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Abstract
Text-independent speaker verification can reach high accuracy
provided that there are sufficient amount of training and test
speech utterances. Gaussian mixture model - universal back-
ground model (GMM-UBM), joint factor analysis (JFA) and
identity-vector (i-vector) represent the dominant techniques
used in this area in view of their superior performance. How-
ever, their accuracies drop significantly when the duration of
speech utterances are much constrained. In many realistic voice
biometric application, the speech duration is required to be quite
short, which leads to low accuracy. One solution is to use pass-
phrases in place of the uncertain contents. In contrast with text-
independent system, this kind of text-dependent speaker veri-
fication can achieve higher accuracy even when the speech is
short. In this paper, we conduct a study on the application of
the pass-phrase based speaker modeling and recognition where
the speech signal is obtained through VHF (Very High Fre-
quency) communication channel. We attempt to evaluate the ef-
fectiveness of the GMM-UBM, JFA, i-vector methods and their
fusion system on this text-dependent speaker verification plat-
form. Our primary target is to achieve equal error rate (EER)
of 10∼15% under adverse condition using about 3 seconds of
speech sample.

1. Introduction
In more recent years, GMM-based systems have been applied
successful in speaker recognition field [1, 2, 3]. Techniques
such as GMM-UBM, JFA and i-vector achieve high recogni-
tion accuracy given sufficiently long segment of speech for text-
independent speaker verification. However, the performance
usually drops rapidly when they are applied for short duration
speech. In contrast, text-dependent speaker verification can
achieve considerable high accuracy when the speech is short
[4].

In this paper, we advocate the use of pass-phrase based
speaker verification to provide an automatic and reliable au-
thentication of far-end speaker through VHF communication
channel. Being different from mobile cellular phone communi-
cation, the VHF talking channel in our study is of much noisier
interference and high varying channel effects. In this regard, we
aim at developing a voice biometric technology for its robust-
ness against the distortion originated from VHF communica-
tion channel. The ultimate goal is to benchmark state-of-the-art
technology and to show whether current technology is ready for
deployment using speech samples transmitted through the VHF
channel. Our target is to achieve over 85∼90% of accuracy
within 3 seconds of speech.

In particular, the speaker verification system is designed to
authenticate the identity of the shipmaster using his name and
certificate identity (ID). For this to be possible, the shipmaster
has to enroll his voice to the system by pronouncing his ‘name’

and ‘ID’ multiple time (typically three repetitions). We apply an
expert system contributed from three GMM-series techniques
for the voice biometric system. They are GMM-UBM, JFA and
i-vector.

The GMM-UBM technique has shown reliable perfor-
mance for text-independent speaker recognition [5, 6, 7]. A
GMM carries rich amount of information including speaker in-
formation, speech contents, channel and emotion from its cor-
responding utterance [8, 9, 10]. JFA approach [11] is effective
due to its efficient modeling of speaker factors [12] and channel
factors [13], whereby a GMM-supervector is viewed as a com-
bination of speaker and channel specific supervectors. It com-
pensates for the channel variation through eigenchannel model-
ing and emphasizes the speaker-dependent component through
eigenvoice modeling. More recently, the i-vector technique,
originated from JFA, brings a new height to speaker recogni-
tion and has become the most popular [14, 15]. The i-vector ex-
tractor converts a sequence of features into a low-dimensional
vector in the total variability space, by which speech segment
of variable length can be represented as fixed-length vector. In
this regard, linear discriminant analysis (LDA) [16], probabilis-
tic LDA (PLDA) [17, 18], and the heavy-tailed PLDA [19, 20]
are useful for i-vector system.

In this paper, we introduce the features of VHF communi-
cation and develop a strategy to overcome the problem of VHF
channel through both feature extraction stage and model train-
ing design. Against the very short speech duration in verifi-
cation, we give a pass-phrase based modeling scheme. It is
observed that the score distribution of the imposter trial with
correct pass phrase is the closest to that of the genuine trial with
correct pass phrase. It implies that the pass phrase is more in-
formatively important than who the speaker is. Finally, we re-
port the performance of GMM-UBM, JFA and i-Vector systems
and show how effective their fusion is on a pass-phrase based
speaker verification platform.

In the remainder of the paper, the VHF communication
channel effect for speaker verification is introduced and the
pass-phrase modeling and recognition structure are developed
in Section 2. Different speaker verification systems are briefed
in Section 3. The task platform for text-dependent speaker ver-
ification is described and the performance measure is reported
in section 4. The conclusion is given in Section 5.

2. VHF Communication Channel and
Modeling Strategy For Speaker Verification
2.1. VHF Communication Channel

2.1.1. About VHF

The VHF range of the radio spectrum is the band extend-
ing from 30 MHz to 300 MHz, while the ITU (International
Telecommunication Union) defines the marine VHF band as



217

the radio frequency range between 156.0 and 162.025 MHz.
The wavelengths corresponding to these limit frequencies are
10 meters and 1 meter.

In the VHF band, electromagnetic fields are affected by the
earth’s ionosphere and troposphere. Ionospheric propagation
occurs regularly in the lower part of the VHF spectrum, mostly
at frequencies below 70 MHz. With ionospheric propagation,
the communication range can sometimes extend over the en-
tire surface of the earth. The troposphere can cause bending,
ducting, and scattering, however it can still extend the range
of communication significantly beyond the visual horizon. In
other words, VHF can be reflected, reduced or even stopped by
other objects. It can travel between 35-50 miles offshore. The
higher the VHF power is the further the range it travels. Suf-
ficient power can improve the quality of transmitted signal and
also overcome some obstacles.

The marine VHF uses frequency modulation to convey
voice. When the carrier wave is modulated, sideband signals are
produced that deviate above and below the carrier frequency. To
prevent signals from interfering with signals on adjacent chan-
nels, the spacing between channels is set to roughly twice the
modulated signal width, or 50-kHz for a modulation bandwidth
of 25-kHz of each carrier frequency.

2.1.2. Why VHF

In technical terms VHF is similar to the way that commercial
radio stations transmit. Its equipment is relatively simple, and
can therefore be compact and low cost. The propagation dis-
tance of VHF is limited in a small area, it may not be interfered
from other VHF users who use the same frequency band in a far
area.

In one side, the VHF band is popular for mobile two-way
radio communication with boats. There are a number of com-
munication devices, including cellphones and more sophisti-
cated communication devices. However for the majority of boat
owners, a VHF is about as good as you need. Cellphones cover-
age is limited to areas of higher population density, while VHF
Marine coverage is extensive so a call will likely be heard by
someone, whether coastguard or a private listening station. In
another side, the propagation characteristics of VHF are suit-
able for short-distance terrestrial communication, with a range
somewhat farther than line-of-sight from the transmitter.

2.1.3. The Problem

The development data considered in this paper was collected
with the participation of twenty two port inspectors (PIs) of the
maritime and Port Authority of Singapore (MPA) [21]. The
communication between ship and the Port Operations Control
Centre (POCC) is typically carried out with the use of VHF
radio. In this regard, the voice recordings were collected by
having the PIs pronouncing a list of sentences though the ma-
rine VHF radio from a PI ship located at Singapore strait to the
POCC located at the west coast of Singapore. In this paper, we
used both channels 6 and 7 (corresponding to central frequen-
cies of 156.300MHz and 156.350MHz respectively) of the VHF
radio meant for ship-to-ship and ship-to-shore communication.

On the contrary with the National Institute of Standards
and Technology (NIST) Speaker Recognition Evaluation (SRE)
[22] speech database, the main characteristics of the VHF
speech data used in our system are: 1) very short speech du-
ration (1 ∼ 3 seconds); 2) open channel mismatch problem;
3) strong noisy environment; 4) high distortion of communica-
tion channel. Fig. 1 shows the spectrogram of a speech signal

Figure 1: Speech spectrogram recorded using a close-talk microphone.

Figure 2: Speech spectrogram received through VHF channel from a
ship.

recorded using a close-talk microphone in office environment
while Fig. 2 the spectrogram of the speech received through
VHF communication channel between on board a ship and the
control center. In the task, the VHF speech recorded in office
is used for enrollment, and the VHF speech from on board used
for test. The major factor that affects the performance is the
channel distortion when speech signals were wirelessly trans-
mitted through the VHF channel. The above limitations lead to
low performance of the conventional speaker verification algo-
rithm applied to the VHF platform. For example, the JFA al-
gorithm is capable of 0.8539% of EER for the NIST SRE2012
Eval task [23], however it drops down to 18% of EER for the
VHF platform.

In contrast with the telephone communication speech sig-
nal, VHF signal has narrow bandwidth limitation. The VHF
channel restricts the bandwidth of the baseband speech signal
to be much lower than 3.2 kHz. This is much lower than the
3.4kHz telephone bandwidth. The information contained in the
lower bandwidth corresponds mostly to the linguistic content of
speech (i.e., the words and messages to convey via speech). It
has been shown in a number of reports that the higher bandwidth
contains useful information linked to the voice characteristic of
a person [24]. As such, with this higher bandwidth removed
from the VHF channel, the speaker information in the VHF sig-
nal is greatly suppressed.

In addition to the reduction in speech bandwidth, Table
1 shows other intrinsic and extrinsic differences between the
voice samples of the same speaker when recorded on-board and
in-office. On the intrinsic side, it was found that some speakers
tend to speak faster when they are recording through the VHF.
This is reflected from the amount of on-board data, for example,
some speakers took in average 0.91 second per recording com-
pared to average 1.3 seconds per recording. However, further
analysis discovers that the same speakers have a faster speaking
rate compared to other speakers even for in-office recordings
0.95 and 0.98 seconds per recordings for the speakers, respec-
tively. As such, speaking rate seems not to be a limiting factor
here. Another intrinsic factor is the vocal effort. It was found
that the speakers tend to raise their voice (toward shouting) for
onboard recording. This is common to most speakers. Recent
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Table 1: Difference between inoffice and onboard recording

Intrinsic factors Extrinsic factors
Speaking rate Channel distortion
Vocal effort Background noise

Voice deformation

study shows that speaker characteristics drifted when vocal ef-
fort changes from normal to shouting.

On the extrinsic side, the VHF channel degrades the quality
of the speech signal. The degradations manifest themselves in
an unpredictable manner as voice deformation (change of tim-
bre), additional of background noise correlated to the speech
signal, and other forms of channel distortion (e.g., the harmonic
distortion due to clipping). Source of distortions: (a) Fading of
signal when the distant changes. (b) Electromagnetic distortion
from surrounding devices, including the engine.

2.1.4. Solution

Against the problem of the VHF speech database, firstly, we
developed a robust voice-activity-detection (VAD) for feature
extraction. In particular, we applied spectral subtraction denoise
[25] on the raw speech signal, and the VAD is analyzed based
on the denoised speech. It is observed that applying denoise
only to VAD but not to speech for feature extraction is the best
selection in current experiment database [26].

Secondly, we focus on database collection and organiza-
tion. We simulated the particular application to record the
speech database using VHF device. Those data are to involve
the particular system parameter training. Through the design
of training data assignment, we increase the robustness of the
verification system. Against the complexity of the VHF speech
signal, we collected many speech data to simulate the enroll-
ment condition and verification condition. Proper design of
the database assignment is a key to strengthen the robustness
of the speaker verification system against the noise, channel
mismatching and signal distortion. The databases include I2R-
2013-Data, iPad-Data, FourSpks-inoffice, Onboard-2010-
5spks-shipmaster and RSR2015 [27, 28]. The features of the
abovementioned databases are listed in Table 2. They are used
for UBM training and all other system parameter training in-
cluding diagonal-matrix, eigen-channel matrix and PLDA etc.

The voice biometric system is a combination of hardware
and software: The hardware component consists of a computer
and a USB sound card for speech signal acquisition via the
VHF handsets. The software component consists of the voice
biometric engine, a user management system for enrollment of
speakers, and a user interface for operator. An example setup
of the prototype is shown in Fig. 3. Here, two Motorola GP328
portable radios are used to set up the VHF communication chan-
nel. In the actual operation, the VHF signals will be taken from
the marine VHF system. The operational frequency used in our
current setup is 170.375 MHz, which is slightly higher than the
marine VHF in the range from 156 MHz to 162.025 MHz. In
the experiment, the power of portable devices is much low and
therefore could only serves shorter distance of VHF transmis-
sion.

Table 2: Databases used for system’s parameter training

Data Environment,
Recording-Way

Recording
Device

I2R-2013-Data office, (1) VHF
with (< 2 me-
ters) close and (>
10 meters, obsta-
cle) far distance,
(2) close-speech-
direct-record

(1) Walkie-Talkie
mic and (2)
normal-mic

RSR2015 office, direct-
cellular-record

mobile device

iPad-Data office, direct-
cellular-record

iPad device

FourSpks-inoffice Office, VHF
the same as
DEV\EVAL set

Walkie-Talkie
mic

Onboard-2010-
5spks-shipmaster

Onboard, VHF Walkie-Talkie
mic

Figure 3: A prototype of the VHF speaker verification system.
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Figure 4: VHF modeling and verification trial. K is the number of
pass-phrase models trained for speaker i; L is the number of pass-
phrase used for verification for speaker j who want to claim the identity
of speaker i.

2.2. Modeling Strategy

Fig. 4 shows the modeling and verification. In a claim, if the
maximum score can not be higher than the likelihood thresh-
old, it means the claim is not true. In the pass-phrase based
speaker verification system, the different models are trained
with corresponding pass-phrases for each target speaker. As
a result, there are a series of models (Θik, k ∈ {1, 2, ...,K})
for speaker i, (i ∈ {1, 2, ..., I}). In verification, the purpose
is to verify the identity of speaker j speaking pass-phrase l
(Ojl, l ∈ {1, 2, ..., L}) whether it is spoken from speaker i or
not.

Generally, we compare the similarity of the Ojl with all
the models trained for speaker i. For pass-phrase based ver-
ification, we only choose the (Θil) with the contents of the
speech corresponding to the pass-phrase l. We get the score
Sjl∼il in place of the series of scores Sjk∼il where k =
1, 2, ...,K, l ∈ {1, 2, ...,K}. The reason can be explained
through an experimental observation illustrated in Fig. 5. There
are four score distributions [4] in Fig. 5, these are the distri-
butions with (a) genuine speaker speaking correct pass-phrase,
(b) imposter speaker speaking correct pass-phrase, (c) genuine
speaker speaking wrong pass-phrase and (d) imposter speaker
speaking wrong pass-phrase. It can be seen that the log-
likelihood ratio score with correct pass-phrase is most likely
greater than that with wrong pass-phrase. It is also observed
that the imposter trial with correct pass phrase (IC) is the closest
distribution to the genuine trial with correct pass phrase (GC).
It implies that the pass phrase is more informatively important
than who the speaker is.

3. Pass-phrase based Speaker Verification
System

An UBM can be denoted by the set of parameters, u =
{ω̄i, m̄i, Σ̄i; i = 1, 2, ..., C}, where C is the number of Gaus-
sian components. The adapted GMM, λ, takes a similar form
λ = {ωi,mi,Σi; i = 1, 2, ..., C}where mi, Σi, ωi are respec-
tively the mean vector, the covariance matrix, and the weight of
the ith Gaussian component.

The pass-phrase speaker verification system is a fusion of
three subsystems including GMM-UBM, JFA and i-vector. Fig.
6 shows the diagram of the system. In the verification sys-
tem, the three subsystems share exactly the same UBM, using
the same feature extraction algorithm and subsequently share
the same sufficient statistics. The weighting is trained through
the development database for score normalization and calibra-
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Figure 5: Score distributions of different situations. GC: Genuine trial
with the same pass-phrase; IC: Imposter trial with the same pass-phrase;
GW: Genuine trial with different pass-phrase; IW: Imposter trial with
different pass-phrase.

tion of each subsystem, then the scores from three subsystems
are fused with the weights obtained by using the development
database.

3.1. GMM-UBM

In conventional MAP, λ is obtained by

λ̆ = arg max
λ

[
f(X|λ)g(λ)

]
(1)

where X = [x1, x2, · · · , xκ] is the sequence of feature vec-
tors, which we call the adaptation data. x is a J-dimensional
feature vector. f(X|λ) is the likelihood of X given a GMM λ.
g(λ) is prior density of the GMM λ.

Assuming that the weights that are required to be a
conjugate distribution are modeled as a Dirichlet density
g1(ω1, ..., ωC) while mean and covariance of GMM is a conju-
gate prior distribution with normal-Wishart density g2(mi,Σi).
g(λ) is the joint prior density of g1 and g2 . We have the mean
and covariance parameters of the ith Gaussian adapted as fol-
lows [29],

mi = αiΞ̌i + (1− αi)m̄i (2)

Ξ̌i is the first order sufficient statistics which has been normal-
ized by the occupancy count; αi are the adaptation coefficients
given by

αi =
Ni

Ni + γi
(3)

The relevance factor γi is a constant parameter in the normal-
Wishart density as which the Gaussian parameters are modeled
[29]; Ni is the occupation count which is directly proportional
to the duration of the feature sequence.

The GMM-UBM system scores the test segment against the
adapted GMM and the UBM models. The test score is given by
the log likelihood ratio between the two models.

3.2. JFA

The JFA has been reported to have superior performance due
to its robustness in channel compensation. In JFA, the speaker
variability is modeled by the eigenvoice, where several com-
mon factors are used to represent the spanned space of the
speaker, while the channel variability is modeled using a set
of latent channel factors. In particular, a speaker-dependent
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GMM-supervector can be decomposed in joint factors as fol-
lows [11]

m = m̄ + V v + Uu +Dd (4)

where m̄ is a speaker-independent supervector from UBM, V
is the eigenvoice matrix, v is the eigenvoice factors (or speaker
factors) with normal prior distribution; U is the eigenchannel
matrix, and u the channel factors with normal prior distribution;
D is the residual diagonal matrix, and d denotes the speaker-
specific residual factors with normal prior distribution.

As a result of the decomposition in (4), speaker adaptation
can be performed by updating a set of speaker-dependent latent
variables and minimizing the influence of channel effects in an
utterance. In our implementation, we train the eigenvoice ma-
trix V by assuming U and D to be zeros; then train the eigen-
channel matrix U given the estimate of V by assuming D to
be zero; finally D matrix is trained given the estimates of V
and U . In the training database design, for V matrix, we fo-
cused on obtaining the speaker-based principal dimensions; for
the U matrix, the key is to obtain the channel (or nuisance) based
principle dimensions. With the trained matrices V , U and D ,
the estimate of v, u and d are obtained based on the posterior
means given the particular utterance.

The score can be obtained by comparing the target speaker
speech side and test segment statistics

S =

(V vtar +Ddtar)
TΣ−1(Ξtest −Ntestm̄−NtestUutest)

(5)

where vtar and dtar are the target speaker factors and residual
factors; while Ξtest, Ntest, and utest are the first order suffi-
cient statistics, zero-order statistics (or occupation count), and
the channel factors of the test speech utterance(s). We can see
that the target speaker side is centered around speaker and resid-
ual factors, while the test speech has speaker-independent and
channel factors removed. However, through experiments we
notice that when the eigenvoice is not included but only con-
sider eigen-channel factor and residual factors, the performance
of the pass-phrase modeling is improved much. This is because
the pass-phrase modeling actually separate the speaker into dif-
ferent model corresponding different phrases; this causes the
eigenvoice is not constrained in the pur speaker modeling but in
the speaker-phrase modeling, with very limit speech data, the
eigenvoice can not be training properly in current database plat-
form. Therefore, the score computation is re-written as follows

S = (Ddtar)
TΣ−1(Ξtest −Ntestm̄−NtestUutest) (6)

In score normalization, the z-norm and t-norm is used since they
have been proven to effectively reduce the variability of the like-
lihood ratio scores that are used in the decision criterion.

3.3. i-Vector

Recently, Dehak et al. [14] proposed a feature extractor inspired
by the JFA. Unlike JFA which models separately speaker and
channel variability in a high dimension space of supervectors,
the main idea is to find a low dimensional subspace projected
from the GMM-supervector space, named the total variability
space that represents both speaker and channel variability. The
vector in the low-dimensional subspace is called i-vector.

The i-vector has been shown to respond well to generative
modeling. Actually, the i-vector is estimated by evaluating the

posterior expectation of the hidden variables in the model con-
ditioned on the Baum-Welch statistics extracted from the ut-
terance. This posterior calculation provides a posterior covari-
ance matrix as well as a posterior expectation. The posterior
covariance matrix can be interpreted as quantifying the reliabil-
ity of the point estimate. An i-vector system uses a set of low-
dimensional total variability factors w to represent each utter-
ance. Each factor controls an eigen-dimension of the total vari-
ability matrix T . The total variability factors w is the i-vector.
In particular, the GMM-supervector m can be decomposed into
speaker-independent supervector m̄ and the speaker-dependent
supervector Tw

m = m̄ + Tw (7)

To train T , just using the same procedure used for training V
in JFA but treat all utterance of all training speakers as belong-
ing to different speakers. Thus T actually absorbs the informa-
tion of V , U and D in JFA. w is the latent variable. For each
utterance, the i-vector φ is the posterior mean of w given an
observation (or an utterance) w can be obtained given T .

In fact, i-vector extractors are trained without speaker-level
labeling. It indicates that further transformations should apply
in order to increase their speaker discriminative capacity. In
i-vector system, a score can be obtained by comparing the en-
rollment i-vector and the test i-vector. It was shown that by pro-
jecting i-vectors onto a Linear Discriminative Analysis (LDA)
basis, trained using representative enrollment data and speaker-
labels to defined classes, the performance can be improved sig-
nificantly. More effective performance can be obtained by giv-
ing the score with PLDA where the i-vector is considered as the
second layer input vector to PLDA system [17].

There are two versions of PLDA named Gaussian and
heavy-tailed versions. Currently, Gaussian PLDA [17, 18] and
heavy-tailed PLDA [19], performed either on i-vectors directly
or on the LDA-projected length-normalized i-vectors, yield
state-of-the-art speaker recognition results. i-vectors can be ap-
proximately Gaussianized by length normalization so that the
performance of Gaussian PLDA with length normalization is
similar to that of heavy-tailed PLDA without length normaliza-
tion. The recent research results show that unity length nor-
malization of the i-vector indicates that Gaussian PLDA is as
effective as heavy-tailed PLDA. In this investigation, we chose
Gaussian PLDA for the speaker recognition.

In particular, given a speaker and a collection of i-vectors
w1j, ...,wRj (one for each recording of the speaker in jth style
(or channel or session)), standard Gaussian PLDA assumes that
the i-vectors are distributed according to

φrj = $ + Ωhr + Λqrj + ε (8)

incorporating speaker subspace Ω and channel subspace Λ. $
is the overall mean of the i-vectors. h and q are hidden vari-
ables representing the speaker factors and channel factors re-
spectively; and they have standard normal priors. The residual
εr is normally distributed with zero mean and diagonal covari-
ance matrix. The PLDA is modeled by the parameters $,Ω,Λ,
and εr , which can be estimated through EM algorithm using the
parameter training database. To make inference of the identity
of a given test segment, the posterior probability for both enroll-
ment i-vector and test i-vector generated from the same speaker
or from different speaker are computed based on PLDA model.
So, the log-likelihood ratio for the same and different inference
likelihood is obtained as the output of the PLDA system. It
has been proven that ignoring the channel subspace Λ and us-
ing full covariance matrix of εr instead of the diagonal matrix
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Figure 6: The Speaker Verification System.

Table 3: The composition of the Development (DEV) sets in
terms of number of models (speaker-passphrase), number of
train and test segments

Type of
Phrase

#Model #Train #Test #True #False Dur
(second)

N 360 2120 1203 1203 13233 1.04
I 360 2130 1135 1135 12485 1.36
N+I 360 2120 1069 1069 11759 2.40

can be effective for speaker recognition system. Therefore the
PLDA system in the investigation adopts this way. Finally, the
S-norm is applied for score normalization [19].

4. Performance evaluation
In the evaluation, 19-dimensional MFCC coefficients, after
voice activity detection (VAD), with their delta and double delta
coefficients form the 57-dimension MFCC feature.

The dataset used for development (DEV) and evaluation
(EVAL) consists of speech recordings from 22 speakers. The
recording took place at two locations, i.e., in office of a port
control center and on-board on the sea, where the communica-
tion between the two locations is through VHF wireless chan-
nel. Each speaker was required to read a list of names and IDs
repeatedly. Given the dataset as described above, we split the 22
speakers into two sets consisting of 10 and 12 speakers respec-
tively. The former is used to form the DEV set while the later is
used to form the EVAL set. Table 3 shows the particular of DEV
set while Table 4 gives the particular of EVAL set. The partic-
ulars listed in the tables include 1) #Model: total number of
models trained, 2) #Train: number of training utterances used
for model training, 3) #Test: number of utterances used for test,
4) #True: number of true trials for performance measurement,
5) #False: number of false trials for performance measurement,
and 6) Dur: the average duration for each recording. All utter-
ances for training were recorded in office environment, while
all utterances for test were recorded on board. From the tables,
the average duration of the ‘NAME’ is about 1.04 seconds, and
the average duration for ‘ID’ is 1.36 seconds. Therefore, the
combination of ‘NAME’ and ‘ID’ gives a total duration of 2.40
seconds in average.

The three subsystem (i.e., GMM-UBM, JFA and i-vector)
share the same feature database and the same UBM with 256
mixture components. For JFA subsyetm, the joint factors are
composed by 200 channel factors, and full rank diagonal ma-

Table 4: The composition of the Evaluation (EVAL) sets in
terms of number of models (speaker-passphrase), number of
train and test segments

Type of
Phrase

#Model #Train #Test #True #False Dur
(second)

N 300 1800 850 850 7650 1.04
I 300 1800 890 890 8010 1.36
N+I 300 1800 790 790 7110 2.40

Table 5: Twelve speaker task: EER

Method Name ID Name+ID
GMM-UBM 17.12% 17.68% 13.39%
JFA 15.73% 17.12% 11.69%
iVector 19.29% 20.79% 15.15%
fusion 14.63% 16.27% 11.13%

Table 6: Twelve speaker task: minimum DCF

Method Name ID Name+ID
GMM-UBM 0.9310 0.8806 0.7619
JFA 0.9431 0.9392 0.8606
iVector 0.9194 0.8855 0.8657
fusion 0.9002 0.8511 0.7292
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Figure 7: DET plot for VHF Name 12-speaker task.
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Figure 8: DET plot for VHF ID 12-speaker task.
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Figure 9: DET plot for VHF Name+ID 12-speaker task.

trix. For i-vector subsystem, the total variability is trained with
10 iterations. For the i-vector extractor matrix, 400 total vari-
ability factors are used; for PLDA training, 200 speaker factors
are used. A fusion system is formed by calibrating each of sub-
system and weighting the subsystems according to the trained
parameters. The performance is evaluated on EVAL set while
the DEV set is used to train various parameters including sub-
system calibration and fusion weighting parameters. The per-
formance is measured in terms of equal error rate (EER) and
minimum detection cost function (minDCF) for the case of us-
ing ‘NAME’, ‘ID’ and ‘NAME+ID’ as pass-phrases.

Using ‘NAME’ or ‘ID’ only, the error rates are around 16%
and 20%, respectively, on the DEV set. In order to improve the
performance, both NAME and ID speeches are concatenated
together so that the voice biometric system could make a better
decision based on more speech information. Figs 7 and 8 show
the DET curves of the subsystems and the fusion system for
the 12-speaker EVAL task for the ‘NAME’ and ‘ID’ situations
respectively. Fig 9 shows the DET curves with the subsystems
and the fusion system result for the combination of ‘NAME’
and ‘ID’ for the 12-speaker EVAL task. Tables 5 and 6 show the
EER and minimum DCF of the ‘NAME’, ‘ID’ and ‘NAMD+ID’
situation for the 12-speaker EVAL task. It can be seen from
Table 5 that the error rate of ‘NAME+ID’ improves by 23% or
31.5% compared to the case where ‘NAME’ or ‘ID’ was used.
We also can see that the expert system makes improvement at
least 4.79% over any subsystem on the EVAL task.

We used the above mentioned JFA and i-vector algorithms
on the NIST SRE 2012 platform, both sharing the same UBM
and feature databases. Their performances in NIST SRE 2012
evaluation are effective in terms of EER, minimum DCF and
actual DCF.

5. Conclusion
In this paper, we introduced a text-dependent speaker verifi-
cation system, where the very short VHF speech was used.
Against the short duration condition, a pass-phrase modeling
concept was proposed. We analyzed the characteristics of the
VHF and developed a fusion system consisting of GMM-UBM,
JFA, i-vector for VHF speaker verification. Among the three
subsystems, the UBM and the sufficient statistics were shared.
According to the different conditions between enrollment and
verification, we collected various databases and designed the
suitable lists for various parameter training and final system
setup. Especially, for the pass-phrase modeling, we noticed that
JFA without channel factor consideration gives improved per-
formance.

We investigated their performances in speaker recognition
task in terms of EER and minimum DCF. The result shows that
the fusion system gives advantage over any single subsystem.
In the VHF platform, it has been observed that the state-of-the-
art techniques: GMM-UBM, JFA and i-vector shows their mu-
tual compensability. It is clear that, using longer speech, i.e.
Name+ID, we could well achieve an error rate of less than 12%.
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