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Abstract

This paper presents the application of Neural Network Bot-
tleneck (BN) features in Language Identification (LID). Bdaf
tures are generally used for Large Vocabulary Speech Récogn
tion in conjunction with conventional acoustic featurag;tsas
MFCC or PLP. We compare the BN features to several common
types of acoustic features used in the state-of-the-artdy®
tems. The test set is from DARPA RATS (Robust Automatic
Transcription of Speech) program, which seeks to advance
state-of-the-art detection capabilities on audio fromhhigle-
graded radio communication channels. On this type of noisy
data, we show that in average, the BN features provide a 45%
relative improvement in th&€ ., ;or Equal Error Rate (EER)
metrics across several test duration conditions, witheaesfo
our single best acoustic features.

Index Terms: language identification, noisy speech, robust
feature extraction

1. Introduction

The goal of the DARPA RATS (Robust Automatic Transcrip-
tion of Speech) program is to create technology capableaf-ac
rately determining speech activity regions, detectingweyds,

and identifying language and speakers in highly degradedkw
and/or noisy communication channels. The Patrol team,yed b
BBN, participates in all the RATS tasks. The LID system that
the Patrol team built for the RATS Phase 1 evaluation was de-
scribed in [1]. That paper mainly focused on the individyed-s
tems built by members of the Patrol team, as well as on the
calibration and the fusion of the individual systems. The Pa
trol team single best system for RATS Phase 2 evaluation was
summarized in [2].

The neural network (NN) based features become an insepa-
rable part of present-day state-of-the-art Large Vocalu@an-
tinuous Speech Recognition (LVCSR) systems [3] but accord-
ing to our best knowledge, there has not been any effort in ap-
plying it to conventional acoustic LID. This paper descsiltiee
usage of bottleneck (BN) features in the context of Language
Identification (LID).

A BN feature of a given frame of audio can be interpreted
as a compression of the information about the frame’s plionet
class (and its phonetic context)—given as vector of (cdntex
dependent) phoneme posterior—into a low dimensional vec-
tor. There were previous attempts of using phoneme-based fe
tures for frame-by-frame acoustic-based system. Ma eR4l. |
used log of phoneme posteriors generated by neural network
in conjunction with a block of PLP stream followed by HLDA
dimensionality reduction and reports dramatic gain. Diez e
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al. [4] used phone log-likelihood ratios (PLLR) as an inpuiah
acoustic-based system, and fused it with a MFCC-SDC system
on the score level. Generally, both of these approaches ghar
same idea, only the fusion is done on a different level: featu
versus score-level. Han and Pelecanos [5] used a Arabicephon
recognizer and applied Shifted Delta Cepstra [18] concept t
capture linguistic information. The second approach tr@y-c
pared was to stack several frames of phoneme posteriors with
PCA dimensionality reduction. They report nice gain on E20s
condition on RATS task. Similar procedure and analysis redo

by Wang [6] on NIST LRE 2005 task.

At the time of concluding this work we found out that sim-
ilar work with bottleneck features has been done indepahden
by Song et.al [7] on NIST LRE 2009 task.

Conventional Phoneme Recognition followed by Language
Model (PRLM) systems (generally called phonotactic sy$tem
usually build phoneme lattices from phoneme posteriorsiaad
rive expected trigram counts from these lattice. Such cunt
are then modeled with language-modeling techniques, Stippo
Vector Machine [8], phonotactic i-vector extraction based
Subspace Multinomial Model (SMM) [9]. In the phonotactic
system, it was shown, that at least trigrams need to be used to
perform well. We believe that the key point is to use context
dependent phoneme as targets in acoustic based LID. We pro-
pose to use the bottleneck features which compress thextonte
dependent phonemes into low dimensional vector usingedottl
neck in the Neural Network. Similar to the phonotactic sgste
our BN features tries to encode information about the phionet
context, but they can also take an advantage of machinery of
acoustic system which was built over time and proved to bg ver
good. It would be difficult to use context dependent phoneme
posteriors in Mireia Diez's and Jeff Ma’s approaches mera
above due to the high dimensional output of posteriors from
NN.

2. Stacked Bottleneck Features (SBN)

Bottleneck Neural-Network (BN-NN) refers to such topology
of a NN, one of whose hidden layers has significantly lower
dimensionality than the surrounding layers. It is assunmed t
such layer—referred to as the bottleneck—compresses the in
formation needed for mapping the NN input to the NN output,
increasing the system robustness to noise and overfittifgtA
tleneck feature vector is generally understood as a byvmtoof
forwarding a primary input feature vector through the BN-NN
and reading off the vector of values at the bottleneck lairer.
other words, after a BN-NN is trained for its primary taske th
bottleneck layer is declared to be the output layer and &H su



ceeding layers are ignored. Such NN then maps the primary
features to the bottleneck features.

We have used a cascade of two such NNs. The output of
the first network isstackedn time, defining context-dependent
input features for the second NN, hence the term Stacked Bot-
tleneck Features.

2.1. SBN Input Feature Extraction

Frequency domain linear prediction (FDLP) is an efficienhte
nigue to obtain a smooth parametric model of temporal enve-
lope [10, 11]. Long segments of input speech (of the order
of 10 seconds) are transformed into frequency domain using
discrete cosine transform (DCT). The DCT samples are de-
composed into sub-band DCT coefficients by applying ciitica
band windowing (Bark). The sub-band temporal envelopes are
then computed by applying FDLP on the sub-band DCT sam-
ples. The envelopes are compressed using a static congressi
scheme, which is a logarithmic function and dynamic compres
sion scheme [12]. The logarithmic compression is to model
the overall non-linear compression in the auditory systéhe
transitions are enhanced by the dynamic compression. Tte fir
part of Figure 1 shows the proposed feature extraction tech-
nigue. The compressed envelopes are divided into 200 ms seg-
ments with a shift of 10 ms. DCT is applied both on static and
dynamic compressed envelopes to obtain modulation spactru
representation. We use 14 modulation frequency components
from each cosine transform, to cover modulation range 050-3
Hz, resulting in 28 coefficients per band.

Althoughitis in 16KHz sampling rate, the RATS audio data
is originally from the telephone corpora. Configurations fo
narrow-band data in signal processing are used. The lovter cu
off frequency and the higher cut-off frequency are set toH25
and 3800Hz, respectively. In this frequency region, 17agait
bands are obtained (in Bark scale). This results in 476 modu-
lation coefficients (28 coefficients per band). In additioritte
476 FDLP features, a pitch value is estimated for each frasne u
ing the RAPT algorithm [13] followed by a speaker-based mean
and variance normalization. We expand the pitch feature con
text with an 11-frame concatenation. These 11 pitch valoes a
then appended to the 476 FDLP features and the resulting 487
features are input to the NN training.

2.2. Neural Network Architecture

For the NN training, stacking strategy of a cascade of Neu-
ral Networks is shown in Figure 1 and described in de-
tails in [3, 14]. The configuration for the first NN is
487x1500x1500x80x1500xN, whei¢ is the number of tar-
gets. The 80 bottleneck outputs from the first NN are sam-
pled at timest, t—10, t—5, t+5 andt+10. Wheret is the
index of the current frame. The resulting 400-dimensional
features are input to the second NN with a configuration of
400x1500x1500x80x1500xN. The bottleneck layers in both
NNs have linear activation function which was shown to pro-
vide better performance [15]. All other hidden layers haige s
moid as the non-linearity. The 80 bottleneck outputs from th
second NN are taken as features for conventional GMM-UBM—
i-vector based LID system. The targets for training both NN
are context-dependent cross-word quinphone codeboolchwhi
are taken from a LVCSR PLP system using the state-clustering
approach as described in [16]. We used BBN Neural Network
software to train NN with Stochastic gradient descent atgor

and batch siz&12. The software uses the Graphics Process-
ing Unit (GPU) for faster training. The weights are initizdid
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with Gaussian distribution with zero mean and unity vareanc
and biases are initialized with uniform distribution in tfege
(—4.1,—-3.9). The network is trained in about 15 iterations and
for Farsi it reaches 23% frame level accuracy for the first NN
and 28% for the second NN. We used two languages to train
Stacked bottleneck (SBN) architecture, Levantine whem-nu
ber of targets is N=3707 and Farsi where N is 5306. The data
used is derived from the RATS keyword search training cor-
pus, which consists of retransmitted telephone data (GeiiH,
Fisher and other RATS telephone data) over 8 radio channels.
The amount of training data is 480 hours for Levantine and 350
hours for Farsi.

3. The RATS LID Data Corpus

The Linguistic Data Consortium (LDC) provided training and
test data for the RATS evaluation tasks. For the LID evatuati
task, the provided audio recordings cover 5 target language
(Arabic, Dari, Farsi, Pushtu, and Urdu) and 10 non-target la
guages (English, Spanish, Mandarin, Thai, Viethamese; Rus
sian, Japanese, Bengali, Korean, Tagalog). These regsrdin
were selected from both existing data resources and new data
collected specifically for RATS (more details can be found
in [1]). All recordings were about 2 minutes long and were
retransmitted through 8 different communication channlels
beled by the letters A through H. The retransmitted data was r
leased to the RATS participants for developing their eviidma
systems. LDC issued 3 incremental data releases for the LID
task: LDC2011E95, LDC2011E111, and LDC2012E03. We
only used the first two releases for developing our LID system
All LID systems were evaluated under four testing condiion
which test samples are 120, 30, 10 and 3 seconds long, respec-
tively. The RATS program does not provide development data
for the short-duration conditions, 30s, 10s and 3s. Henee th
participants need to find ways to develop systems for thet-shor
duration conditions. As described in [8], we patrtitioned finst

two data releases into training and development sets aatecre
the 30s, 10s and 3s short cuts from the 120s audio files.

The total number of test samples in the development is
about 7,120 samples for each condition. In the rest of thempap
we use Dev to denote this development set. We also measured
LID performance on one adjudicated version of the LID Phase
1 evaluation data (also called Dev2 within the RATS program)
which includes 1,914, 1,782, 1,715, 1,340 samples for tfs,12
30s, 10s and 3s conditions, respectively. We use Eval totdeno
this evaluation set.

4. LID System Description

First, we briefly review the LID system, that we use as our base
line. The BBN LID system consisted of 4 major components,
speech activity detection (SAD), feature extraction, Gtee es-
timation, and neural network (NN) LID classifier.

4.1. Speech Activity Detection (SAD)

SAD system was carried out in three steps [17]. First, the
input frame-level acoustic features (PLP) were projectea t
lower-dimensional space using heteroscedastic linearidis

nant analysis (HLDA). There are two classes for HLDA: speech
and non-speech. Second, the reduced features were used to
compute per-frame log likelihood scores with respect teshe

and non-speech classes, each class being representeataigpar

by 2048 Gaussian mixture model (GMM). Third, the frame-
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Figure 1: Block diagram of Stacked Bottleneck feature ettom with FDLP front-end.

level log likelihood scores were mapped to speech/nonespee
classification decisions to produce final segmentationuistp
The mapping was done by thresholding the average per-frame
log likelihood ratios, computed over the sliding window.

4.2. Baseline Feature Extraction

We found in [2] that, in terms of LID performance, it was best
to project 11 frames, each including energy and the first 8 PLP
coefficients, down to 60-dimensional feature vector by HLDA
(we used languages as classes in the HLDA). We also found,
this configuration produced better LID performance than the
SDC coefficients [18]. We used Short Time Gaussianization
(STG) [19] prior to HLDA dimensionality reduction, whichrfu

ther increased the robustness of the system.

4.3. i-vector Estimation

l-vector systems provide an elegant way of reducing theslarg
dimensional variable-length input data (time sequencecaf f
tures) to a small-fixed-dimensional feature vector—reféno
as thei-vecto—while retaining most of the relevant informa-
tion [20, 21]. The technique was originally inspired by loin
Factor Analysis framework introduced in [22].

Our i-vector extractor was trained in 10 iterations of jnt
applying the Expectation Maximization (EM) algorithm ahe t
Minimum Divergence (MD) step [23]. Sufficient statistics fo
both the i-vector extractor training and the i-vector estiion
were collected using a 1024-component GMM. The i-vector di-
mensionality was set to 400.

As mentioned before, all training samples have at least 2
minutes of audio. So, in terms of audio length these training
samples do not match the short-duration (30s, 10s and 3) test
samples. To reflect the shorter duration test conditiongndur
training, we estimated the 3s i-vectors for audio chunkspef a
proximately 3 seconds of speech. The chunks were generated
by grouping adjacent speech regions within each training au
dio file. We then combined these 3s i-vectors with the regular
i-vectors estimated on the entire audios to train the fin&l LI
classifier. We experimented with different windows and ever
laps for cutting and generating i-vectors using 3s cutsidemi
the best performance as shown in [2]. In our previous experi-
ments [1], we showed that adding these short i-vectors hdip o
the NN classifier [1] but not Logistic Regression (LR) cléissi

4.4. NN LID Classifiers

In [1], we have shown that Neural network (NN) classifier sig-
nificantly outperforms Logistic Regression. We have coragar
NNs to Logistic regression, Gaussian backend, Cosinerdista
and also recently introduced Discriminative Adaptive Gias
Backend [24] for Phase-3 evaluation and NN gives us consis-

guage posteriors. We configured all our NNs with 3 layers (in-
put, hidden, and output) with the input layer taking the ¢toes

and the output layer generating posteriors for the 6 languag
classes. We trained 5 NNs with the number of hidden nodes set
to 300, 400, 500, 600 and 700. We adopted this approach to
increase robustness, accuracy and to avoid the over fittoty p
lem. We can see the analogy in machine learning where it is
called bootstrap aggregating (bagging). Similar resuts loe
obtained when we train 5 NNs with 400 hidden nodes and dif-
ferent random initialization of the weights. We trained aepe
Logistic Regression (LR) classifier on our development set t
calibrate all 5 NN outputs. Then we take average of posterior
probability from LR. We take log of the average posterior as
final score of the system.

5. Results
5.1. Evaluation Metric

In accordance with the RATS program targets we focused on
improving the LID system performance on the 10s and 3s test
conditions. We will report the performance measured onghes
two short-duration conditions in this paper. The final table
will show also the results for 30sec condition. We measured
the LID performance according to four metrics, Acc (accu-
racy defined as correctly recognized samples divided by all
samples), EER (we first compute EER for each language and
then take average) avg(computed the same way as in the
NIST LRE evaluation [25]), and one of the RATS Phase-3 op-
erating points: miss rate at false alarm rate equal to 1% (we
denote it asP,,issara1%). We report the Acc, EERCavg,
PLissara1% SCOres as percentage numbers in this paper on the
Dev data. Last table shows the results also on the eval data.

5.2. Baseline Experiments

We ran several common acoustic features used nowadays in
Language Identification for comparison with our SBN feasure
The short description of the baseline features follow:

PLP: We extract 8 PLP coefficients plus normalized energy us-
ing a 25ms Hamming window with a 10ms frame shift.

MFCC: This front-end operates on standard Mel-frequency
Cepstrum Coefficients (MFCC), extracted using a 25ms Ham-
ming window. We extract 8 MFCCs together with CO every

10ms.

MHEC: The Hilbert envelope is calculated on the Gammatone
filter bank and smoothed with low-pass filter with cut-off-fre
quency of 20Hz. Framing with window 25ms and 10ms shift
is applied. Long term normalization is used before takirgplo
rithm and DCT. This results in 9 dimensional features intigd
CO0. For more details see [27].

tently the best performance across many systems. We used the PLP2: The output power spectral estimates from the critical

ICSI Quicknet NN tools to train NNs to map i-vectors to lan-
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band integration stage of FDLP(see Section 2.1), are iavers



Table 1: Comparison of different acoustic features with
phoneme based features. Asterisk “*” denotes that, instefad
stacking multiple frames and applying HLDA projection, yonl
one feature frame is used in LID modeling. All numbers are on
Dev set in [%]

3sec 10 sec

Acc  Cayy EER| Acc Cay EER
MHEC 64.82 1745 16.91 8295 7.76 7.39
PLP 65.90 17.10 16.7%82.85 8.22 7.88
MFCC 60.10 20.01 19.63 78.78 9.57 9.32
PLP2 61.33 18.85 18.40 80.66 8.82 8.25
logP* 69.31 16.15 15,51 8552 7.14 6.96
logP 71.34 1477 1413 87.88 6.05 5.85
BN* 71.93 13.68 13.37 89.70 4.70 4.44
SBN* 72.78 13.21 12.7Q 90.37 4.26 4.10

Fourier transformed to obtain an autocorrelation sequenhis
sequence is used for time-domain linear prediction (TDLUB),
ing a 19th-order model. The TDLP provides an all-pole ap-
proximation of the short-term spectrum. The output TDLP pa-
rameters are converted to 9 cepstral coefficients usingregps
recursion [28].

logP*: The log phoneme posteriors are also very strong fea-
tures when modeled with acoustic system. We trained one neu-
ral network to produce 39 context independent phonemes for
Levantine. The input to the NN is a block of 9 frames of 12
PLP plus energy, deltas and double-deltas making togefter 3
dimensional vector. The neural network has 3 hidden layers
with 1500 neurons and output layer with 39 neurons. Only one
frame of 39 dimensional log-posterior vector is taken asman i
put to the LID system. The system significantly outperformed
any acoustic feature-based system presented in Table 1.

logP in Table 1 presents results when the input to the LID sys-
tem is a stack of 11 frames of logP* concatenated together and
projected via HLDA (with language labels defining the cla$se

to the 60 dimensional feature vector. Better results sugbas
there is an advantage to take the context into account.

BN*, SBN*: Last two lines of Table 1 present the results for
our best bottleneck features trained on Farsi with context d
pendent phonemes as targets. BN* is 80 dimensional bottkene
from the first stage Neural Network (see Figure 1) and SBN* is
80 dimensional bottleneck from the second stage NN in our cas
cade. Only one frame of these features are fed into LID system
The relative improvement it€..gis 25% for 3sec condition,
45% for 10sec condition and 60% for 30sec condition (see also
Table 5) over the best MHEC or PLP features.

The procedure of feature extraction, post-processing and,
normalization for PLP, PLP2, MFCC and MHEC are described
in Section 4.2.

5.3. Different Targets in SBN

One of the main question is: What target should we train the
SBN features on? With bottleneck features we "do not care”
what the final targets are, because we take bottleneck frem th
NN and ignore the succeeding layers. With this approach, we
can afford to use context dependent phonemes, as they rontai
more context information and in this sense are closer to the
phonotactic system where trigrams are usually used. The an-
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Table 2:Comparison of different targets in training of SBN fea-
tures. The number of context independent targets—Cl is d9 an
context dependent targets—CD is 5306. The numbers in brack-
ets are number of targets. Both systems use 80 dimensiohal SB
features. All numbers are on Dev set in [%]

3sec 10 sec
Acc  Cayy EER| Acc Cay EER
Cl 70.33 14.46 14.22 88.79 5.30 5.16
CD 7278 13.21 12.7Q0 90.37 4.26 4.10

Table 3: Comparison of different size of the SBN features used
in the second NN. All numbers are on Dev set in [%]

3sec 10 sec
Acc  Cayy EER| Acc C., EER
20 66.64 17.05 16.71 85.31 6.75 6.49
40 69.57 1498 1459 8862 544 5.10
60 70.86 14.03 13.69 90.07 4.77 4.43
80 7278 13.21 12.70 90.37 4.26 4.10
100 71.88 13.36 13.06 90.69 4.23 4.09
120 71.23 13.70 13.16 90.84 4.21 4.02

swer is in Table 2. We trained the same topology of the SBN
with only one difference. The targets for both NN in the SBN
were trained with context independent (Cl) phonemes in the
first case and context dependent phonemes (CD) in the second
case. There is significant improvement mainly for the longer
duration files with using CD phonemes.

5.4. Size of Bottleneck Layer

We investigated also in the size of the bottleneck in thesgco

NN which directly influence the size of the LID system. The
results in Table 3 shows that the performance start to datura
above 60 with optimum at 80.

5.5. Language Dependent System

Based on the analysis in [2], we also ran the "Language-
Dependent” (LD) system, where 6 systems with different
language-dependent Universal Background Model (UBM) were
trained and fused together to form the final score. In ouresyst

we have 6 classes - 5 for target languages and one for the non-
target languages. Together, we trained 6 UBMs only on the dat
belonging to the one language class. The i-vector extractdr

the NN classifier were trained on the data from all languages.
The final system is an average of language posterior prebabil
ities from final NN classifier of separate language dependent
systems. Note that the separate systems are first calilwated
ing Logistic regression, as described in Section 4.4. Tdble
presents the results for the “baseline” language indeper{d
system, with a single UBM trained on all data. Next, there are
6 separate LD systems, where first column of Table 4 denotes
the language on which the UBM was trained. There is There is
a small degradation in performance against baseline. $lei-i
pected since the UBM was trained only on one language hence
does not generalize good on other languages. The best LD sys-
tem is when we train the UBM on 10 out of set class languages



Table 5:Final comparison of baseline PLP and Stacked bottlenedkifes.on Dev and Eval data for 3s, 10s and 30s conditions. All
numbers are in [%].Pmiss denotes miss rate at false alarm rate equal to 1%.

3 sec 10 sec 30 sec

Dev set Acc  Cayg EER  Puiss | AcC Cayg  EER  Puiss | AcC Cayg  EER  Puiss

1 PLP 65.90 17.10 16.75 61.7682.85 8.22 7.88 26.43 90.65 4.20 3.94 11.48
2 SBNFAR 7278 13.21 12.70 49.3790.37 4.26 4.10 12.84 96.65 161 1.47 2.10
3 SBNLEV 7297 13.10 12.88 48.8p91.51 415 398 10.6]1 96.50 156 1.55 2.10
4 SBNLDFAR 77.33 1126 10.85 424093.10 322 3.36 781 97.24 127 121 1.38
5 SBNLDLEV 78.01 10.82 10.53 39.4Y9350 3.09 3.08 6.87| 97.24 115 1.09 1.14
6 AVG(4+5) 80.27 9.64 959 34929443 271 266 5329773 105 100 0.92
Eval set Acc  Cayg EER  Puiss | AcC Cayg  EER  Puiss | AcC Cayg  EER  Puiss

1 PLP 61.84 1799 18.25 60.1075.80 13.34 1295 34.738249 9.75 10.32 1943
2 SBNFAR 68.71 14.42 13.72 46.548455 9.38 6.84 21.30 90.97 589 465 852
3 SBNLEV 71.17 1397 1381 42.8Pp83.91 947 629 21399192 584 481 8.96
4 SBNLDFAR 73.26 1343 1236 38.5987.58 6.44 513 15.4% 9276 511 4.06 5.86
5 SBNLDLEV 7491 1288 1238 35.0Y8752 8.09 471 1408 9293 581 396 568
6 AVG(4+5) 76.03 11.73 10.83 32.7289.10 6.50 4.25 12.07 93.77 494 3.53 5.15

Table 4: Analysis of language dependent system. Comparison
of separate systems where UBM is trained only on one lan-
guage. Done with Farsi SBN8O features. All numbers are on
Dev set in [%]

3sec 10 sec

Acc  Cagy EER| Acc Cay EER
baseline 72.78 13.21 12.7090.37 4.26 4.10
alv 72.04 13.46 13.11 90.12 454 4.37
fas 72.01 13.24 12.63 90.58 4.40 4.21
prs 71.80 12.64 12.39 90.32 4.43 4.30
pus 71.00 13.70 13.27Y 90.13 443 4.43
urd 71.88 13.74 13.4% 89.73 481 4.72
XXX 73.95 13.81 13.03 91.03 4.37 4.20
avgLang 77.33 11.26 10.8593.10 3.22 3.36
avgChan 78.05 10.58 10.4093.37 3.32 3.16
avgAll 78.21 10.48 10.23 93,55 3.14 3.20

marked as “xxx”. This was also expected because the UBM is
more general since it was trained on multiple language#, iSti
does not reach the performance of the LI system, becaussit wa
not trained to model the target languages. Finally, “av@l’an
represents the average of scores of the 6 separate LD systems
The relative gain is 20% for 3sec condition and 15% for 10sec
condition over the LI system.

We have nine channels in RATS program. If we repeat the
same experiment with channel dependent system and train the
UBM for every channel and we get similar results (“avgChan”
in Table 4). If we average all channel- and language-depende
systems, we get about the same results (“avgAll” in Table 4).

5.6. Different target language in training of SBN

There are two languages in RATS program that we have word
transcriptions for which we have built speech to the textesys

for the keyword spotting task. We have built Farsi and Levan-
tine SBN features and tested it for LID. Lines 2 and 3 in Table 5
shows the results of the SBN LID system where we used differ-
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ent language for training the SBN features. The resultsang v
comparable with small favor in Levantine system.

5.7. Fusion

The final summary is in Table 5. In this table, we show in addi-
tion also one of the RATS Program target metiiSissara 1%,

we also report results on the 30sec condition (120s is tod gwo
report anything on) and also full results on the evaluatiatad
First system presents PLP baseline system. Next two syggems
and 3) show the two stack-bottleneck systems trained on Fars
and Levantine. Next two systems (4 and 5) are language de-
pendent variants of the 2 and 3. System number 6 is the fusion
(average of the scores) of systems 4 and 5. This fusion gives i
average 10% relative improvement on the development and als
evaluation data.

6. Conclusion

We have presented the bottleneck features in the contexrof L
guage identification. It combines benefits of both phonatact
and acoustic system. Usually, the phonotactic system @fav
able for the long duration files, while acoustic for the stoores.
This approach takes the advantage of both. In addition, we ca
also use modeling of context dependent phonemes in batkene
features. This brings very nice improvement over the cdntex
independent phonemes.

Overall the bottleneck features provide dramatic relative
improvement 25% for 3sec condition, 45% for 10sec condition
and 60% for 30sec condition fdl..s. The same or higher
relative gains can be seen also for the primary RATS metric
PLissara1% OF average EER. We can extend the basic variant
of the LID system to Language dependent system where UBM
is trained on the subset of the data. This technique gives-us a
ditional 15% relative improvement. This system also fusé we
with both classic acoustic and phonotacic approaches.
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