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Abstract 

This paper aims at presenting our algorithm used to make 
submission for the NIST 2013-2014 speaker recognition i-
vector challenge. The fixed dimensional i-vector 
representation of speech utterances has attracted attentions 
from other communities. This challenge focuses on the task of 
speaker detection using i-vectors derived from conversational 
telephony speech data. However, the unlabeled i-vectors 
provided for development purpose make the problem more 
challenging. The proposed method uses the idea of one of the 
popular robust beamforming techniques named Linearly 
Constrained Minimum Variance (LCMV), which has been 
presented in the context of beamforming for signal 
enhancement. We will show that LCMV can improve 
performance by building a model from different i-vectors of a 
given speaker so as to cancel inter-session variability and 
increase inter-speaker variability. Imposter covariance matrix 
modification and score normalization using a selection of 
imposter speakers have been proposed to improve 
performance. As measured by minimum decision cost function 
defined in the challenge, our result is 27% better relative to 
the baseline system. 

1. Introduction 

Over recent years, i-vector representation of speech segments 
has been widely used by the state-of-the-art speaker 
recognition systems [1]. This representation maps arbitrary 
duration speech segments into a fixed and low dimensional 
vector which encourages researchers to explore new ideas 
from other communities to be used in speaker recognition.  

The main challenge of i-vector representation is the 
variability associated with different i-vectors of the same 
speaker. This variability is mainly due to the use of different 
handsets, environmental noise, speaker health and emotion or 
segment duration. Therefore, inter-session variability 
compensation techniques have been developed to directly 
remove unwanted variability from i-vectors [1-6]. The state-
of-the-art Probabilistic Linear Discriminant analysis (PLDA) 
[4] with its variants (Gaussian and heavy-tailed) [2], Linear 
Discriminant Analysis (LDA), Within-Class Covariance 
Normalization (WCCN) and Nuisance Attribute Projection 
(NAP) [7] are the most important techniques which have 
shown their ability to successfully compensate for inter-
session variability. However, their ability to compensate for 
this variability has a direct relationship with the quantity of 
developmental labeled i-vectors in which a typical speaker has 
as many i-vectors (acquired from variety of conditions) as it is 
sufficiently broad to cover most of the session variability. In 

contrary to the costly process of obtaining labeled speech data, 
unlabeled speech data are readily available. Therefore, 
unsupervised techniques need to be developed to make use of 
them to improve speaker recognition systems. The NIST 
2013-2014 speaker recognition i-vector challenge tries to 
provide such opportunity [8].  

The objective of this paper is to describe the method used 
to make submission for the NIST i-vector challenge. The 
proposed method is inspired by the theory of adaptive 
filtering. Adaptive beamforming is widely used in several 
application areas such as radar, sonar, wireless communication 
and even speech enhancement [9]. The objective of adaptive 
beamforming techniques is to maximize signal-to-
interference-plus-noise ratio (SINR). Provided that the desired 
signal is not distorted, the problem leads to the minimum 
variance distortionless response (MVDR) or standard Capon 
beamformer (SCB) [10] which provides an excellent 
performance if we have data without desired signal 
component. The goal of MVDR is to find a filter that passes 
the desired signal while rejects noise and interferences. In 
practice, however, the desired signal is not known exactly and 
this will cause the performance of MVDR to degrade 
significantly. Multiple techniques have been proposed to 
improve the robustness of MVDR beamformer which include 
Linearly Constrained Minimum Variance (LCMV) [9], norm 
constraints [9], multidimensional covariance fitting [11] and 
more. LCMV improves performance by incorporating 
different signals which are in the vicinity of the desired signal.  

The similarity of LCMV to the problem at hand 
encourages us to use this technique. In this way, we take all i-
vectors of a target speaker in the evaluation set as signals in 
the vicinity of the unknown desired signal which is the 
expected i-vector of that target speaker, and all i-vectors in the 
development set as noise or interference signals since the 
speakers involved in these two sets are disjoint. Our 
experiments indicate that using those imposter i-vectors which 
are the most similar to the target model can significantly 
improve the performance. Moreover, to better compensate the 
inter-session variability, we have built a within-class 
covariance matrix using groups of similar i-vectors from the 
development set, each is supposed to be from the same 
speaker, and have used it along with the imposter covariance 
matrix to improve the performance. Finally, the score is 
normalized using a selection of imposter i-vectors. 

The paper is organized as follows. In Section 2 we will 
explain how beamforming techniques can be used to 
compensate for the variability associated with speaker i-
vectors and describe the techniques used to improve 
performance. In Section 3 we have carried out experiments to 
show the effect of different techniques on the speaker 
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recognition performance. Finally we have concluded the paper 
in Section 4. 

2. Inter-session Compensation 

Numerous session compensation techniques have recently 
been proposed to remove the nuisance variability from i-
vectors. The most effective techniques include Within-Class 
Covariance Normalization (WCCN) [12] which uses the 
inverse of within-class covariance matrix to weaken the effect 
of nuisance directions, Nuisance Attribute Projection (NAP) 
[13] which removes the nuisance direction, Linear 
Discriminant Analysis (LDA) which defines new axes to 
minimize inter-session variability of each speaker’s i-vectors 
and maximize between-speaker variance, and Probabilistic 
Linear Discriminant Analysis (PLDA) [4] which incorporates 
speaker and channel subspaces. However, these techniques 
require a large quantity of labeled i-vectors which is not 
provided in this challenge. Therefore, in order to be able to 
use these supervised techniques, we need to find i-vectors 
belonging to each speaker in the development set through 
unsupervised techniques. In this way, their performance will 
be affected by the accuracy of the unsupervised technique.  

In this work we have proposed a method based on the idea 
used in beamforming to build a model from different i-vectors 
of a target speaker as well as a selection of imposter i-vectors 
to cancel inter-session variability and increase inter-speaker 
variability. Further improvement has been achieved by 
incorporating a within-class covariance matrix built in an 
unsupervised manner. 

 

2.1. Adaptive Filtering 

The baseline system presented for this challenge can be 
described by the theory of adaptive filters if we just ignore the 
length normalization of i-vectors. Adaptive filtering is a 
means of adaptive extraction of a weak desired signal in the 
presence of noise signal. Let’s take each i-vector as a signal of 
dimensionN . Given a collection of target speaker i-vectors 

1,...Mi i  and a collection of imposter i-vectors impi , we define 
a filter Nw Î  that only passes target speaker i-vectors. The 
filter output is defined as 

.Td w i=   

We need to find w  so that d  equals 1 for all target speaker i-
vectors, 

1, 1,...,MT
sw i s= =  
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is the i-vector covariance matrix which can be estimated using 
the development set (R ) and 

1 ...
E{ } M

tar

i i
i i d

M

+ +
= »  

is the expected value of the target speaker’s i-vector which can 
be estimated by the available samples ( tari ). This filter is the 
optimum model for the target speaker in mean squared sense 
and can also be achieved iteratively using algorithms such as 
Least Mean Square (LMS) or Recursive Least Squares (RLS) 
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is the same as the one produced by the filter if we ignore the 
projection of i-vectors into unit sphere. We should note that 
we have centralized i-vectors using the development data as a 
preprocessing step. 
 
 

2.2. Minimum Variance Distortionless Response (MVDR) 

The goal of MVDR is to pass signals impinging on an array 
from a desired angle while rejecting noise and interferences 
from all the other angles. An optimum beamformer provides 
maximum noise rejection while matching the signal from a 
desired angle. MVDR uses maximum of signal-to-
Interference-plus-Noise-Ratio (SINR) as the criterion. 
 
 
The idea in the solution of this problem inspired us to apply it 
to our problem. In this way we aim at finding a filter w  
which maximizes the SINR formulated as 
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where tari  is the desired target i-vector and impi  is the 
imposter i-vector. The maximization of SINR can be 
simplified to 
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The solution to this minimization problem can easily be 
derived and is given by [14] 
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where we have used the development data to estimate R  and 

tari to represent the desired target i-vector as defined in 
previous section. The relation between the output of MVDR 
and that of the baseline system can be formulated as 
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where we can see that MVDR, in contrary to the baseline 
system, does not take into account the norm of test i-vectors. 

 

Figure 1: Schematic diagram of a plane wave impinging 
on a uniform linear array and the beamforming operation. 

 

2.3. Linearly Constrained Minimum Variance (LCMV) 

Multiple techniques have been proposed to improve the 
robustness of MVDR beamformer. Linearly constrained 
minimum variance beamforming is a popular one. LCMV 
improves performance by specifying the array response for 
different angles in the vicinity of the desired angle. This can 
be formulated as a linear constraints on the filter coefficients. 
We can use this idea in order to incorporate the uncertainty 
associated with the target speaker i-vector into the model. 
Thus, the minimization problem will be formulated as 

min , . . .T T

w
w w s t w f=R C  

where [ ] N M
1 2 Mi ,i ,...,i ´= ÎC   is the constraints’ 

matrix, 1[1,1,...,1]T Mf ´= Î   is the constraints’ vector, 
and R is the imposter covariance matrix. The solution to this 
problem is given by [14] 

1 T 1 1( ) ,LCMVw f- - -= R C C R C   

where we have used the sample estimate for R . This model 
ensures that the target i-vectors get a score of one by removing 
their nuisance directions (inter-session variability) while 
providing a maximum rejection of imposter i-vectors (increase 
inter-speaker variability). In fact LCMV uses the correlation 
matrix of the target i-vectors for normalization.  

 

2.4. Covariance Matrix Modification 

The imposter covariance matrix R  has a considerable effect 
on the performance of speaker recognition. Many modern 
beamforming techniques such as Norm Constraints Capon 
Beamforming (NCCB) [15], Robust Capon Beamformer 
(RCB) [16] and Doubly Constrained Robust Capon 
Beamformer (DCRCB) [15] work using diagonal loading of 
interference-plus-noise covariance matrix. In order to have a 
better rejection of imposter i-vectors, we have modified R  
by computing the covariance matrix of only those imposter i-
vectors that are most similar to the target model. In this way, 
we first produce an LCMV model of each target speaker 
using R computed on all imposter i-vectors. We then select 
only those imposters getting higher score when compared to 
the target model and use them to compute a new imposter 
covariance matrix R̂ . Finally, the target model will be 
updated using this new matrix. We have selected the first 
6,000 imposters for our submissions to the NIST 2013-2014 
speaker recognition i-vector challenge. Our experiments 
indicate the effectiveness of the aforementioned approach. 
    In order to better compensate for the effect of inter-session 
variability we incorporated a within-class covariance matrix 
W computed using groups of similar i-vectors in the 
development set which are assumed to belong to the same 
speaker. In order to find these groups, each i-vector is treated 
as the target model using MVDR technique to find the most 
similar i-vectors. The within-class covariance matrix is then 
computed as  

,
T
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where N is the number of i-vectors in the development set, 
gn is the number of i-vectors in group g  and gw  is the mean 

of i-vectors in group g . The within-class covariance matrix is 
then added to the modified imposter covariance matrix R̂ to 
produce the final model 

1 T 1 1ˆ ˆˆ ( ) ( ( ) )LCMVw f- - -= + +R W C C R W C  

2.5. Score Normalization 

Normalization of the scores has shown to be effective in 
speaker recognition systems [17]. The well-known z-norm and 
t-norm score normalization work well with cosine similarity 
scoring. Our experiments indicate that the best improvement 
can be obtained using the following normalization 

ˆ ( ),T
LCMV test impzscore w i i= -  

where impi is the mean of those imposters having higher 
scores when compared to the target model. We used the first 
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300 imposters for our submissions to the NIST i-vector 
challenge. 
 

3. Experiments 

The challenge aims at developing new methods to improve 
speaker detection performance in the context of 
conversational telephony speech using i-vector representation 
of speech segments. The task is to determine whether or not a 
given speaker is in the test segment. 
 

3.1. Data Description 

The 600-dimensional i-vectors used in this challenge have 
been derived from conversational telephony speech of NIST 
Speaker Recognitions (SRE’s) from 2004 to 2012 using 
variety of telephone handsets. A set of 36,572 unlabeled i-
vectors have been provided for system development. These i-
vectors can be used as imposter i-vectors since different 
speakers take part in the evaluation set. A collection of five i-
vectors for each target speaker has been provided for the 
enrolment purpose and the total target speakers are 1,306 
which comprise 6,530 i-vectors. Each target speaker will be 
tested against a test set containing 9,634 i-vectors. Therefore, 
the total number of trials will be 12,582,004. These trials are 
then divided into a progress subset comprising 40% of the 
total trials and an evaluation subset with the remaining 60% 
of trials. We will report the scores of different techniques on 
the progress subset. We will also report the final official score 
on the evaluation subset for the best proposed model. 
 

3.2. Performance Measure 

Performance measure used in this challenge is based on a 
decision cost function (DCF) representing a weighted 
combination of false alarm and miss probability at a given 
threshold. A threshold t  which minimizes the following cost 
function will be used for scoring each submission 
 

DCF( ) ( ) 100 ( ).miss fat P t P t= + ´  

 

3.3. Results 

In this section we present scores for different techniques as 
evaluated by NIST i-vector challenge website on progress 
subset as well as the final official score for the best technique 
on the evaluation subset. Table 1 summarizes the results 
obtained using different techniques. The best score, 0.280 on 
the progress subset and 0.270 on the evaluation subset, is 
achieved by the modified LCMV model with score 
normalization which indicates an improvement of 27% 
relative to the baseline system. The results indicate that 
MVDR model outperforms the baseline system. This is due to 
the fact that MVDR does not take into account the norm of the 
test i-vector. This is in contrary to the classical cosine scoring 
which is symmetric with respect to the target and test. The 
better performance of LCMV compared to MVDR resides on 
the ability of LCMV to incorporate the uncertainty associated 
with the target i-vector through removing the intra-speaker 
variability. The results given in the table show that the 

covariance matrix modification (labeled CMM in the table) of 
the LCMV model could lead to a relative improvement of 
about 12%. This is mainly due to the fact that the new model 
can better reject imposters that are most similar to the target 
model. As expected and indicated in the table, the 
normalization of scores can improve the performance of 
speaker recognition systems.  
 
 

 Score 
progress 
subset 

evaluation 
subset 

Baseline 0.386 - 
MVDR 0.356 - 
LCMV 0.343 - 

LCMV+Znorm 0.321 - 
LCMV+CMM 0.303 - 

LCMV+CMM+Znorm 0.295 - 
LCMV+CMM+W+Znorm 0.280 0.270 

Table 1: Comparison of results for different techniques on 
the progress subset of the challenge. 

The incorporation of the within-class covariance matrix (W) 
computed using groups of similar i-vectors in the development 
subset indicates a significant improvement. The reason for this 
effect is that the model not only rejects imposter i-vectors but 
also decrease the intra-speaker variability through weakening 
the nuisance directions.  
 

4. Conclusions 

The state-of-the-art i-vector representation of speech 
segments has attracted interests from other communities. 
With a fixed length and low dimensional vector 
representation of speakers, it is now possible to apply 
machine learning and pattern analysis techniques. In this 
paper we used an idea from the theory of adaptive filtering 
namely Linearly Constrained Minimum Variance (LCMV) 
beamforming and applied it to i-vector based speaker 
recognition. We have shown that this technique is effective in 
modeling a target speaker based on a set of i-vectors of that 
speaker and a collection of unlabeled imposter i-vectors. We 
also proposed a modification of imposter covariance matrix 
and score normalization in order to improve the speaker 
recognition performance. We believe that there are more 
effective techniques from this field that can be applied to i-
vector based speaker recognition. 
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