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Abstract

In this paper we propose an impostor selection method
for a Deep Belief Network (DBN) based system which
models i-vectors in a multi-session speaker verification
task. In the proposed method, instead of choosing a fixed
number of most informative impostors, a threshold is de-
fined according to the frequencies of impostors. The se-
lected impostors are then clustered and the centroids are
considered as the final impostors for target speakers. The
system first trains each target speaker unsupervisingly by
an adaptation method and then models discriminatively
each target speaker using the impostor centroids and tar-
get i-vectors. The evaluation is performed on the NIST
2014 i-vector challenge database and it is shown that the
proposed DBN-based system achieves 23% relative im-
provement of minDCF over the baseline system in the
challenge.

1. Introduction
Speaker recognition based on the i-vector framework [1]
is widely accepted as a state-of-the-art in this field. An
i-vector is a compact representation of the speaker use-
ful information which is obtained over an effective fac-
tor analysis method [1]. The i-vectors are further post-
processed to compensate undesired speaker and session
variabilities [1][2][3][4]. However, the main focus has
been on the single session speaker verification (eg. [1]
[2][5][6]). In this sense that only one speech utterance is
available per each target speaker. The few available re-
search works about multi-session speaker verification are
mostly using either the average i-vectors obtained over
the session i-vectors or the combination of scores ob-
tained on each individual session i-vector [7][8] [9].

The National Institute of Standard and Technologies
(NIST) organizes some speaker recognition evaluations
to encourage research groups to develop more efficient
systems. The most recent challenge is planned for model-
ing i-vectors in a multi-session enrollment task [10]. The
good point of the challenge is that i-vectors are given di-
rectly, instead of speech signals. Therefore, the front-end
will be the same for all participating systems and the fo-
cus will be mostly on the modeling part.

Acoustic modeling using Deep Belief Networks

(DBN) has been recently shown to be effective in
speech recognition [11][12][13] [14]. However, few
attempts using only Restricted Boltzmann Machines
(RBM) [15][16], generative DBNs [17], or discrimina-
tive ones [18] have been carried out in speaker recogni-
tion area. The most recent research work [18] has shown
that using DBNs is effective in a single session i-vector
modeling. DBNs are originally generative network mod-
els which can be trained by a greedy layer-wise algorithm
using RBMs [19][20]. However, by adding a top label
layer and using a standard backpropagation algorithm,
these generative DBNs can be converted to discrimina-
tive ones what is called often a pre-trained discriminative
network [20][13].

In this paper we will use DBNs to model multi-
session target i-vectors. As in our previous work [18]
we will take the advantage of unsupervised learning to
model a global DBN to be used in an adaptation process
and the advantage of supervised learning to model each
target speaker discriminatively. As more i-vector samples
are available per each target speaker in this case and each
of them may be recorded from different session, DBNs
will capture more speaker and session variabilities from
the input data and will work better than in the single ses-
sion task. Moreover, the impostor selection method pro-
posed in [18] will be modified to some extent. Instead of
fixing a threshold on the number of most informative im-
postors (e.g., 500, 1000, etc.), the threshold will be fixed
on the impostor frequency values.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 review, respectively, the i-vector framework
and a background on DBN. The general description of
the DBN-based system is given in Section 4. Section 5
describes the proposed impostor selection method. Sec-
tion 6 presents the experimental setup and results. And
section 7 concludes the paper.

2. i-Vector Extraction
This section has a brief overview on the i-vector frame-
work developed in [1]. Given the centralized Baum-
Welch statistics from all available speech utterances, the
low rank total variability matrix (T) is trained in an it-
erative process. This matrix tries to capture all kinds of
variabilities, including speaker and session variabilities,
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Figure 1: Generative (a) and discriminative (b) DBNs.
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Figure 2: RBM (a) and RBM training (b).

appeared in training utterances. The training process as-
sumes that an utterance can be represented by the Gaus-
sian Mixture Model (GMM) mean supervector,

m = mu + Tω (1)

where mu is the speaker- and session-independent
mean supervector from the Universal Background Model
(UBM), and ω is a low rank vector referred to as the iden-
tity vector or i-vector. The supervector m is assumed to
be normally distributed with the mean mu and the co-
variance TTt, and the i-vectors have a standard normal
distribution N (0, 1). More details can be found in [1].

3. Deep Belief Networks
DBNs are originally probabilistic generative models with
multiple layers of stochastic hidden units above a layer of
visible variables which represent a data vector (Fig. 1a).
The network parameters are trained using an efficient un-
supervised algorithm which is equivalent to training each
two adjacent layers as a Restricted Boltzmann Machine
(RBM) (Figs. 2a and 1a) [20]. RBMs are constructed
from a layer of binary stochastic hidden units and a layer
of stochastic visible units which will be either Bernoulli
or Gaussian distributed conditional on the hidden units.
Training an RBM is based on stochastic gradient descent
on the negative log likelihood l defined in [20][13],

∆wij = −α
(

∂l

∂wij

)
(2)

where α is the learning rate andwij represents the weight
between the visible unit i and the hidden unit j. As com-
puting the gradient is infeasible in this case [20][13], it
is approximated by the Contrastive Divergence (CD) al-
gorithm [19][20]. Since a full CD algorithm is computa-
tionally expensive, it is further approximated in the fol-
lowing three steps (Fig. 2b) and is called CD-1 [20][13].
After initializing the connection weights with very small

normal-distributed random numbers (N (0, 0.01)) and
setting the bias values to zero, hidden states (h) are com-
puted with the posterior probability distribution,

p(hj = 1|v, θ) = σ(aj +

V∑
i=1

wijvi) (3)

where θ = (w,b, a) refers to the RBM parameters, V
is the number of visible units, bi and aj are respectively
the bias terms of visible unit i and the hidden unit j, and
σ(x) = (1 + e−x)−1 is the sigmoid function.

Then given h, the Bernoulli distributed visible states
are reconstructed in the same manner as in eq. (3) and the
real-valued Gaussian ones are reconstructed by,

p(vi|h, θ) = N (bi +

H∑
j=1

wijhj , 1) (4)

where N (µ, σ2) is a Normal function and H is the num-
ber of hidden units. In the third step, given the recon-
structed data (v) and the eq. (3), the new values for the
hidden states are computed.

Now, the negative gradient in eq. (2) is approximated
as follows,

− ∂l

∂wij
≈ 〈vihj〉data − 〈vihj〉recon (5)

where 〈.〉data and 〈.〉recon denote the expectations when
the hidden state values are driven respectively from the
input visible data and the reconstructed data. The biases
are updated in a similar way.

It is possible to perform the above parameter update
after processing each training example, but it is often
more efficient to divide the whole input data (batch) into
smaller size batches (minibatch) and to do the parameter
update by an average over each minibatch. The parame-
ter updating procedure is iterated when the whole avail-
able input data are processed. Each iteration is called
an epoch. More theoretical and practical details can be
found in [19][20][21].

When the unsupervised learning is finished, by
adding a label layer on top of the network and doing a
supervised backpropagation training, it can be converted
to a discriminative model (Fig. 1b). In other words, un-
supervised learning can be considered as a pre-training
for the supervised stage. It has been shown [20] that this
unsupervised pre-training can set the weights of the net-
work to be closer to a good solution than random initial-
ization and, therefore, avoids local minima when using
supervised gradient descent.

4. i-Vector Modeling Using DBN
The main idea is to model discriminatively the target and
impostor i-vectors by a DBN structure. The structure
which was proposed for the first time in a single ses-
sion enrollment task [18] will be used also in this pa-
per to model speakers with more target i-vectors avail-
able. In this case it is expected to have more accurate



307

Clustering Minibatch Balance DBN Adaptation Fine-tuning
Discriminative
Target Models

Impostor Selection

Development
i-vectors

Unsupervised 
DBN Training

Universal DBN

Target i-vector Duplication

Adaptation

Balanced Training

Figure 3: Block-diagram of the proposed method.

models as DBNs are being shown more positive samples
and, therefore, more speaker and session variabilities. In
this section, we describe briefly the whole structure used,
and in the next section focus on the impostor selection
method which is the main new contribution of this paper.
As illustrated in Fig. 3, the DBN structure is composed
of three main parts namely balanced training, adaptation,
and fine-tuning.

Like other discriminative methods, DBNs need also
balanced positive and negative input data to achieve their
best results. The balanced training part in the block dia-
gram (Fig. 3) tries to use the information of all available
impostors and decrease their population in a reasonable
way. The decreasing is carried out in two steps, select-
ing the most informative ones and clustering. In [18] a
simple and effective selection method is proposed. First,
the n closest impostors to each target speaker are chosen
according to their cosine distances. Then the closest im-
postors are accumulated over all target speakers and the k
top ranked impostors are selected according to the num-
ber of times they are appeared in the accumulated set of
impostors. In other words, the k impostors which are sta-
tistically closer to all target speakers are selected by this
method. The selected impostors are clustered finally by
the k-means algorithm using the cosine distance criteria.
On the contrary, as there is only one target i-vector in the
single session task, they are duplicated as many times as
the number of final impostor clusters. However, when
more than one positive sample are available per each tar-
get speaker, we will choose the number of impostor clus-
ters in each minibatch the same as the number of available
positive samples to make the training balanced. Hence, if
the number of minibatches is set to three, for instance,
and the number of positive samples per each speaker is
five, the total number of impostor clusters will be 15. Ac-
tually, in each minibatch we will show the network the
same positive samples as in other minibatches but differ-
ent negative ones.

DBNs have the ability to be trained unsupervisingly
[20][19] contrary to conventional neural networks that
need labeled data to be trained. Hence, a global model
called Universal DBN (UDBN) [18] is trained by feed-
ing many i-vectors from development background data.
The training is carried out layer by layer using RBMs as

described in section 3. UDBN parameters are adapted to
the new data of each speaker including both target and
impostor samples obtained in the balanced training part
of Fig. 3. The adaptation is carried out by pre-training
each network initialized by the UDBN parameters. It is
shown [18] that the adaptation process outperforms both
random and pre-training initializations.

Once the adaptation process is completed, a label
layer is added on the top of the network and the stochas-
tic gradient descent backpropagation is carried out as the
fine-tuning process. The softmax will be the activation
function of the top label layer. To minimize the nega-
tive effect of using random numbers used for initializing
the top layer parameters, a pseudo pre-training process
is performed by only one layer error backpropagating for
a few iterations before a full backpropagation is carried
out. If the input labels in the training phase are chosen
as (l1 = 1, l2 = 0) and (l1 = 0, l2 = 1) for target and
impostor i-vectors respectively, the final output score in
the testing phase will be computed in a Log Likelihood
Ratio (LLR) form as follows,

LLR = log(o1)− log(o2) (6)

where (o1, o2) represents the outputs of the top layer.
LLR computation helps to gaussianize the true and false
score distributions which can be useful for score fusion.

5. Impostor Selection
The idea is to design a more accurate and robust impostor
selection method in our system. The base of the proposed
method is the same as that in [18] in which the statisti-
cally closest impostors to all available target speakers are
selected as the most informative ones. However, instead
of choosing a round number of top ranked impostors at
the end (e.g., 500, 1000, etc.), they are selected accord-
ing to a threshold (T in Fig. 4a) which will be applied on
the impostor frequencies.

The whole selection procedure is as follows. At first,
the mean i-vector of each target speaker, in the multi
session task, is scored against all available impostor i-
vectors in the development set according to their cosine
distances. Then the n closest impostors to each given
target speaker are kept in the set H . Therefore, each im-
postor may appear in H several times. The number of
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Figure 4: Impostor selection based on swiping a thresh-
old on the impostor frequency values. (a) non-ordered,
and (b) ordered impostors.

times that each impostor appears in the set H is denoted
lm. If lm is normalized by the total number of samples in
H , we will have

fm =
lm∑M

m=1 lm
=

lm
n×K

, (7)

where fm is the relative frequency of impostor m. M
and K are, respectively, the total number of impostor and
target speakers. Actually, working with these frequencies
will be more robust as they are normalized by the param-
eter n and the total number of target speakers. Hence,
the change of the target database or the parameter n will
not affect the impostor frequencies. Consequently, the
threshold based on which we select the impostors will be
more robust.

Figure 4a shows the frequencies for all the available
impostors in the development set for n = 50. The more
informative impostors have the higher frequency values
in comparison to other impostors. As shown in the fig-
ure, by swiping a threshold we can select the most sta-
tistically important impostors. In other words, only those
impostors which have the frequency values higher than
the threshold will be selected. If the impostors are or-
dered according to their frequencies (Fig. 4b), it can be
seen that many of them have the same frequency values.
Actually, the lower value for parameter n the more num-
ber of impostors with the same frequency. As there is no

priority among the impostors with the same frequency, it
makes more sense to choose the impostors by fixing the
threshold on frequencies (T1 in Fig. 4b), instead of on the
number of impostors (T2 in Fig. 4b). If we select a round
number of impostors (like T2 in Fig. 4b) as it is carried
out in [22][23][18], we have actually discarded the rest of
the impostors with the same frequency. We will choose
the best n and T in section 6.

The selected impostors will be further clustered by
the k-means algorithm and the cluster centroids will be
considered as the final impostors (Fig. 3). The selected
impostors, before clustering, are statistically close to
all of the target speakers and, therefore, will be target-
independent. We will see in section 6 that if we pool
the target-independent impostors with target-dependent
ones (the n closest impostors to each target speaker in this
case) as it is proposed in [23], we will achieve better re-
sults. However, it would be more computationally expen-
sive as we need to do clustering for each target speaker
independently.

6. Multi-Session Experiments
The details of the database, the baseline and the DBN-
based setups, and the obtained results are given in this
section.

6.1. Baseline and Database

The experiments are carried out on the NIST 2014 i-
vector challenge [10]. In this challenge contrary to other
previous NIST evaluations, i-vectors are provided instead
of speech signals. The i-vectors are computed from con-
ventional telephone speech recordings in the SRE 2004
to 2012. The durations of speech utterances used to ob-
tain i-vectors are different. They are sampled from a nor-
mal distribution with a mean of 40 s. The length of each
i-vector is 600. Three sets of i-vectors are provided: un-
labeled development, model, and test. The amounts of
i-vectors in each set are respectively 36,572, 6,530, and
9,634. The number of target models is 1,306 and for
each of them five i-vectors are available. Each model
will be scored against all the test i-vectors and, therefore,
12,582,004 trials will be reported. Among all trials, 40%
(progress subset) will be scored by NIST as a feedback
to develop the system and 60% (evaluation subset) will
be reserved for the final official evaluation. The perfor-
mance is evaluated using a new Decision Cost Function
(DCF) defined by NIST [10],

DCF (t) =
#Miss(t)

#Targets
+100×#FalseAlarm(t)

#NonTargets
(8)

where t refers to the threshold for which the DCF is being
computed. The minimum DCF obtained over all thresh-
olds will be the official system score.

In the baseline system, average i-vectors obtained
over the available i-vectors for each target speaker are
scored against all test i-vectors using cosine distance clas-
sifier. However, before averaging and scoring some post-
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processing is carried out on i-vectors. The global mean
and covariance are computed using unlabeled develop-
ment data. All i-vectors are centered and whitened based
on the global mean and covariance. Then the resulting
i-vectors are length normalized. Length normalization is
applied again on the average i-vectors obtained for each
target speaker.

It is worth noting that, although NIST 2014 i-vector
challenge database has been used in this paper, one of the
rules in this challenge has not exactly followed in our ex-
periments, in particular the one which does not allow the
use of evaluation data for impostor modeling [10]. Ac-
tually, in these experiments the i-vectors of both progress
and evaluation subsets have been considered for impostor
selection.

6.2. DBN-based Setup

As in [18] DBNs with only one hidden layer are explored
in this paper. The size of hidden layer is set to 400. Each
minibatch will include five impostor centroids and five
target samples. The impostor centroids in each minibatch
are different than those in other ones, but they share the
same target samples. The number of minibatches is set
to three and, therefore, we will have 15 impostor cen-
troids in total. The unlabeled development i-vectors pro-
vided by NIST are used for impostor selection. UDBN
is trained with the same development i-vectors as in the
impostor database. As the input i-vectors are real-valued
normal distributed, a Gaussian-Bernoulli RBM [21][13]
is employed. The learning rate (α), the number of epochs
(NofE), and the minibatch size are set respectively to
0.02, 50, and 100 for UDBN training. A fixed momentum
of 0.9 and a weight decay of 2×10−4 are also considered.

The adaptation process is carried out with α = 0.03
and NofE=25. To decrease the probability of overfitting
during the adaptation, it is performed on each minibatch
separately and then the obtained network parameters are
averaged. The softmax connection weights are initialized
by N (0, 0.01) and pre-trained with α = 1 and NofE=15
before the whole backpropagation is performed. The mo-
mentum is started by 0.4 and is scaled up by 0.1 after each
epoch (up to 0.9). The whole backpropagation is then car-
ried out with α = 1, NofE=30, and a fixed momentum of
0.9. The weight decay for both top layer pre-tarining and
the whole backpropagation is set to 0.0014.

6.3. Results

Figure 5 illustrates the variability of minDCF obtained by
eq. 8 in terms of the two parameters n and T defined in
sec. 5. The figure shows that the best result is obtained
when n = 100 and T = 0.5 × 10−4. Table 1 compares
the best results obtained by the proposed DBN-based sys-
tem with the baseline. As it can be seen in this table
pooling the target-independent and -dependent impostors
achieves better results although it is computationally ex-
pensive. And the overall performance of the DBN-based
system is notable (23% relative improvement) in compar-
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Figure 5: Determination of the parameters n and T de-
fined in sec. 5 for impostor selection.

Table 1: Performance comparison of the DBN-based sys-
tem with the baseline. The results are obtained on the
NIST 2014 i-vector challenge. “dep” and “indep” stand
for “dependent” and “independent”, respectively.

System Impostors minDCF
Baseline - 0.386
DBN-based Target-indep 0.311
DBN-based Target-indep + Target-dep 0.298

ison to the baseline.

7. Conclusion
The authors proposed an impostor selection method
which used in a Deep belief Network (DBN) system for
multi-session i-vector speaker verification. The avail-
ability of more i-vector samples per each target speaker
helped DBNs to capture more speaker and session vari-
abilities from the input data in comparison to the sin-
gle session task. The final discriminative DBN models
showed a considerable performance in comparison to the
conventional baseline system.
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