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Abstract
We examine the use of Deep Neural Networks (DNN)
in extracting Baum-Welch statistics for i-vector-based text-
independent speaker recognition. Instead of training the uni-
versal background model using the standard EM algorithm, the
components are predefined and correspond to the set of triphone
states, the posterior occupancy probabilities of which are mod-
eled by a DNN. Those assignments are then combined with the
standard 60-dim MFCC features to calculate first order Baum-
Welch statistics in order to train the i-vector extractor and ex-
tract i-vectors. The DNN-based assignment force the i-vectors
to capture the idiosyncratic way in which each speaker pro-
nounces each particular triphone state, which can enrich the
standard short-term spectral representation of the standard i-
vectors.

After experimenting with Switchboard data and a baseline
PLDA classifier, our results showed that although the proposed
i-vectors yield inferior performance compared to the standard
ones, they are capable of attaining 16% relative improvement
when fused with them, meaning that they carry useful com-
plementary information about the speaker’s identity. A further
experiment with a different DNN configuration attained com-
parable performance with the baseline i-vectors on NIST 2012
(condition C2, female).

1. Introduction
Text-independent speaker recognition has been dominated by
models that segment the input space on the basis of low-level
acoustic events. The use of short-term spectral information
(MFCC, PLP, etc.) that is augmented by ∆ and ∆∆ fea-
tures, followed by a universal background model (UBM) that
is trained without any phonetic information, and an i-vector for
modelling whole utterances, has been proven to be the most
robust front-end in distinguishing speakers in text-dependent
speaker recognition. Yet, the use of the higher-level phonetic
events as complementary to the acoustic ones has been advo-
cated by several researchers to be beneficial, [1], [2].

Recently, Deep Neural Networks (DNN, [3], [4]) have
clearly shown their superiority over Gaussian mixture models
(GMM) for automatic speech recognition (ASR), with relative
improvement in word error rate (WER) being about 30%, [5].
A fundamental difference between DNNs and GMMs (as well
as earlier Neural Net approaches) is the capacity of DNNs in
handling longer segments of speech as inputs (about 300ms),
which enables them to make use of the information carried
in the neighbourhood of the target-frame, in order to assign it
probabilistically to one of the phonetic classes (usually triphone
states).

Investigating ways to combine recent advances in deep ar-

chitectures and speaker recognition can be a very promising
direction of research. In [6], Deep Belief Networks (DBNs)
are deployed in order to built an alternative i-vector extractor,
that performs a non-linear transformation on the input features
which produces the probability that an output unit is on, given
the input features. In [7], a Boltzmann Machine was deployed
as a back-end classifier and its performance was equivalent to a
state-of-the-art PLDA model. In the case of DNNs for ASR, it
has been recently demonstrated that conventional i-vectors can
be very effective in fast speaker adaptation, when augmenting
the input layer of the DNN with a speaker- or utterance-level
i-vector, yielding a further∼8% relative improvement in WER,
[8].

In this paper, we show how a deep neural network can take
the place of a universal background model (UBM) in collect-
ing Baum-Welch statistics for text-independent speaker recog-
nition with a conventional i-vector/PLDA architecture. Strictly
speaking, talking about Baum-Welch statistics here is an abuse
of language (we are not assuming that the data is generated by
a Gaussian mixture model) but the term is appropriate since
the statistics we extract are identical in form to traditional zero
and first order Baum-Welch statistics. The only difference is in
the way the posterior occupation probabilities are calculated for
each frame.

Baum-Welch statistics extracted from a given frame give a
sparse over complete representation in the sense of [9] . (The
representation is over complete because representing a frame
by a supervector of first-order statistics is redundant; it is sparse
because, for a given frame, almost all of the occupation proba-
bilities are zero.) Sparsity at the frame level makes for a very
good representation at the utterance level for the purpose of text-
independent speaker recognition. Acoustic events (say nasals
and fricatives) occurring at different times in the course of the
utterance will activate different components of the first-order
statistics supervector. Thus they will not interfere with each
other when the Baum-Welch statistics for individual frames are
pooled together. This pooling yields a fixed dimensional rep-
resentation of the utterance (the dimension is independent of
the utterance duration) which greatly facilitates the task of de-
veloping back-ends. (Of course pooling loses information con-
cerning the order of acoustic events but this is no drawback for
text-independent speaker recognition.)

Our contribution in this paper then is to propose a slightly
different sparse over complete representation for frames: one
which captures information about acoustic-phonetic events
(namely the pronunciation of individual triphones), rather than
merely acoustic events (as in the case of a traditional speaker
recognition system).

The rest of the paper is organized as follows. In Section
2, the main elements of DNNs for ASR are described. In Sec-
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tion 3, we demonstrate how the DNN outputs are used in order
to train the i-vector extractor and extract i-vectors. In Section
4, the experimental set-up is presented in depth and results on
a subset of Switchboard are reported, followed by Section 5,
where we present results on NIST SRE-2012.

2. Deep Neural Networks for speech
recognition

The use of DNNs to model the emission probabilities in speech
recognition has been revived during the last 5 years and sev-
eral benchmark tests demonstrate their superiority over (both
generatively- and discriminatively-trained) GMM-HMM sys-
tems, [4], [5].

2.1. Input and output layers of DNNs

A major difference between them and earlier NN implementa-
tions is the use of large window as input layer. For our princi-
pal experiment, we follow the DNN training recipe described in
[5]. Assuming a frame of 20-30ms (augmented by its first ∆
and second order ∆∆ derivatives), a DNN uses as input layer
not only the particular frame, but its neighbourhood (typically
5 left and 5 right), which forces the model to learn speech dy-
namics of longer time-spans. The frames are themselves LDA
projections of 7 consecutive 13-dim static MFCCs (3 on each
side), which can be considered as a data-driven analogue to
the augmentation of the static MFCCs with ∆ and ∆∆. Cep-
stral mean subtraction is applied prior to LDA projection, where
the means are estimated per conversation side. After the LDA
projection, the features undergo a single semi-tied covariance
transform, [10]. Finally, feature-space maximum likelihood lin-
ear regression (fMLLR) is applied, again estimated conversa-
tion side (Speaker Adaptive Training, SAT). For estimating the
fMMLR transforms at runtime, a first pass of the data with a
conventional HMM-GMM and language model is required for
estimating the path in the lattice.

As a discriminative classifier, the DNN is trained in a such
way that it provides posterior probability estimates about the
HMM states s ∈ S, given the observations, where S the set of
triphone states. Assuming an observation out that corresponds
to the tth frame of an utterance u, the output of the DNN yut(s)
is given by the following expression

yut(s) =
expαut(s)∑
s′ expαut(s′)

(1)

known as softmax activation function, where αut(s) the activa-
tion of the output layer corresponding to state s.

The remaining hidden layers are sigmoid, while it has been
found that the optimal results for ASR are obtained with a 7-
layer DNN, [5].

2.2. Training the DNN using cross-entropy

In order to train the DNN, the backpropagation algorithm is ap-
plied, with cross-entropy being a popular optimization criterion.
The cross-entropy criterion minimizes the following objective
function

JCE = −
U∑
u=1

Tu∑
t=1

log yut(sut) (2)

where sut denotes the (known during training) state at time t of
the uth utterance. The expression in eq. (2) is the cross-entropy
between the multinomial distribution of the reference labels and

Table 1: ASR results (WER, %) on SWB and CHE
System SWB CHE Total

GMM-HMM [5] 18.66 33.0 25.8
DNN [5] 14.2 25.7 20.0

DNN (ours) 15.6 27.4 21.5

the predictive distribution y(s), which is continuous and de-
fined on the simplex. It is worth noticing that by minimizing
the entropy we also maximize the mutual information between
outputs y(s) and labels s, computed at the frame-level. Initial
implementations of DNN training deployed stacked restricted
Boltzmann Machines (RBMs) as an initialization step, that are
pretrained in a greedy layer wise fashion using contrastive di-
vergence. Such an initialization allows for the use of unlabelled
data (all but the uppermost RBM do not require labels) and may
prevent the model to stack in local maxima. More recent work,
though (see [4]), has demonstrated that same results can be at-
tained using the standard random initialization when the train-
ing data is large enough. Yet, in order to reproduce the results
in [5] we initialize the DNN with the stacked-RBM method.

2.3. Results on ASR using DNN

Our implementation, which follows the recipe of the base-
line system described in [5] (with cross-entropy optimization
criterion and frame-discriminative training), has been tested
on Switchboard (SWB) and CallHome English (CHE) bench-
marks. The results given in Table 1 show a marked improve-
ment in Word Error Rate (WER) by using DNN instead of
GMM-HMM. The GMM-HMM system is trained discrimina-
tively, using Boosted Maximum Mutual Information (BMMI)
as optimization criterion, which is considered as one of the most
effective GMM-HMM training algorithms. Our DNN, com-
pared to the implementation of DNN in [5] performs slightly
worse, which can be attributed to the use of 5-hidden layer
rather than 6.

We should finally note that in our implementation for
speaker recognition, the HMM with language model is only
used in the first pass in order to estimate the fMLLR transform.
The DNN posteriors yut(s) are estimated using (1) without the
use of HMM or language model. Thus, the implied prior of the
posterior is derived by the triphone state frequencies that ap-
pear on the training set. Although this implementation is not
optimal for ASR, we considering it as a good starting point for
the preliminary experiments on speaker recognition we present
here.

3. Training and Extraction of i-vectors
The concept of i-vector extraction is based on the Factor Analy-
sis extended to handle session and speaker variabilities of super-
vectors to Joint Factor Analysis (JFA), [11], [12], [13]. Contrary
to JFA, different sessions of the same speaker are considered
to be produced by different speakers. Rather than making dis-
tinction between the speaker and channel effects the total vari-
ability space in the i-vector extraction method simultaneously
captures the speaker and channel variabilities, [14]. Given a
C component GMM-UBM model λ with λc = [wc,mc,Σc],
c = 1, 2, ..., C and an utterance having a sequence of T fea-
ture frames y1, y2, ..., yT the zero and first order Baum-Welch
statistics on the (ancillary) UBM are computed as:
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Figure 1: Block diagram showing different stages of I-vector
extraction process

Nc =

T∑
t=1

πt(c) (3)

Fc =

T∑
t=1

πt(c)yt (4)

where πt(c) the probabilistic alignment (posterior probability
of the cth component for the tth observation) and πt(c) =
P (c|yt, λ) in the case of standard i-vectors.
For the proposed method, an ancillary UBM is needed, with
parameters denoted again by λ. Its use in minor though, as it
serves only to prewhiten the Baum-Welch statistics. Note that
the Expectation-Maximization algorithm is not required for es-
timating λ. We simply use the probabilistic alignment πt(c)
provided by the DNN on the training data to estimate it.

The Baum-Welch statistics are extracted using the follow-
ing formula

Fc ← L−1
c (Fc −Ncmc) (5)

where LcLtc = Σc the Cholesky decomposition of Σc.
The generative model for the i-vector can be expressed as:

M = mc + Tθ, θ ∼ N (0, I) (6)

whereM is a supervector constructed by appending together the
first order statistics for each mixture component c, the columns
of the low rank total variability matrix T span the subspace
where most of the speaker specific information lives (along with
channel effects). For each speech recording r, an i-vector ir is
obtained as the posterior expectation of θ:

ir = θ̂ = (I + T tΣ−1N(r)T )−1T tΣ−1F (r) (7)

where N(r) is a diagonal matrix of dimension CDf × CDf
whose diagonal blocks are NcI, (c = 1, 2, ..., C), Df is the
feature dimension, F (r) is a supervector of dimensionCDf×1
obtained by concatenating all first centred order Baum-Welch
statistics Fc, diagonal covariance matrix Σ is of dimension
CDf ×CDf and it models the residual variability not captured
by the total variability matrix T .

4. Experiments on Switchboard
4.1. Training Data

In this section, we present our primary experiment on Switch-
board. We chose Switchboard because of its transcribed data in
Switchboard 1 that is needed in order to train the DNN. We
used Switchboard 1 Release 2 (SW1R2) and Switchboard 2,
Phases I, II and III (SW2PH1, SW2PH2, and SW2PH3). Train-
ing the UBM was done with SW1R2 only; training the i-
vector and PLDA models was done using SW1R2, SW2PH1
and SW2PH2. SW2PH3 was set aside as a development/test
set.

4.2. Voice Activity Detection (VAD)

We used a GMM-based VAD with two GMMs, similar to
that described in [15]. The 44-dimensional VAD MFCC fea-
tures were used to train the two (background and speech) 256-
component diagonal covariance GMMs. The features were cal-
culated from telephone-only audio data from the NIST 2004
to 2010 SREs. We produced one raw segmentation per conver-
sation side using this VAD.

4.2.1. Echo Cancellation

Switchboard corpora, especially SW1R2, contain significant
amounts of cross-talk. In order to remove such cross-talk
from a conversation side, we followed a recipe provided by the
Brno University of Technology, to produce what we call post-
processed segmentations:

1. Calculate the per-frame log-energy for both sides of the
conversation under consideration.

2. Normalize the log-energy, over the whole length of the
conversation and for both sides separately.

3. Using the raw segmentation for the conversation side of
interest, calculate, for each segment, the average normal-
ized log-energy (ANLE) for both sides of the conversa-
tion.

4. For each segment, if the ANLE of that segment is lower
than a certain threshold, label that segment as silence; if
the ANLE of the conversation side is 3 dB or more below
the ANLE of the opposite (interlocutor’s) conversation
side, label that segment as silence; otherwise, preserve
the raw segment label.

Figure 1 presents a block diagram showing various steps of
the i-vector extraction process from the MFCC (mel-frequency
cepstral coefficients) features. An i-vector extractors of dimen-
sion Di = 400 was trained using features computed from the
Switchboard 1 Release 2 (SW1R2) and Switchboard 2, Phases
I, II (SW2PH1, SW2PH2) database. Finally, the ancillary UBM
was trained on the SW1R2 database.

4.3. Evaluation set

For evaluation, we have created a test set with single enrolment
utterances and all possible gender-dependent pair combinations
from Switchboard 3, yielding 12354 and 4441264 target and
non target trials, respectively, for female speakers, and 9867
and 2636867 target and non target trials for male.
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4.4. Baseline System

4.4.1. Front-End Features

The front-end features were 19 MFCC calculated over a 25 ms
window every 10 ms, plus a log-energy coefficient, giving a 20-
dimensional vector; ∆ and ∆∆ coefficients were then added to
form one 60-dimensional vector per 10 ms, each of which was
then Gaussianized over a 3-second window.

4.4.2. UBM

The baseline gender-independent UBM was trained using all of
the speech from SW1R2, as determined by the post-processed
VAD segmentations. First, a single-Gaussian diagonal GMM
(the sample mean vector and diagonal covariance matrix) was
generated, which was then iteratively doubled in size and
re-estimated until the diagonal-covariance GMM comprised
2048 components. A full-covariance UBM was then produced
from the diagonal-covariance UBM, and was then re-estimated.

4.5. DNN posteriors

4.5.1. Front-End Features

The exact same front-end features were used as in the baseline
system (see Section 4.4.1).

4.5.2. Ancillary UBM

The UBM differences between the DNN system and the base-
line system are:

• For each speech data frame, a top-20 list of mixture com-
ponent indices and their corresponding posterior proba-
bilities were produced using the DNN.

• The ancillary UBM, with full covariance matrices, was
directly trained in one pass using the posteriors from the
DNN and the front-end features.

• The resulting ancillary UBM had 4301 components in-
stead of 2048 for the baseline UBM.

4.5.3. PLDA model

As backend classifier, a generative PLDA model is utilized. The
i-vectors are prewhitened and projected onto the unit-sphere
(a transform known as length-normalization within the speaker
recognition community, [16]) that is used in order to make the
i-vector distribution more Gaussian-like and less heavy-tailed.
PLDA assumes the following generative model

ir = µ+ V ys + εr (8)

where µ the global mean, V the rectangular matrix whose
columns span the speaker variability space, ys ∼ N(0, I)
the vector of speaker factors (fixed for each speaker s) and
εr ∼ N(0,Σε) the residual, with covariance matrix Σε. Af-
ter experimentation, we found that for the standard i-vectors,
the optimal dimensionality of ys was dim(ys) = 120, while for
the proposed i-vectors the full-rank speaker variability setting
was superior, i.e. dim(ys) = dim(ir).

4.6. Experimental Results

Apart from the baseline and the DNN based i-vectors, we are
also reporting results after fusing the LLRs of the two systems,
using the Bosaris toolkit, [17].

Table 2: Results on Switchboard - female speakers
method EER (%) minNDCF08 minNDCF10

Baseline 2.38 0.097 0.361
NeuralNet 3.47 0.140 0.495

Fusion 2.13 0.083 0.320

Table 3: Results on Switchboard - male speakers
method EER (%) minNDCF08 minNDCF10

Baseline 1.74 0.074 0.319
NeuralNet 2.31 0.081 0.357

Fusion 1.53 0.059 0.272

The results are given in Tables 2 and 3, in terms of Equal Er-
ror Rate (EER) and minimum normalized Detection Cost Func-
tion (minNDCF) of NIST ’08 and ’10. From these tables, it be-
comes evident that we did not manage to outperform the stan-
dard i-vectors. This is in line with most of the systems that
attempt to model the phonetic events rather than the acoustic,
[1], [2]. Yet, the DNN-based i-vectors seem to fuse well with
the standard ones, reducing the (averaged among genders) min-
imum normalized DCFs of ’08 and ’10 by 17% and 13%, re-
spectively. Figure 2 and 3 show the DET curves (derived with
the Bosaris toolkit, [17]). We clearly observe that for all oper-
ating points of practical interest the fused LLRs outperformed
the baseline on both genders.

We should also note that we tried to increase the dimension-
ality of DNN-based i-vectors from 400 to 800 but with negligi-
ble improvement. Finally, we attempted to fuse the two systems
on the PLDA domain, by concatenating the two i-vectors, yet,
the score-level fusion was significantly superior.

Figure 2: DET curves for Switchboard - female speakers

5. Experiments on NIST 2012
After this paper was submitted, we were informed that the same
idea has recently been explored and accepted for publication,
[18]. Moreover, the authors report an impressing 30% rela-
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Figure 3: DET curves for Switchboard - male speakers

tive improvement on NIST-2012 telephone data, even without
applying fusion with the standard i-vectors. Apart from some
minor differences (they did not use ∆∆ coefficients and the
number of triphone states was 3500, instead of 4301), the major
differences between their implementation and ours are summa-
rized below.

• About 1300 hours of speech for DNN training (En-
glish telephone speech from Switchboard, Callhome and
Fisher), compared to 278 hours that we used.

• The use of 40-dimensional filter-bank with 15 frames,
instead of the standard MFCC feature with 10 frames
followed by LDA.

Given the fact that improvements of this range are rare in
speaker recognition, we tried to replicate their results. The
training set we used train our new DNN was composed of about
1200 hours and was identical to the one used in [18], excluding
the Callhome dataset. We have used identical training and eval-
uation sets (namely 1040 speaker models for evaluation, 4432
target and 8356128 nontarget trials). The only major difference
was on the number of triphone states. We used only 429 tri-
phone states instead of 3500, due to computational/temporal
constrains.

Our first step was to replicate the results attained in [18] us-
ing a baseline i-vector/PLDA model with a 2048-component
UBM. After experimentation, we concluded that a full-rank
PLDA (i.e. with dim(ys) = 400) was optimal. Comparing
Table 4 (line 1) with the corresponding results in [18] we con-
clude that they are close enough, at least in terms of DCFs. For a
fair comparison with our DNN system, a 512-component UBM
was also used for the standard i-vector/PLDA baseline. The re-
sults on NIST 2012 (C2, female) are given in Table 4 and Fig.
4. We observe that the proposed method has a comparable per-
formance with the baseline, and is better in the low-false alarm
area. Finally, when fusing the the 512-component baseline with
the DNN-based system a further improvement was attained.

Table 4: Results on NIST-2012 (C2 condition) - female speakers
method EER (%) minNDCF08 minNDCF10

Baseline-2048 1.58 0.086 0.381
Baseline-512 1.95 0.108 0.434

NeuralNet 2.16 0.112 0.400
Fusion 1.81 0.099 0.398

Figure 4: DET curves for NIST-2012 (C2 condition) female
speakers

6. Conclusions and future work
We proposed the use of Deep Neural Networks (DNN)
in extracting Baum-Welch statistics for i-vector-based text-
independent speaker recognition. We do so in order to obtain
a model that focuses on phonetic events, rather that the usual
short-term acoustic ones. On top, an i-vector extractor was
trained and used to extract i-vectors, followed by a generative
PLDA model. The experiments on NIST demonstrated a 16%
relative improvement after fusing their scores with the ones of
PLDA model using standard i-vectors.

As future directions, we plan to experiment with several
DNN configurations, such like sequence-discriminative train-
ing and different optimization criteria (e.g. [5]) and evaluate
it on different datasets. The very successful implementation
of the same approach in [18], together with the experiments
that we performed on NIST-2012 show that it has the potential
to become the new state-of-the-art model for text-independent
speaker recognition.
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