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Abstract
The current state-of-the-art for acoustic language
recognition is an i-vector classifier followed by a
discriminatively-trained multiclass back-end. This paper
presents a unified approach, where a Gaussian i-vector
classifier is trained using Maximum Mutual Information
(MMI) to directly optimize the multiclass calibration cri-
terion, so that no separate back-end is needed. The sys-
tem is extended to the open set task by training an ad-
ditional Gaussian model. Results on the NIST LRE11
standard evaluation task confirm that high performance
is maintained with this new single-stage approach.

1. Introduction

In recent years, the i-vector approach [1] has provided
the best performance in NIST evaluations of both speaker
and language recognition. In this method, built on tech-
niques originally developed for subspace modeling of
Gaussian Mixture Models (GMMs) using Joint Factor
Analysis, the GMM for each speech cut is assumed to
differ from a Universal Background Model (UBM) by
only a low-dimensional offset of the mean supervector.
The Maximum a Posteriori (MAP) estimate of this offset,
called an i-vector, is generated for each cut and treated as
an input feature for classification.

For i-vector language recognition, a range of classi-
fier approaches have been successful, including a Gaus-
sian model, Support Vector Machines (SVMs), Logistic
Regression, and cosine scoring [2, 3, 4]. However, all
these approaches require an additional multiclass back-
end classifier which provides significant performance im-
provement as well as producing calibrated probability
outputs. In addition, these methods only produce scores
for the known set of training languages, i.e. the closed
set, and rely on the back-end to introduce the capability
of out-of-set (OOS) rejection. This paper describes a new
approach to discriminative training of Gaussian i-vector
classifiers, such that both state-of-the-art closed set per-
formance and OOS scoring can be attained without the
need for a separate back-end.

The paper is organized as follows. First, Section 2
presents the Gaussian model that serves as the basis for
this work. Section 3 then describes discriminative train-

ing of Gaussian model parameters using MMI. Experi-
mental results on the NIST LRE11 task are presented in
Section 4, followed by concluding remarks in Section 5.

2. Additive Gaussian Noise Model

In the additive Gaussian noise model [5], an observed i-
vector zn from a given speech cut is assumed to have
been generated by a language modelmi corrupted by a
channel noisecn:

zn = mi + cn, (1)

where both the language and channel are drawn from
Gaussian distributions:

mi ∼ N (m0,Σm); cn ∼ N (0,Σc) (2)

These assumptions are also the foundation for the two-
covariance model [6] and Probabilistic Linear Discrim-
inant Analysis (PLDA) [7]. Solutions for model train-
ing and scoring under various additional assumptions are
given in the following sections.

2.1. Known Model

If we assume that the true language models are known,
then the likelihood of each language for the test i-vector
is given by

zn|Li ∼ N (mi,Σc). (3)

Each languageLi is represented by a Gaussian model, all
of which share a common covariance [3, 4].

2.1.1. Scoring

For the closed set case, the posterior probability for each
language can be computed using Bayes’ rule:

P (Li|zn) =
p(zn|Li)P (Li)

∑

j p(zn|Lj)P (Lj)
(4)

Equivalently, the detection likelihood ratio for each class
can be computed by

LR(Li|zn) =
p(zn|Li)

∑

j 6=i p(zn|Lj)P (Lj |not i)
(5)
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For the open set case, there is the additional possibil-
ity that the test language is not in the training set (OOS).
In this case, the test cut represents a random language in
a random channel, and since both are independent and
Gaussian, the OOS likelihood is also Gaussian:

zn|Loos ∼ N (m0,Σm + Σc). (6)

Posteriors are then given by:

P (Li|zn) =
p(zn|Li)P (Li)

∑

j p(zn|Lj)P (Lj) + p(zn|Loos)P (Loos)
(7)

For the pure OOS situation, the likelihood ratio is easily
written as:

LR(Li|zn) =
p(zn|Li)

p(zn|Loos)
. (8)

2.1.2. Training

In practice, point estimates are used for the language
models. Maximum likelihood estimates are given by the
training data means̄zi. Alternatively, MAP estimates
adapt from the prior distribution of language models [8],
resulting in:

mi = Σm

(

Σm +
Σc

N

)−1

z̄i+
Σc

N

(

Σm +
Σc

N

)−1

m0

(9)

2.2. Unknown Model: Bayesian Method

More generally, Bayesian methods can be used to esti-
mate posterior distributions of the language models [8].
For the additive Gaussian model, the posterior model
mean is given by the MAP estimate above, and the poste-
rior covariance is

Σi = Σm

(

Σm +
Σc

N

)−1
Σc

N
. (10)

Scoring is accomplished using the predictive distribution,
which again is Gaussian:

zn|Lj ∼ N (mi,Σc + Σi). (11)

These equations are the ones used for Bayesian
Speaker Comparison in [9]. Although they provide the
same answer as the solutions for the 2-covariance model
or full-rank PLDA, they differ significantly in form. The
other derivations are based on directly computing the
likelihood ratio between the same vs. different hypothe-
ses, and never explicitly compute model parameter distri-
butions. This makes it more difficult to see the similar-
ity between point estimate and Bayesian approaches. In
particular, it is well known that so long as the prior dis-
tribution does not preclude the true solution, then as the

amount of training data becomes large the Bayesian pos-
terior distribution approaches the ML solution, and scor-
ing via Eq. 3 and Eq. 11 become equivalent.

A heuristic variation of this scoring method has been
successful for speaker recognition with multiple enroll-
ment cuts. This approach, referred to here as 1-cut
Bayesian scoring, simply pretends there was only one
training cut for each model, i.e. replacesN in Eq. 9 and
10 with1.

2.3. Hyperparameter Estimation

This model has three hyperparameters:m0, Σc, andΣm.
Under the known model assumption, they can be esti-
mated using within-class and across-class covariance ma-
trices:

Σc =
∑

i

Pi

{

1

Ni

∑

zn∈Di

(zn − mi)(zn − mi)
T

}

(12)

m0 =
∑

i

Pimi (13)

Σm =
∑

i

Pi(mi − m0)(mi − m0)
T (14)

where{mi} are the ML class means from training data
{Di}, and{Pi} are the class prior probabilities, typically
either the training data proportions or a uniform prior.

In a Bayesian model formulation, maximum like-
lihood estimation of the hyperparameters can be done
with an Expectation-Maximization (EM) algorithm [7].
Again, as the amount of training data per class becomes
large, these two hyperparameter estimation techniques
should give the same answer. Based on preliminary ex-
periments, this work uses covariance matrix estimation
with uniform class priors.

2.4. Dimension Reduction and Diagonalization

Although i-vectors are already low-dimensional as com-
pared to the original GMM supervectors (600 vs. about
115,000), further dimension reduction is often applied.
Mathematically this comes from the assumption thatΣm

is reduced rank (note that reducing the rank ofΣc would
result in poorly-defined likelihoods). The EM algorithm
for PLDA can naturally handle this constraint while max-
imizing the likelihood. Alternatively, Linear Discrim-
inant Analysis (LDA) reduces dimensions using a dis-
criminative criterion which concentrates the scatter of the
training set across rather than within classes [8].

To reduce computation, this work uses diagonal co-
variance matrices, based on the fact that two symmetric
matrices can be simultaneously diagonalized with a linear
transformation [10]. This process is given by:

1. perform eigendecompositionΣc = E1Λ1E
T
1

2. transformΣm with Σ
′
m = Λ

− 1

2

1
ET

1
ΣmE1Λ

− 1

2

1
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3. perform eigendecompositionΣ′
m = E2Λ2E

T
2

4. (optional) keep only principal components

5. final transform:z′n = ET
2

Λ
− 1

2

1
ET

1
zn

In this transformed space,Σc = I and Σm =
Λ2. Since the error criterion for LDA is to maximize
tr(Σ−1

c Σm), keeping only the eigenvectors correspond-
ing to the largest eigenvalues in step 4 finds the same sub-
space as traditional LDA, although the linear transforma-
tion of this diagonalized LDA is not identical. In general
the LDA criterion only specifies the optimal subspace,
not the coordinates within it.

2.5. Model Summary

This section has reviewed multiple forms of model train-
ing and scoring equations for the additive Gaussian noise
model. For the known model, closed set case, the equa-
tions result in a Gaussian classifier with a single shared
channel covariance, as used successfully in [3, 4]. To ex-
tend to OOS test cases, a second covariance matrix is re-
quired to model the language space. For the more general
Bayesian case commonly used in speaker recognition, the
classifier is still Gaussian but boundaries between classes
are no longer linear, since the covariances of the predic-
tive distributions differ based on the number of training
samples per class.

3. Discriminative Training

Most previous work on discriminative training of i-
vector language recognition has focused on the one-vs-
rest training paradigm, using either SVMs or logistic re-
gression [2, 3], relying on a multiclass back-end to further
improve performance and calibration for the closed set
detection or identification task. However, there has been
work using multiclass discriminative training [4, 11].
This work expands on the MMI approach briefly men-
tioned in [4]; we will contrast it with the multiclass logis-
tic regression of [11].

The MMI algorithm is commonly used for updat-
ing GMM/HMM parameters in automatic speech recog-
nition [12] and also language recognition. We have
also used it in our multiclass language recognition back-
end [4], where we used an MMI-trained Gaussian classi-
fier to replace the commonly used sequence of ML Gaus-
sian followed by multiclass logistic regression [3].

The MMI error criterion is equivalent to that used in
logistic regression, the multiclass cross-entropy between
the answer key and the posterior probabilities from the
system:

−
∑

i

∑

zn∈Di

log P (Li|zn) (15)

The extended Baum-Welch update equations for mean

and diagonal covariance are given by:

mi =
S

1

i + C0mi

S0

i + C0

(16)

Σi =
S

2

i − 2miS
1

i + m
2

i S
0

i + C0Σi

S0

i + C0

(17)

using the statistics:

S0

i =
∑

zn∈Di

1 −
∑

n

P (Li|zn) (18)

S
1

i =
∑

zn∈Di

zn −
∑

n

P (Li|zn)zn (19)

S
2

i =
∑

zn∈Di

z
2

n −
∑

n

P (Li|zn)z2

n (20)

whereC0 = 2 is a stepsize related constant.
In the i-vector system, we use MMI training to up-

date the ML parameters of the additive Gaussian model.
In principle the Bayesian modeling approaches could be
used as input to MMI refinement, but these are better
viewed as complimentary approaches for small or large
training data conditions, respectively. Using multiclass
closed set training, the algorithm updates the language
model means{mi} and shared diagonal covariance ma-
trix Σc. We have experimented with four variations of
this approach: update the means only, update means and
covariance, update means and scaling factor of shared co-
variance, and finally a two-stage process where the scal-
ing factor is updated first and then the means. Note that
the traditional literature on MMI focuses on improving
discrimination performance, while back-end work strives
for calibration. The goal here is to accomplish both at the
same time.

In addition to closed-set MMI, the OOS model can
also be refined. A straightforward way to accomplish
this is to view the OOS model as a separate Gaussian
with its own mean and covariance, initialized by Eq. 6.
Regrouping the closed training set into a round-robin of
target/non-target trials allows the discriminative update of
the OOS model without disturbing the already optimized
closed-set performance. A practical advantage of this ap-
proach is that it does not require separate OOS training
data, which can be difficult to find for language recogni-
tion.

When compared to the multiclass logistic regression
of [11], MMI has many similarities. For the closed set
case, the shared-covariance Gaussian is a linear classi-
fier, and since both approaches use the same error crite-
rion they should give the same solution. However, over-
training is a problem for both methods, and MMI has the
following desirable optimization properties:

• the diagonal covariance constraint gives fewer free
parameters
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• the ML parameters provide a useful regularization

• initializing with ML parameters and limiting to 10
iterations provides a particularly simple regulariza-
tion

In addition, the MMI output retains the Gaussian param-
eter form so that scoring looks the same for generative or
discriminative versions. Finally, extension to OOS makes
the classifier nonlinear, which cannot be trained with lo-
gistic regression.

4. Experimental Results

To compare the performance of these various techniques
for language recognition, experiments were performed on
the NIST LRE11 30 second test corpus [13].

4.1. Corpora

LRE11 is the latest in a series of formal language de-
tection evaluations performed by NIST since 1994. This
task used 24 languages that were specifically chosen
to maximize confusions. Evaluation audio cuts were
drawn from both conversational telephone speech record-
ings collected specifically for NIST and segments drawn
from narrowband segments identified within foreign lan-
guage broadcast sources, such as the Voice of America
(VOA). These experiments use training and development
sets built by MIT LL from previous LREs as well as ex-
ternal data [4]. More specifically, audio for training and
development testing was obtained from

• Telephone data from previous LREs (1996, 2003,
2005, 2007, 2009): CallFriend, CallHome, Mixer,
OHSU, and OGI-22 collections.

• Narrowband segments from VOA broadcasts.

• NIST 2011 development data (Telephone and nar-
rowband broadcast segments).

• Narrowband segments from Radio Free Asia, Ra-
dio Free Europe, and GALE broadcasts.

• Arabic corpora from LDC and Appen.

For back-end training, a development set was created us-
ing 30 second segments from previous LREs and seg-
ments extracted from longer files.

4.2. Metrics

In previous LREs, the metrics used wereCavg and mini-
mumCavg, as defined in [14]. These represent a prior-
balanced Bayes decision cost using a target prior of
0.5. LRE11 introduced a new metric, average pair de-
tection cost (APD), which measured only the ability of
the system to make pairwise decisions between language
classes. Results presented in [4] for both of these metrics
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Figure 1: Cavg and minimumCavg for closed set scor-
ing without discriminative training. Systems areML: ML
Gaussian,Bayes: Bayesian scoring, andBayes-1: 1-cut
Bayesian scoring.

on LRE11 showed that they are highly related. APD is
less general, since it is only measures pairwise decisions
and does not require the ability to distinguish a language
from all other languages. Therefore, the results reported
below useCavg.

There is some controversy within the language recog-
nition community on the meaning of calibration and de-
tection in a closed set language task. This stems from
the fact that Bayes’ rule is used, and calibration affects
the interaction between the terms in the denominator sum
of Eq. 5. Therefore, in contrast to the typical open-set
scoring in speaker recognition evaluations, here calibra-
tion changes not just actual but also minimum cost. For
discussion of results in this paper, we make the following
statements:

• Actual detection costCavg is a reasonable measure
for a calibrated system.

• A well-calibrated system will have actualCavg

very close to minimumCavg.

• Calibration will improve actualCavg and may also
improve minimumCavg.

4.3. Feature Processing and i-vector Extraction

The acoustic front-end for this work is similar to that
in [4]. Feature processing uses 24 Mel Frequency Cep-
stral Coefficients (MFCC) from 0-4 kHz, windows of 20
ms length with 10 ms shift, vocal tract length normaliza-
tion (VTLN) trained with four iterations of speaker adap-
tive training, RASTA filtering, conversion to MFCCs,
shifted delta cepstra (SDC) coefficients with 7-1-3-7
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Figure 2: Cavg and minimumCavg for closed set scor-
ing with discriminative training. Systems areML+BE:
ML with back-end,MMI: MMI trained,MMI 30s: MMI
trained with training files truncated at 30s, andMMI
30s+dev: MMI trained using 30s train + development set.

configuration, static cepstra appended to produce a 56-
dimensional feature vector, gating with a GMM-based
speech activity detector, and feature vector mean and
variance normalization with a 3 second sliding window.
The resulting feature sequence is then aligned to a 2048
mixture GMM trained on the entire training set, and a
600-dimensional i-vector is estimated using an i-vector
extractor trained on the same set. Finally, whitening and
length-normalization [15] are applied, followed by diag-
onalized LDA dimension reduction to 23 dimensions.

4.4. Results

Fig. 1 shows the actual and minimum detection costs
for the LRE11 30 second test set using closed set scor-
ing with Bayes’ rule. The baseline maximum likeli-
hood Gaussian system minimum cost of almost 0.1 is
quite poor without a back-end, and the actual cost is
even higher due to a lack of calibration. As expected,
the Bayesian version of this system (equivalent to the
two-covariance model or PLDA) gives almost exactly the
same performance, as the amount of training data per
class is enough to justify ML modeling. The MAP sys-
tem (not shown) also performs the same. Finally, the 1-
cut version of Bayesian scoring, while mathematically in-
correct, does provide some improvement in actual cost.
This is because it (accidentally) gives a larger covari-
ance in the predictive distribution, which the MMI algo-
rithm also finds since it improves the classification per-
formance. Perhaps this is also the reason for its success
in speaker recognition. Regardless, after the use of dis-
criminative training, either in a separate back-end or for
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Figure 3: Cavg and minimumCavg for different ver-
sions of MMI training. Systems arem: mean only,mv:
mean and variance,ms: mean and covariance scaling, and
2stage: scaling first then mean.

the Gaussian parameters directly, the advantage of this
heuristic approach disappears, so the remainder of this
work uses the ML system.

Fig. 2 shows the performance with discriminative
training. After the multiclass discriminatively-trained
back-end, both minimum and actual cost of the ML sys-
tem are greatly improved to less than 0.04, competitive
with the best acoustic system result presented in [4]. That
i-vector system got significant performance gains with
improved features using a combination of VTLN and
feature-domain channel compensation (FNAP); this re-
sult implies that of the two it is VTLN that is most im-
portant. Discriminative training of the Gaussian system
provides better performance than ML without a back-end,
as shown in the second result of Fig. 2, but is not nearly as
good as the state-of-the-art. However, using better train-
ing data can in fact close this gap. The next presented
system improves by simply truncated all training set au-
dio files to 30 seconds to match the properties of the test
set. Finally, combining both 30 sec training and develop-
ment sets together for a discriminatively-trained system
provides the best performance of all for both minimum
and actual cost without any use of a separate back-end
classifier.

Fig. 3 presents the performance of different versions
of MMI training. Updating the mean only provides very
good minimum cost, but the actual cost is quite high im-
plying poor calibration. MMI training of the covariance
as well provides much better calibration. Training the
covariance scale factor instead of the entire diagonal ma-
trix gives a little better results, and the best performance
is obtained with the two-stage approach of scaling fol-
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Figure 4: Cavg and minimumCavg for open set scor-
ing. Systems areML: ML Gaussian baseline,MMI: MMI
trained (closed set),MMI+sm: additional MMI training
of OOS scale factor and mean. Note thatCavg for ML is
off this scale (0.27).

lowed by mean updates. Not included in the plot are un-
tied covariance updates where each class is allowed a dif-
ferent covariance; this system performs even worse than
the mean-only version.

Fig. 4 shows the same results using open-set scoring,
where Bayes’ rule is not used and the non-target hypoth-
esis comes only from the single global Gaussian repre-
senting OOS. In this case, the ML system provides poor
performance. The closed-set trained MMI system already
works better for this task but is still not well-calibrated as
evidenced by the significant gap between minimum and
actual cost. Further open-set discriminative training of
the OOS model improves the actual cost significantly.
Even though the LRE11 corpus does not support a true
open set test, this does show the capability of training an
OOS model using only in-set data.

5. Conclusion

This paper has presented a unified approach to i-vector
language recognition where a Gaussian classifier is
trained using MMI to directly optimize multiclass cali-
bration and no separate back-end is needed. Results on
the NIST LRE11 standard evaluation task confirm that
high performance and calibration are maintained with
this new single-stage approach. In addition, the system is
extended to the open set task using the additive Gaussian
noise model, and this is also discriminatively trained to
improve performance. While the LRE11 paradigm does
not allow true testing of OOS, results do show this gives
significant improvement when not using closed-set infor-
mation in the scoring process.
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[6] Niko Brümmer and Edward De Villiers, “The
speaker partitioning problem,” inProc. Odyssey,
2010.

[7] S. J. D. Prince and J. H. Elder, “Probabilistic linear
discriminant analysis for inferences about identity,”
in Proc. ICCV, 2007, pp. 1–8.

[8] R. O. Duda, P. E. Hart, and D. G. Stork,Pattern
Classification, Wiley, 2001.

[9] B. J. Borgstrom and A. McCree, “Discriminatively
trained Bayesian speaker comparison of i-vectors,”
in Proc. ICASSP, 2013.

[10] K. Fukunaga, Introduction to Statistical Pattern
Recognition, Academic Press, 1990.
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