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Abstract

Voice activity detection, i.e., discrimination d¢fet speech/non-
speech segments in a speech signal, is an impanteatiing
technology for a variety of speech-based applioatio
including the speaker recognition. In this work pmvide a
performance evaluation of the following supervisadd
unsupervised VAD algorithms in the context of tdependent
speaker
Recognition 2015) task : Energy-based VAD with arittheut
hangover scheme and endpoint detection, vectortigation-

based VAD, Gaussian mixtures model (GMM)-based VAD
(both supervised and unsupervised way), and seglent

GMM-based VAD. Experimental results show that btk

supervised and unsupervised GMM-based VADs perform

better than the other VAD algorithms. Consideringtiatee
evaluation metrics (equal error rate, old (SRE 2008) new
(SRE 2010) normalized detection cost functions) pestised
GMM-based VAD performed the best.

1. Introduction

recognition on the RSR2015 (Robust Speaker

background noise in individual frequency bins [B). [3]
contextual information derived from multiple obsatiens has
been incorporated into the likelihood ratio tedtRT) and a
novel way to improve the robustness of existing LtBed
VADs has been proposed in [5] by selecting the loaim
frequency components for computing the likelihoatior (LR)
scores of the voiced frames.

In NIST Speaker Recognition (text-independent) Eatduns
(SREs) participating sites typically used Energyea¥AD
with/without spectral subtraction technique as erocessor
[4, 8], phoneme recognizer-based VAD with a postepssing
using short-term energy [6], ASR transcripts prosidey
NIST in the VAD [21], supervised Gaussian mixturedals
(GMM)-based VAD [7, 14].

For supervised VAD algorithm it can be difficult dan
laborious to obtain suitable training data. Themefoit is
desirable to design a VAD that is both robust and
unsupervised, i.e., does not require a speciatizéding data.
Recently there has been interest in developing wersiged
VAD algorithms that have the performance advantages

supervised techniques [11]. Some recently proposed
unsupervised VADs are: vector quantization-basetf- se
adaptive VAD [9], and sequential GMM-based VAD [10]

In this work we use unsupervised and supervised VAD
algorithms for text-dependent speaker recognitask ton the
RSR2015 corpus [18]. Contrary to the text-independent

Voice activity detection (VAD) is a fundamental kan
various speech-related applications, such as speedimg,
speech enhancement, speaker diarization, speallespaech
recognition. It is often defined as the problem of
distinguishing active speech from nonspeech (sdeaed/or

noise) in a utterance. One major step which afféicestly the
performance of speaker/speech recognition systemgheé
detection of speech from audio stream. For exanptemany

false alarms, or too many nonspeech segments wrongl

detected as speech and used in the training canptahe
acoustic models, and hence reduces recognitiorrameuOn
the other hand, during testing, if not enough spessgments
are detected then the speaker/speech recognitgorithins
will not be able to detect the speaker/full spolsemtence.
Therefore, accurate determination of active spe&om

nonspeech in a recording both
environments is an
surrounding environment of the recording, nonspezh be
silence, noise, music, or a variety of other adoaksignals
such as door knocking, coughing, paper shufflingatimg
ventilation and air conditioning, passing of a i train, or
even background speech [1]. One of the main comperia
any VAD algorithm is the extraction of relevant tig@s such
as energy, signal-to-noise ratio (SNR), periodicitynamics
of speech, zero crossing rate (ZCR) from the giveording
that can represent discriminative characteristi€sspeech
comparing to nonspeech. More recent VAD algorithwis)e

utilizing the many of the same features, use siedismodels
to distinguish speech/nonspeech based on the avefathe
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in clean and noisy
important task. Depending on the

speaker verification, a process of verifying thenitity without
constraint on the speech content, text-dependentiksp
verification requires the speaker uttering the Bedopass-
phrase. The pass-phrase may be unique or user dkgeor
prompted by the system. The following VADs are édeed:
energy-based VAD [13], energy-based VAD with a oy
scheme, vector quantization-based VAD [9], seqaénti
GMM-based VAD [10], supervised GMM-based VAD [6,]14
We also use an unsupervised GMM-based VAD by coimipin
the energy-based and log likelihood ratio (LLR)-lshseice
activity detection criteria, where the LLR is calt@d using
16-component speech and non-speech GMMs [9, 12jder
to train GMMs speech and nonspeech feature frames a
separated from the observed signal based on &ofnact the
lowest and highest energy frames [9].

2. VoiceActivity Detectors

The voice activity detection (VAD) problem consisler
detecting the presence of speech in an utteranc¥ABR
usually has the following three modules [1]:

1. Feature extraction: The objective of this modsil® extract
discriminative features from the observed signaldfetection.



2. Decision making: This module defines the rulenmthod
for assigning a class (speech or nonspeech) basetheo
extracted feature.

3. Hangover scheme: This module, which is often
implemented as a finite state machine, is emplagddcrease
detection hits and reduce false alarms. The mativeor this
module is found in the speech production process the
reduced signal energy of word beginnings and ersding

VAD algorithms considered in this work for perfomca
evaluation in the context of text-dependent speaker
verification task are described in this section.

2.1. Energy-based VAD

Energy is a simple measure of loudness of a signathe
VAD literature energy is one of the most widely dideatures
due to its simplicity and adequate performance learc
environment. The energy of theth frame of a signal

S(m, n) is given by

E (m) =10log,, (%gs(m,n)zj ,

where nis the sample indexN is the frame length.

In this work we use two energy-based VAD:

Energy-based VAD: CRIM's VAD software a slight
modification from the software available from ISIBt
Mississippi State University [13].

Energy-based VAD I: This VAD is shown in fig. 1.

1)

Speech
signal Framing &
windowing
A
Thresho!d Compute energy
computation
v
Smoothing filter
]
Decision
o making
v
VAD labels End - HangOver
| Detection Scheme

Figure 1:Energy-based voice activity detector with
hangover scheme and end detection.

After computing the frame-wise energy of the spesighal a
moving averaging filter is used with a 9-framesdisig
window to smooth the decision boundaries. The dutis

threshold € is then computed from the sorted
E" (sE") using following formula:
9:76’1;92 @

where g and 6, represent those values of sorted energy that

correspond to the 20% and 80% length (or indicdshhe
sorted energy vector. VAD decision is made by campahe
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energy of each frame to the decision thresibhiBpeech is
active if the E > @ otherwise non-speech is decided.

The VAD decision is then smoothed using a hang-over
scheme. Most of the VAD algorithms that formulatee t
decision rule on a frame by frame basis normally discision
smoothing algorithms in order to improve the rohess
against the noise. The motivations for these ambresm are
found in the speech production process and thecesbisignal
energy of word beginnings and endings. The so a¢dikng-
over scheme extends and smoothes the VAD decisiondier
to recover speech periods that are masked by acse.
The hang over scheme influences the behavior o¥/#i@ in
a two distinct ways. Firstly the scheme delays tilaasition
from the noise state to the speech state. Thisne ¢h such a
way that if the VAD decision making process indésaspeech
then the final VAD decision is always speech. Tlead is
introduced to ensure the hangover scheme does an mto
the speech state as a result of a false-alarm. stheme
secondly delays the transition from the speeche statthe
noise state, i.e., even if the VAD results indicatise, the
VAD will not necessarily decide noise, but will begto
progress through the transition states to the nstiste. This
effectively delays the transition from the speetdtesto the
noise state and results in a reduction in missctietes. The
VAD is thus quick to react to a change from nosepeech,
but is slow to react to a change from speech teenoi

To get the final VAD labels we use an end-pointedgbn
algorithm that looks for the beginning and end péech. It
usually checks for a specified duration of silenicethe VAD
decision and if the silence duration is longer tttaat specific
duration then it is considered to be out of thetesgze. The
outputs of end detector are frame indices thatainrspeech.

2.2. Vector Quantization (VQ)-based VAD [9]

Speech and non-speech segmentations were perfarsiegl

an unsupervised voice activity detector proposed[lih
Various steps of this VAD is shown in figure 2. fixist log
energy E™is computed for each frame after enhancing the
speech signal using spectral subtraction technifjoe.goal of
speech enhancement is to increase energy congtagtdn the
speech and non-speech. The log energy values eex sa
ascending order. The lowest and highest energyesafe.g.,
10% of all frames in each case) are considerecdbasspeech
and speech frames, respectively. 12-dimensional - Mel
frequency cepstral coefficients (MFCCs) featurese ar
computed from the original signal (without speech
enhancement). Usinkrmeans (k = 16) clustering speech and
non-speech models are then trained taking the MFCCs
corresponding to the lowest and highest energydrandices.

If x; and x;°represent codevectors for the speech and non-

speech, respectively, obtained uskageans anc, represents
the cepstral feature vector t¢th frame then the Euclidian

n:

distance measures betweep& x; and c, & Xx,°are given
by:

®)
(4)
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Figure 2: Vector quantization-based self adaptive voice activity detector.

decided if

where

Now, for each frame
(mkm(D )—rrlln(D ))2 0
E,.. =-75dB[9].

Then hangover scheme is used to prevent speechgeakhe
hangover scheme does this by reducing the risk &iwa
energy portion of speech being falsely classified reon-
speech. The final VAD labels are then obtained gisin end-
point detection algorithm. Robustness of energyedagAD
can be improved by enhancing the noisy speech Isigriare
feeding into the VAD algorithm. Note that in theseaof
RSR2015 database there is no difference in perfocegwith
or without applying speech enhancement. Therefoeedd

not use speech enhancement in any of the VAD algos
used in this work

speech is

and E%>E

min ?

2.3. Sequential GMM (SGM M )-based VAD [10]

A sequential Gaussian mixture model (SGMM)-basedDVA
algorithm in the Mel-filterbank spectral domain wa®posed
in [10] that uses an unsupervised learning framkwdhe
input signal is first decomposed into 8-Mel sublmim the
frequency domain. Then the log Mel filterbank speatt is
computed and smoothed using a median filter withiradow
of 5-frames for classification. The Gaussian Mirtuviodel
used comprised two Gaussian distributions, eachgryo
model either nonspeech or speech. The models waired
using an unsupervised learning process, wherebyinitial
frames (usually first sixty frames, if the numbédrfmmes of
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an utterance is less than sixty then half of thal thames is
taken as initial frames) from a signal were clustiento the
two Gaussians, with the distribution with the lowasean
representing nonspeech regions and the distribwtidim the
higher mean representing speech regions. The detima
distributions were also used to determine a detiticeshold
to discriminate speech from non-speech. Usuallis ¢hosen
as the point between two centers where the prdbebilare
equal.

Then speech/nonspeech detection is performed ih salo-
band, independently of all other subbands, and réseilts
from each subband were used to determine the Gogut
through a voting procedure decided by some threshol
determined experimentally. After taking the averageall 8
subbands decisions a decision threshold is compfubed it
using equation (2) for making speech/nonspeectsides. A
hangover scheme which simply delays the transifiom a
speech declaration to a non-speech declarationldss a
implemented to account for the low energy regiohthe tail
end of utterances. An endpoint detection algoritisnthen
used to get the final VAD labels.

2.4. Supervised GMM -based VAD [14]

To train speech and nonspeech Gaussian mixture lsnade
select training data from NIST Speaker recognigealuation
(SRE) telephone data from 2004 to 2010 inclusive extract
11-dimensional MFCC (including the log energy) teas,
augmented with their first, second, and third datrixe



features making 44-dimensional features, from th&aining
data. Pre-existing VAD segmentations of reasonajplality
are then used to separate speech and nonspeeche feat
vectors.
(GMMs) with diagonal covariance matrices are estauiefor
the speech and nonspeech models using the sepapatech
and nonspeech MFCC feature vectors. The GMM estimatio
process begins with a single Gaussian, which is ieeatively
split, mean-perturbed and re-estimated up to 256poments
using a Maximum likelihood criterion. Each splituldes the
number of Gaussians.

Now, using the trained GMMs, producing a speechéperch
VAD segmentation for a new recording (i.e., RSR dataur
case) involves the following:

e Extract 44-dimensional MFCC features for all the
recordings whose VAD segmentations are needed.
e Compute the log likelihoods, speech log likelihood

LL*and nonspeech log likelihoodlL™, of each feature

vector with respect to each trained GMM.

* Apply a median filter of length of 41 to smooth the
decision boundaries and then compute the log likeld
ratio (LLR), LLR=LL*-LL™. The length ofLLR vector
is same as the number of frames in each featare,one
LLR for each frame

* Now, choose speech IfLR>7 wherer =0.1.

2.5. Unsupervised GM M -based VAD [14]

The unsupervised Gaussian mixture model (GMM)-based
VAD, shown in fig. 3, is conceptually similar toettyQ-based
self adaptive VAD [9] described in section 2.2.\UQ-based
VAD speech and nonspeech models are estimated Using
means (withk = 16) clustering whereas in this case they are
trained using 16-component GMMs with diagonal c@rare
matrices. In unsupervised GMM-based VAR-means
clustering is used just for initialization.

In unsupervised GMM-based VAD, producing
speech/nonspeech VAD segmentations for an audardieg

at hand involves the following steps:

- compute the log energyE frame by frame, sort the
energies and take the lowest and highest (e.qg., dfosd
frames in each case) energy frame indices.

+ determine the energy threshoflifrom the sorted energies
using equation (2).

e compute the MFCC (12-dimensional including the Oth
cepstral coefficients, no feature normalization hoelt is
applied) features from the observed signal.

e train a  l1l6-components GMM for

/IS=({V\/§},{,UCS},{Z§})by taking  the
corresponding to the highest energy frame indices.

Similarly, by taking MFCCs that corresponds to lingest
energy frame indices train a 16-components GMM for

nonspeech ~ A™ = ({ WSS} ,{,ufs} ,{ Z’C‘S})
c=12,..Cis mixture component index

C represents number of mixture components.
» compute speech log likelihoodlL of each feature with

speech
MFCCs

where

and

respect to the trained speech motfel Similarly, given
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Two 256-component Gaussian mixture models °

trained nonspeech mod&F compute nonspeech log
likelihood LL,.

Compute the log likelihood ratioLLR by simply
subtracting nonspeech log likelihood from the speeg
likelihood. Smooth theLLR using a moving averaging
filter with a sliding window of 23-frames. Deterneina

threshold 4, from the sorted likelihood ratio using

v
equation (2).
+ Choose speech ifLLR>6, and E" > @ otherwise

nonspeech.

« Then hangover scheme is used to prevent speechgeak
The hangover scheme does this by reducing theofisk
low-energy portion of speech being falsely classlifias
non-speech. The final VAD labels (contains onlyexe
frames) are then obtained using an end-point detect
algorithm.

The RSR2015 corpus was collected in office envirenm
using 6 portable devices, i.e., there are differehannel
distortions. For noisy corpus under additive andereerant
environments robustness of this VAD can be improbgd
simply enhancing the signal using a spectral suobitna
technique before feeding into this VAD or by incorating
following changes:

1. Since energy is not a robust feature, spedyical low

signal-to-noise condition, its robustness can beraved

using spectral subtraction as a pre-processor [4].

2. Instead of MFCCs, robust features such as oooged in

[15], can be used for estimating the GMMs.

3. Experimentsand results

Speaker recognition experiments are carried ouherfemale
trials of the RSR2015 corpus. Following six VAD atighms
(described in section 2) are used for performanaguation:
Energy-based VAD [13], Energy-based VAD I, VQ-based
VAD [9], sequential GMM(SGMM)-based VAD [10], GMM-
based VAD (supervised) [6, 14], and GMM-based VAD
(unsupervised).

Performance evaluation metrics used in this wokk :athe
Equal Error Rate (EER), the old normalized minimum
detection cost function (minDGJ) and the new normalized
minimum detection cost function (MINDE). MinDChyy
and minDCF,, correspond to the evaluation metric for the
NIST SRE in 2008 and 2010, respectively.

3.1. Speech Corpus

RSR2015 (Robust Speaker Recognition 2015), a nescép
corpus for text-dependent robust speaker recognitiontains
audio recordings from 298 speakers, 142 femalel&agdmale
in 9 sessions each, with a total of 151 hours efesh. The
speakers were selected to be representative ofetheic
distribution of Singaporean population, with agegiag from
17 to 42 [18]. The database was collected in office
environment using six portable devices (4 smartngiscand 2
tablets) from different manufacturers. Each speakas
recorded using three different devices out of tixe Bach of
the 9 sessions for a speaker is organized intat3 [8]:

part I- 30 sentences from the TIMIT database cogerll
English phones. The average duration of sentense3.4
seconds and total duration is 71 hours.
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Figure 3: Block diagram of unsupervised Gaussian mixture model (GMM)-based voice activity detector.

part II- 30 short commands designed for the Starélom
applications. The average duration of short comraaisd2
seconds and total duration is 45 hours.

part 1l - consists of three 10- and ten 5-sessiependent
digit strings.

The information about where to get this corpus loarfound
in [22]. This work deals with a subset of part | thfe
RSR2015 corpus. Similar to [20] , the backgroundsesed
for UBM and Joint Factor Analysis (JFA) training ard
restricted test set from the part | evaluation isetised for
testing. This restricted test set consists ofladl female trails
obtained by selecting all the target trials and GEDGigh
scoring nontarget trials. Working with the reseitttest set
causes the error rates to increase by a factor [(#02 see
section 4.1].

3.2. Features Extraction

We extract 20-dimensional MFCC features (including libg
energy). First and second derivatives are appemdtdthe
static coefficients for a total feature dimensidr60. Then the
nonspeech frames are removed using the VAD segti@rga
of each of the VAD algorithms. Short-term mean sadance
normalization (STMVN) with a sliding window of 15tames
is then applied to normalized the features. Feathawing less
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than 151 frames are normalized with a full utteeabhased
MVN

3.3. Experimental Setup

We made six systems for different VAD algorithmsisidered
here. For each system a 512-component gender-indept
UBM (universal background model) with diagonal cdamce
matrices was trained using all background featu(€8587
recordings with 32770 from 50 male speakers and. 36&m
47 female speakers). Baum-Welch statistics were rgeate
from extracted MFCCs using the trained UBM. Joint &act
Analysis (JFA) was trained using extracted Baum-Welc
statistics from all the background data. We usé&/A-ldased
speaker verification framework as proposed in [2@)] with
the rank of eigenchannels matrix = 50 but witholBMJ
adaptation. Please see section 4 of [20] for detbut this
framework. A restricted test set, as mentionedeitien 3.1, is
used for evaluation [20].

3.4. Results

In this work we used the part | portion of the RSR201
corpus. We report results on the female trialsesfricted test

set of the RSR2015 corpus. The numbers of target and
nontarget trials in this restricted test set weg648and 50000,
respectively. Fig. 4 presents an utterance fromRB&2015
corpus uttered by a female speaker and its VAD saggtions



obtained by all six VAD algorithms considered instivork. It

is observed from fig. 4 that compared to with VAQaithms
the unsupervised GMM-based VAD was able to detect
speech/nonspeech more accurately. Table 1 prethenéxjual
error rate (EER), minDCJz (minimum normalized detection
cost for NIST SRE 2008) and minDgF (minimum
normalized detection cost for NIST SRE 2010) achidweall

six voice activity detection (VAD) algorithms. I§ iobserved
from the presented results that both the supervised
unsupervised versions of GMM-based VAD yielded dett
recognition accuracy than all other VAD algorithrirsterms

of all three evaluation metrics unsupervised GMNdzhVAD
outperformed all other VADs. The relative improverse
achieved by unsupervised GMM-based VAD over alleoth
VADs are shown in table 2. Combining energy-based an
likelihood ratio-based criteria in VAD algorithm w&dound
helpful. Energy is sensitive to additive noise alisbns but its
robustness can be improved by incorporating a nmeidection
technique as a pre-processor [4, 9].

Table 1: Text dependent speaker verification resultsin
terms of EER, minDCF,q and minDCF,, on the
female trails of restricted test set of the RSR2015
corpus obtained for different VAD algorithms.

%Z? MINDCFyq | MINDCF gy
E”er\%'ga%d 25 0.096 0.250
E”e\f/ %)b;emd 23 | 0085 0.267
V%Z%w 2.2 0.087 0.227
Gl\/l(l;l/lJ ;,k:eraﬁdse}j/)AD 21 0.080 0.214
GMM-based VAD 21 0.078 0.178
(unsuper vised)
SGMVI\:‘-Sased 2.2 0.083 0.201
Table 2:Percentage relative improvements (RI)

obtained by the unsupervised GMM-based voice
activity detector (VAD) over all other VADs in EER,
minDCF,4 and minDCF,, on the restricted test set. A
positive Rl indicates reduction in EER, minDCFq4
and minDCFqy.

EER | minDCFgy4 | minDCF,qy
(%) (%) (%)
E”e’\%'Dbased 16 18.7 28.8
E”e\’/%’bbf‘sed 8.6 8.2 33.3
V%gaD%d 45 10.3 215
G'\"(xé‘;ra\;iﬂw\j’)w 0 25 16.8
SGI\/lvl\;L-éh’i%d 45 6.0 11.4
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4, Conclusions

In this paper we compared several unsupervised and
supervised voice activity detection (VAD) algorithim terms

of speaker verification performances on the RSR rfius
observed that, if implemented properly, unsupedvis&D
can provide similar/better performance than theestiped
VAD. Combining energy-based and likelihood ratiodzhs
VAD criterion provided better discrimination of smh from
nonspeech. Among all the VAD both the supervised an
unsupervised GMM VAD showed better performance in
terms of speaker recognition accuracy. The unsigetv
GMM-based VAD outperformed all other VADs when
speaker recognition performances are comparedarrstef all
three evaluation metrics, i.e., EER, minQgF and
minDCRey

Our future works are:

v" To evaluate the performance of all the VAD algarighin
different additive and convolutive noise environtsen

v' To do fusion of the decisions of different VAD
algorithms.

v" To incorporate robust features such as, robusttredps
coefficients [15], long-term signal variability (ISV)
[16], multiband LTSV [17].

v" To evaluate the performances in text-independesslssy
recognition task on the NIST SRE 2012 corpora.
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Figure 4: (a) An utterance from the RSR2015 corpus (femal€)in time domain and its VAD segmentations achieved by (b)
Energy-based VAD, (c) energy-based VAD I, (d) sequential GMM(SGMM)-based VAD, (€) VQ-based VAD, (f) supervised
GMM-based VAD, and (g) unsupervised GMM-based VAD algorithms.
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