and RBM-PLDA used the same clustering

result obtained by Algorithm 1 from Section 3.5. This resulted in

the two PLDA subsystems being more correlated than in

combination with the LDA-SVM subsystem, so that fusing them

was less effective.

Second, a comparison of Tables 2 and 4 shows that under

equal clustering conditions fusing the RBM-PLDA and LDA-

SVM subsystems is more efficient.

239

Table 2. Experimental results for LDA-SVM and PLDA

subsystems.

Method of model estimation

minDCF on

progress set

with QMF

LDA-SVM subsystem 0.259

PLDA subsystem 0.282

Fusion

(= 0.51, = 0.49) 0.252

Table 3. Experimental results for PLDA and RBM-PLDA

subsystems

Method of model estimation

minDCF on

progress set

with QMF

PLDA subsystem 0.282

RBM-PLDA subsystem 0.289

Fusion

(= 0.5, = 0.5) 0.263

We find the explanation for this is that the RBM classifier

performs a nonlinear transformation. It enables the transition into

a new b-vector space. PLDA subsystems trained in the b-space

are decorrelated with subsystems trained in the i-vector space,

which leads to successful fusion. It should be noted in Tables 2-4

that by comparing the results of separate subsystems, we find

that the RBM-PLDA subsystem based on i-vectors is inferior to

both classic PLDA and SVM subsystems. This is in accordance

with similar results obtained by [5-7], where methods using

Boltzmann Machines in i-vector space are also outperformed by

PLDA.

Table 4. Experimental results for LDA-SVM and RBM-PLDA

subsystems.

Method of model estimation

minDCF on

progress set

with QMF

LDA-SVM subsystem 0.259

RBM-PLDA subsystem 0.289

Fusion

(= 0.51, = 0.49) 0.241

We also tried to include a second hidden layer to our RBM-

PLDA model (referred as DBN-PLDA), but we observed that

adding another hidden layer did not yield any substantial

reduction at the minDCF point. Table 5 includes our best result

minDCF = 0.239 obtained by fusing three subsystems LDA-

SVM, RBM-PLDA and DBN-PLDA.

Table 5. Experimental results for LDA-SVM, RBM-PLDA and

DBN-PLDA subsystems.

Method of model estimation

minDCF on

progress set

with QMF

LDA-SVM subsystem 0.259

RBM-PLDA subsystem 0.289

DBN-PLDA subsystem 0.290

Fusion

(= = =

0.33)
0.239

5. Conclusions

In this paper we presented the STC NIST i-vector Challenge

speaker verification system, which includes different subsystems

based on PLDA, LDA-SVM, RBM-PLDA and DBN-PLDA.

We proposed a version of agglomerative clustering in i-

vector space for use as the clustering algorithm for the NIST i-

vector Challenge devset, based on PLDA iterations. Non-linear

transformation of the TV i-vector is performed using RBM,

which leads to successful fusion with classic i-vector systems.

Experiments conducted on the NIST i-vector evaluation set show

that fusing LDA-SVM, RBM-PLDA and DBN-PLDA

subsystems is the best option. It enabled us to achieve

minDCF = 0.239.

In our future work we plan to focus on exploring different

DNN configurations as pseudo i-vector extractors.

6. Acknowledgments

We would like to thank the reviewers of the first version of this

paper for their valuable remarks and suggestions, including

references to literature on clustering.

7. References

[1] The 2013-2014 Speaker Recognition i-vector Machine

Learning Challenge, http://www.nist.gov/itl/iad/mig/upload/

sre-ivectorchallenge_2013-11-18_r0.pdf

[2] S. J. D. Prince, “Probabilistic linear discriminant analysis

for inferences about identity,” in Proc. International

Conference on Computer Vision (ICCV), Rio de Janeiro,

Brazil, 2007.

[3] P. Kenny, “Bayesian speaker verification with heavy-tailed

priors,” in Proc. Odyssey-2010, 2010.

[4] D. Garcia-Romero and C. Y. Espy-Wilso, “Analysis of i-

vector length normalization in speaker recognition

systems,” in Proc. of Interspeech-2011, Florence, Italy,

Aug. 2011.

[5] M. Senoussaoui, N. Dehak, P. Kenny, R. Dehak, and P.

Dumouchel, “First attempt at Boltzmann Machines fo

speaker recognition,” in Proc. of Odyssey-2012, pp. 117–

121, 2012.

[6] T. Stafylakis, P. Kenny, M. Senoussaoui, and P.

Dumouchel, “Preliminary investigation of Boltzmann

Machine classifiers for speaker recognition,” in Proc. of

Odyssey-2012, pp. 109–116, 2012.

http://www.nist.gov/itl/iad/mig/upload/sre-ivectorchallenge_2013-11-18_r0.pdf
http://www.nist.gov/itl/iad/mig/upload/sre-ivectorchallenge_2013-11-18_r0.pdf

240

[7] T. Stafylakis, P. Kenny, M. Senoussaoui, P.Dumouchel,

“PLDA using Gaussian Restricted Boltzmann Machines

with application to Speaker Verification,” in Proc. of

Interspeech- 2012, Portland, USA, September 2012.

[8] V. Vasilakakis, S. Cumani and P. Laface, “Speaker

recognition by means of Deep Belief Networks,” Biometric

Technologies in Forensic Science, Nijmegen, October,

2013.

[9] Y. Lei, N. Scheffer, L. Ferrer and M. McLaren, “A novel

scheme for speaker recognition using a phonetically aware

Deep Neural Network,” in Proc. of ICASSP-2014, 2014.

[10] P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet and J. Alam

“Deep Neural Networks for extracting Baum-Welch

statistics for Speaker,” in Proc. of Odyssey-2014, 2014.

[11] T. Pekhovsky, A. Sizov, "Comparison Supervised and

Unsupervised Learning Mixture of PLDA Models for

Speaker Verification ", Pattern Recognition Letters, v.34,

pp.1307–1313 (Apr. 2013)

[12] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P.

Ouellet, ”Front-end factor analysis for speaker verification,”

IEEE Trans. on Audio, Speech, and Language Processing,

v.19, pp. 788-798., 2010.

[13] A. Kozlov, O. Kudashev, Y. Matveev, T. Pekhovsky, K..

Simonchik, A. Shulipa, “SVID Speaker Recognition System

for NIST SRE 2012,” In Proc. of International Conference

SPECOM-2013, pp. 278-285, Springer International

Publishing, 2013.

[14] N. Dehak et al., “Support Vector Machines versus Fast

Scoring in the Low-Dimensional Total Variability Space for

Speaker Verification,” in Proc. of Interspeech-2009,

Brighton, UK, 2009.

[15] I. N. Belykh, A. I. Kapustin, A. V. Kozlov, A. I. Lohanova,

Yu. N. Matveev, T. S. Pekhovsky, K. K. Simonchik, A. K.

Shulipa, “The speaker identification system for the NIST

SRE 2010”, Informatics and its Applications, 6 (1):24-31,

2012.

[16] S. Novoselov, T. Pekhovsky, A.Shulipa, A. Sholokhov,

“Text-dependent GMM-JFA system for password based

speaker verivication,” of in Proc. of ICASSP 2014,

Florence, Italy, May 2014.

[17] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N.

Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and

B. Kingsbury, “Deep neural networks for acoustic modeling

in speech recognition,” IEEE Signal Processing Magazine,

v. 29 (6), pp. 82-97, 2012.

[18] Hinton, G. E., Osindero, S., & Teh, Y. (A fast learning

algorithm for deep belief nets. Neural Computation, v. 18,

pp. 1527–1554, 2006.

[19] H. Larochelle, Y. Bengio, “Classification using

discriminative restricted Boltzmann machines,” Proc. of the

25-th International Conference on Machine Learning, pp.

536–543, Helsinki, Finland, 2008.

[20] M. I. Mandasari, R. Saeidi and D. A. van Leeuwen,

Calibration based on duration quality measure function in

noise robust speaker recognition for NIST SRE'12, in Proc.

Biometric Technologies in Forensic Science, Nijmegen,

Oct. 2013.

[21] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern

classification”, 2-nd edition, John Wiley & Sons, 2001.

[22] Kyu Jeong Han, Shrikanth S. Narayanan, “Agglomerative

hierarchical speaker clustering using incremental Gaussian

mixture cluster modeling”, in Proc. of Interspeech-2008

pp.20-23, Brisbane, Australia, 2008.

[23] D. A. Reynolds and P. Torres-Carrasquillo, “The MIT

Lincoln Laboratory RT-04F Diarization Systems:

Applications to Broadcast Audio and Telephone

Conversations,” NIST Rich Transcription Workshop, Nov.

2004.

[24] S. Tranter and D. Reynolds, “An overview of automatic

speaker diarization systems,” IEEE Transactions on Audio,

Speech, and Language Processing, v.14, n.5, pp.1557–1565,

Sept. 2006.

[25] P. Rajan, T. Kinnunen and V. Hautamäki, “Effect of

multicondition training on i-vector PLDA configurations for

speaker recognition,” in Proc. of Interspeech-2013, pp.

3694-3697, Lyon, France, Aug. 2013.

[26] K. Simonchik, T. Pekhovsky and A Shulipa, “Effective

Estimation of a Multi-Session Speaker Model using

Information on Signal Parameters”, in Proc. of Interspeech-

2013, pp. 1604-1608, Lyon, France, Aug. 2013.

[27] M. Senoussaoui, P. Kenny, P. Dumouchel and T. Stafylakis,

“Efficient Iterative Mean Shift based Cosine Dissimilarity

for Multi-Recording Speaker Clustering,” in Proc. of

ICASSP-2013, 2013.

[28] M. Senoussaoui, P. Kenny, T.Stafylakis and P. Dumouchel,

“A Study of the Cosine Distance-Based Mean Shift for

Telephone Speech Diarization,” IEEE Trans. on Audio,

Speech, and Language Processing, v. .22, n. 1, pp. 217-227,

Jan. 2014.

[29] D. Comaniciu and P. Meer, “Mean shift: A robust approach

toward feature space analysis,” IEEE Trans. Pattern

Analysis and Machine Intelligence, v. 24, n. 5, pp. 603 –

619, May 2002.

http://www.informatik.uni-trier.de/~ley/pers/hd/n/Narayanan:Shrikanth_S=.html

