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Abstract

Latent Dirichlet Allocation is a powerful topic model used
heavily in natural language processing, image processing and
biomedical signal processing fields to discover hidden struc-
tures behind observed data. In this work, we have adopted a
variant of LDA for continuous descriptor vectors and use this
model as a front-end for speaker verification similar to pop-
ular i-vector front-end. We have proposed an efficient hier-
archical acoustic vocabulary creation method and presented a
speaker verification system using latent topic probability fea-
tures obtained using LDA front-end. We analysed the perfor-
mance of the LDA front-end for various vocabulary and topic
sizes, and obtained encouraging results on NIST SRE corpora.
The proposed system is shown to improve the performance of
an i-vector-PLDA baseline system when tested on NIST SRE12
corpora.

1. Introduction

Probabilistic topic models try to discover the hidden semantic
structure in a collection of documents, and make it more conve-
nient to explore and browse the documents in a collection. Us-
ing a probabilistic topic model we can easily find similar doc-
uments to a reference document in a collection, or categorize
documents according to their semantic content. One of the most
widely used topic models is Latent Dirichlet Allocation (LDA)
[1,2]. LDA is a hierarchical topic model that uses bag-of-words
assumption for documents. A document in the collection can be
about several topics, so each document has a distribution over
the topics. The topics, themselves, are modeled with a distribu-
tion over words in the corpus.

LDA has been used for analyzing many types of text cor-
pora such as newspapers, scientific journals, or tweets. In addi-
tion to text data, LDA has also been used for image and video
data for tasks such as object recognition and novelty detection.
To apply LDA to data with continuous valued observations, first
a “visual vocabulary” is learned using methods such as k-means
or kd-trees. Each continuous valued observation is then mapped
to a “visual word” and the document (e.g., image) is trans-
formed into a text document with discrete word observations.
The standard LDA algorithm is then applied to the generated
text corpora. Recently, approaches incorporating the generation
of continuous descriptors into the LDA model have been pro-
posed [3, 4]. These approaches apply a soft alignment of con-
tinuous descriptors to words in the vocabulary instead of hard
assigning them.

LDA model has also been used for speech corpora. In [5], it
is used for a language recognition task. First phone n-gram se-
quences are extracted from utterances and then LDA is applied
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by using n-gram symbols as words in a vocabulary. In [6], it
is used for spoken document retrieval, and in [7] for computing
spoken document similarity.

In all of the previous work, LDA is applied after a word or
phone recognition step. In this paper, we use LDA for speaker
verification for the first time. Instead of transcribing speech
data in phone or word level prior to LDA modeling, we di-
rectly apply LDA to continuous valued local descriptors like
MEFCC vectors. We propose a technique to construct “acous-
tic” vocabularies which helps us to map the continuous descrip-
tors to discrete acoustic words efficiently even for moderately
large vocabulary sizes. Continuous descriptor vectors are soft
aligned with acoustic words to obtain posterior counts. We will
use LDA as a front-end to extract a fixed size topic distribution
vector from each utterance. This use of LDA is similar to the
use of popular i-vector model.

The rest of the paper is organized as follows: in section 2
we describe briefly the LDA model, and in section 3, we de-
scribe our acoustic vocabulary generation method. In section 4,
we describe the overall speaker verification system using LDA
generated topic features. In section 5, experimental results are
given followed by the conclusions in the last section.

2. Latent Dirichlet Allocation Model

The generative process of the LDA for a corpus with M docu-
ments and K topics is given as below:

e For each of the K topics, sample topic word distribution
B, ~ Dirichlet(n) where 7 is the prior for Dirichlet
distribution.

e For each document in the corpus, sample distribution
over topics : 6,, ~ Dirichlet(«) where « is the prior
for Dirichlet distribution.

e For each term in document m, sample topic index
Zm,n ~ Multinomial(6,,) and using this sample term
for word wy,,» ~ Multinomial(3

Z7n‘n)'

The graphical model of LDA can be seen in Fig. 1. Note
that the number of topics K is assumed to be known and held
fixed. Usually symmetric priors are used, but in [8] it is found
that using an asymmetric prior for document-topic distribution
helps. The joint probability distribution for LDA is:
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Figure 1: Graphical model of the LDA model.

where W, Z, and © are the words, topic indexes, and proba-
bility vector of documents over topics in the whole corpus, re-
spectively. The main difficulty in LDA inference is that comput-
ing the posterior distribution of hidden variables is intractable.
To solve this problem we can either use approximate inference
methods such as mean field variational inference [1] or sam-
pling techniques such as Gibbs sampling [9]. Using the varia-
tional alternative, we can approximate the posterior distribution
of hidden variables as:

M Nm
m=1n=1 m=1
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where ¢(Zmn|®,,,) is the posterior categorical distribution of
the term W, over the topics, ¢(0:m|y,,) is the posterior distri-
bution of document m over topics in the form of an asymmetric
Dirichlet distribution with parameters ~,,,, and ¢(3 |\« ) is the
posterior distribution of the k" topic over terms in the form of
an asymmetric Dirichlet distribution with parameters Aj. Note
that even if we select a symmetric Dirichlet distribution for the
priors, we use an asymmetric distribution for the posteriors. If
we apply a variational EM algorithm to infer the posterior pa-
rameters, we obtain the following update equations:

Gk < exp {(Ymr) + 1 (Mkw) — ZM 3)

\%4
TYmk — & + Z ¢)7er1€ (4)
w=1
M
)\kw =n + Z nmw(bmwk’ (5)
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where 1,4 18 the count of term w in document m, V' is the vo-
cabulary size, and 1)() is the di-gamma function. Note that for
the multiple occurrences of the same word in a document, pos-
terior distribution parameters are the same and calculated only
once. Hence, we tie the distributions ¢,,,,, with the same term
id w in document m into a single distribution ¢,,,,,. This is an
advantage of variational methods over sampling based inference
methods.

For a new document not present in the training set, we can
calculate the maximum a posteriori point estimate of document
topic probability distribution vector 6, by first iteratively apply-
ing equations 3 and 4 until convergence, and then using:
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Figure 2: Acoustic vocabulary generation process. Two child
mixtures are generated from the z'" UBM mixture with mean
W=. For each child mixture, the 1 dimensional i-vector x is sam-
pled from N'(0, 1) and the mean of the child mixture is obtained
as V. + . The child mixtures share the covariance matrix of
their parent UBM mixture.

This gives us the expected value of the posterior distribution
q(0]y) and can be used as a fixed size feature vector for a given
document.

3. An efficient acoustic vocabulary

Two important factors that may effect LDA performance is the
size of the vocabulary V, and the number of topics K. Both
are fixed prior to LDA modelling. In Section 5, we analyze
the performance of our LDA based system for several values
of V and K. However, the value chosen for the vocabulary
size has also a direct effect on the computation cost of our al-
gorithm. A given descriptors’ likelihood for every Gaussian in
our acoustic vocabulary should be computed, and for large vo-
cabulary sizes computational cost may be prohibitive. In image
processing community, this is usually avoided using hierarchi-
cal vocabularies such as kd-trees and discretizing the continu-
ous descriptor by hard assignment to only a single visual word.
When using soft alignment of descriptors to acoustic words, we
need an efficient procedure to compute the posterior counts of
descriptors.

To efficiently produce acoustic vocabularies of various sizes
and obtain posterior counts of acoustic words for a given de-
scriptor vector, we will use the i-vector model and its cor-
responding universal background model (UBM). The i-vector
model may be thought as a way to adapt a UBM to a given ut-
terance. The generative story of the i-vector model is as follows:

e For each sequence, sample hidden factors x from
N (x;0,T) once.

e For each observation in the sequence:

— Sample mixture index z from the multinomial dis-
tribution, Mult(7r) where 7 is the weight vector of
the UBM,

— Sample the observed variable y from NV (y; V. x+
Wz, %) where i, and X, are mean and covari-
ance matrix of the 2 mixture of UBM, and V. is
the factor loading matrix associated with that mix-
ture.

Using the UBM and the i-vector model, we will build a
two-level hierarchical acoustic vocabulary which will provide
us an effective procedure to calculate posterior counts of words



in the vocabulary. At the top level of our hierarchical acoustic
vocabulary, we have the UBM mixtures. For each UBM mix-
ture, we generate child mixtures using the i-vector model. The
number of child mixtures of a UBM mixture is proportional to
its weight. Each child mixture shares the covariance matrix of
its parent UBM mixture. When generating a child mixture, we
follow the below steps:

e Randomly sample an i-vector x from N (x;0,Z),

e Obtain the mean of the child mixture using: V.x + u.,
where z is the index of parent UBM mixture.

This procedure is demonstrated in Figure 2 for a single mix-
ture of a UBM, where feature vectors are 2 dimensional and
i-vectors are 1 dimensional. When calculating the posterior
counts, we first apply top-N scoring using the UBM mixtures,
and find the top performing N mixtures of the UBM for each
frame. Only the childs of these UBM mixtures are used for
posterior count calculation for the given frame. Since i-vector
model is a proven method to model the total variability space,
we use it for generating acoustic words when large vocabularies
are needed.

4. LDA front-end for speaker verification

Latent Dirichlet allocation model can be used as a feature ex-
tractor similar to the i-vector model. The i-vector model as-
sumes that supervectors of Gaussian mixture models obtained
by adapting a UBM lie in a low dimensional subspace. In [10],
Kenny states that the coordinates of the representation learned
by the i-vector model may be related to physical quantities con-
stant for an utterance such as vocal tract length. Depending
on the values of these physical quantities, some of the acoustic
words may be active in an utterance (that is have high poste-
rior counts), while others may be inactive. If we model co-
occurences of the acoustic words in a corpus, we may obtain
patterns related with these physical constants and their plau-
sible combinations. Thus, LDA topic probability distributions
may be a good candidate to preserve information regarding to
the physical constants inherent in an utterance. For text doc-
uments the interpretation of topics is more intuitive. No work
has been done in this study, to find and test interpretations of
the topics learned by the LDA model. Instead, we used it as a
feature extractor for speaker verification and analyzed its per-
formance.

Since LDA training is done in a purely unsupervised way,
the topics will contain information regarding many variations
in speech in addition to speaker variabilities. This is similar
to the total variability space learned by the i-vector models.
The fixed size and low dimensionality of the i-vector repre-
sentation gives us the opportunity to apply proven supervised
pattern recognition techniques such as probabilistic linear dis-
criminant analysis (PLDA). Usually prior to PLDA modeling
i-vectors are whitened, length normalized and possibly dimen-
sionality reduced to better conform to the assumptions of the
PLDA model such as Gaussianity and unimodality [11]. Since
this process is the state-of-the-art method to extract speaker and
model specific information within the i-vectors, we will use the
same procedure to model LDA based topic probability feature
vectors.

To use LDA as a feature extractor, we first obtain the word
posterior counts using our acoustic vocabulary. Then LDA
model is used to extract the expected value of topic distribution
vector 6 for each utterance and take its logarithm to better fit
the PLDA Gaussianity assumptions. The log topic distribution
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vectors are our new features. These features are whitened and
projected to a lower subspace using linear discriminant analy-
sis. Two-covariance PLDA models [12] are trained on this sub-
space and used for log-likelihood ratio scoring. When a target
speaker has many utterances we take the average of the fea-
ture vectors before two-covariance scoring as usually done in
i-vector-PLDA systems.

5. Experiments
5.1. Datasets

The proposed LDA front-end and a baseline i-vector-PLDA sys-
tem are tested on NIST SRE12 [13] dataset. NIST provided lists
of speech segments belonging to each of the 1918 SRE12 tar-
get speakers. These training speech segments are from SREO06,
SREO0S8, and SRE10 corpora. The 14U consortium, one of the
participants of NIST SRE12, divided these training segments
into two speaker verification tasks Dev and Eval. Each task
is composed of two lists : Train and Test. The utterances in
Dev-Test and Eval-Test are non-overlapping. The Dev-Train
and Dev-Test utterances are included in Eval-Train. The train-
ing and test utterances in the lists have different Lingustic Data
Consortium labels. For each segment two noisy versions are
generated, one having 6 dB SNR and the other having 15 dB
SNR. We have used 10 HVAC noise files downloaded from
the internet and crowd noise files generated by summing sev-
eral hundreds of utterances from NIST SRE corpora to generate
noisy versions of the dataset. From each segment and its noisy
version, we have also generated truncated versions by randomly
taking portions of length between 20s -160s. More detailed in-
formation about 14U development list can be found in [14].

5.2. i-vector-PLDA Baseline System

We have used MFCC features of 39 dimension containing 19
static, 19 delta and 1 delta-energy coefficients. We have used
an energy based bi-Gaussian classifier for voice activity detec-
tion. Feature warping with a 3s window is applied to MFCC
features after voice activity detection. 2048 mixture gender in-
dependent UBM is trained using segments from NIST SREO4,
SREOQS5 corpora as well as segments from Dev-Train list. Noisy
and truncated segments are not used in UBM training. Same ut-
terances are used for training gender-dependent i-vector models
with i-vector dimension set to 600. Linear Discriminant Analy-
sis is used to further reduce the dimension to 200. The i-vectors
are then length normalized, and used to train gender dependent
Two-Covariance PLDA models. In training linear discriminant
analysis and two-covariance models noisy and truncated ver-
sions of the original utterances are also used. When the tar-
get speaker has multiple training segments, the average of the
training i-vectors are used for training the target speaker model.
Znorm score normalisation is used in all experiments. We have
used the Bosaris toolkit [15] for fusion and calibration.

5.3. LDA front-end

We have used the same UBM and gender-dependent i-vector
models for acoustic vocabulary construction. We have tested
three different acoustic vocabulary sizes; 2048, 10240, and
20480. For each vocabulary size, we have tested three values
for the number of topics K; 200, 400, and 600. In training
LDA models, we have used symmetric Dirichlet priors and set
a = 50/K and n = 0.01 as suggested by [2]. The same seg-
ments used in UBM and i-vector training are used in gender-



dependent LDA model training. The log of topic probability
vectors generated using LDA models are used to train whiten-
ing transforms. During whitening, we have reduced the dimen-
sionality when appropriate. After whitening, we have trained
linear discriminate analysis models. After linear discriminant
analysis projection, the size of the log topic probability vectors
are reduced to 300 for models with number of topics K=400,
and to 400 when K=600. For models with 200 topics, we have
not applied any dimensionality reduction. Finally, two covari-
ance models are trained using the same data as in the i-vector-
PLDA system. When the target speaker has multiple training
segments, averaging is performed.

5.4. Results

The Dev task lists from 14U is used for analyzing the effect
of vocabulary size and number of topics for speaker verifica-
tion performance of the proposed system. We have used equal
error rate (EER), minimum value of decision cost function of
NIST SREOS evaluation (DCF08), and minimum value of deci-
sion cost function of NIST SRE10 evaluation (DCF10) as our
performance metrics. Results for male speakers on clean, and
noisy segments are shown in Table 1 and Table 2, respectively.
Results for female speakers on clean, and noisy segments are
shown in Table 3 and Table 4, respectively. No calibration is
performed for these experiments. The best results are obtained
when vocabulary size and number of topics are set to 10240 and
600, respectively.

We have further tested the LDA system on NIST SRE12
extended test condition. NIST determined 5 subsets of this test
condition as common conditions. In all of the five common con-
ditions, all segments of the target speakers are used for training.
For test segments:

e Common condition 1 (CC1) involves trials with inter-
view speech without added noise,

e Common condition 2 (CC2) involves trials with tele-
phone channel speech without added noise,

e Common condition 3 (CC3) involves trials with inter-
view speech with added noise,

e Common condition 4 (CC4) involves trials with tele-
phone channel speech with added noise.

e Common condition 5 (CCS5) involves trials with tele-
phone channel speech intentionally collected in a noisy
environment.

Note that data in common conditions differ from each other in
factors not mentioned in the definitions of the common condi-
tions. For example, clean test data are shorter on average than
noise added data. So comparing directly the results of two sep-
arate common conditions is not meaningful. Additional infor-
mation about NIST SRE12 Evaluation can be found in [13].
We evaluated the performance of the LDA speaker verifi-
cation system on the first four common conditions, and com-
pared with the baseline i-vector-PLDA system described in sec-
tion 5.2. We have set the vocabulary size and number of top-
ics to their best performing values, namely 10240 and 600.
We have calibrated the systems using linear logistic regression
with the Bosaris toolkit. During calibration we have also used
the logarithms of the amount of speech frames (after VAD) in
the test segment and average amount of speech frames in the
training segments of the target speaker as quality factors. We
have used NIST SRE10 DCF point (Cariss = 1, Cra = 1,
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Figure 3: DET curve for ivector-PLDA, LDA and fused systems
for common condition 2 of NIST SRE12 corpus.

Piarget = 0.001) in calibration. We have used the scores ob-
tained in Dev-task of 14U lists for training linear logistic regres-
sion. We have also fused the scores of the two systems in order
to determine if the LDA system gives additional benefit over the
i-vector-PLDA system. We assumed the probability of known
non-targets equal to 0. We have used equal error rate, minimum
value of the normalized DCF (minDCF), and actual value of
the normalized DCF (actDCF) as our performance metrics. The
results are summarised in Table 5.

The i-vector-PLDA system clearly outperforms the LDA
system in all common conditions. However, performance im-
proves nearly for all common conditions and evaluation metrics
when fused with the LDA system. Note that the individual sys-
tems are also calibrated with the same quality factors using the
Bosaris toolkit, so the improvement comes solely from the fu-
sion step. The DET curves for all the three systems are given
in Figure 3 for common condition 2, and in Figure 4 for com-
mon condition 4. The improvement obtained by fusing the two
systems, although being slight, can be seen in a wide range of
operating points especially in the low miss probability region.

6. Conclusion

We have proposed a new feature extractor for speaker verifica-
tion utilizing latent Dirichlet allocation, one of the most popular
topic modelling methods in the literature. Instead of transcrib-
ing the speech data prior to LDA, we have used a variant of LDA
that works directly on continuous descriptor vectors. We have
proposed a method to construct a two-level hierarchical acoustic
vocabulary to efficiently calculate posterior counts of acoustic
words even for moderate sizes of the vocabulary. We have pre-
sented a speaker verification system taking log-topic probabil-
ity vectors as input and using two-covariance PLDA model for
log-likelihood ratio scoring. Optimal values of the vocabulary
size and number of topics are investigated. The proposed sys-
tem gave encouraging results on NIST SRE corpora, while still
performing worse than a state-of-the-art i-vector-PLDA system.
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Figure 4: DET curve for ivector-PLDA, LDA and fused systems
for common condition 4 of NIST SRE12 corpus.

Fusing the scores of the two systems improved the performance
of the baseline in NIST SRE12 common conditions, suggesting
the log-topic probability vectors having additional information
to the i-vector.

We are planning to experiment more with the model to un-
derstand what the LDA topics are modeling for speech data.
Another direction of research may be working on discriminative
variants of LDA model, such as maximum margin topic models
[16]. Training LDA using speaker labels and trying to find top-
ics best discriminating speakers may improve the performance
of the proposed system.
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Table 1: Results of the system for male clean data condition for various vocabulary sizes and number of topics K .

Vocabulary Size K=200 K=400 K=600
EER | DCFO8 | DCF10 | EER | DCFO8 | DCF10 | EER | DCFO8 | DCF10
2048 1.83 | 0.0998 | 0.4914 | 1.62 | 0.0882 | 0.4209 | 1.38 | 0.0722 | 0.3973
10240 1.48 | 0.0825 | 0.4050 | 1.17 | 0.0652 | 0.3416 | 1.21 | 0.0605 | 0.3323
20480 1.59 | 0.082 0.4234 | 1.28 | 0.0685 | 0.3838 | 1.25 | 0.0706 | 0.3735

Table 2: Results of the system for male noisy data condition for various vocabulary sizes and number of topics K .

Vocabulary Size K=200 K=400 K=600
EER | DCFO8 | DCF10 | EER | DCFO8 | DCF10 | EER | DCFO8 | DCF10
2048 3.57 | 0.1871 | 0.6909 | 3.18 | 0.1587 | 0.6146 | 2.83 | 0.1457 | 0.5816
10240 3.11 | 0.1626 | 0.6109 | 2.63 | 0.1392 | 0.5434 | 2.44 | 0.1313 | 0.5231
20480 3.19 | 0.1660 | 0.6380 | 2.91 | 0.1476 | 0.5828 | 2.77 | 0.1494 | 0.5909

Table 3: Results of the system for female clean data condition for various vocabulary sizes and number of topics K .

Vocabulary Size K=200 K=400 K=600
EER | DCFO8 | DCF10 | EER | DCFO8 | DCF10 | EER | DCF08 | DCF10
2048 34 | 0.1827 | 0.6814 | 2.88 | 0.1535 | 0.6017 | 2.55 | 0.1345 | 0.5676
10240 2.85 | 0.1567 | 0.6536 | 2.49 | 0.1285 | 0.5641 | 2.36 | 0.1217 | 0.5688
20480 3.05 | 0.1642 | 0.6643 | 2.87 | 0.1446 | 0.6411 | 2.75 | 0.1445 | 0.6410

Table 4: Results of the system for female noisy data condition for various vocabulary sizes and number of topics K .

Vocabulary Size K=200 K=400 K=600
EER | DCFO8 | DCF10 | EER | DCFO8 | DCF10 | EER | DCF08 | DCF10
2048 539 | 02943 | 0.8373 | 4.72 | 0.2438 | 0.7781 | 4.36 | 0.2258 | 0.7457
10240 479 | 02617 | 0.8188 | 4.30 | 0.2218 | 0.7430 | 4.08 | 0.2103 | 0.7320
20480 475 | 0.2647 | 0.8296 | 4.64 | 0.2455 | 0.7961 | 4.50 | 0.2391 | 0.8086

Table 5: Results of the system for NIST SRE12 extended task common conditions.

System . CC1 . cC2 . CC3 . CC4
EER | minDCF | actDCF | EER | minDCF | actDCF | EER | minDCF | actDCF | EER | minDCF | actDCF
i-vector-PLDA | 4.44 0.5005 0.5520 | 3.69 0.5509 0.6508 | 3.25 0.3941 0.4229 | 491 0.5984 0.6883
LDA front-end | 8.36 0.7687 0.7839 | 8.82 0.9067 0.907 5.15 0.6435 0.6518 | 8.53 0.916 0.9202
fused 4.16 0.4962 0.5452 | 3.51 0.5563 0.6508 | 3.09 0.3895 0.41 4.73 0.5924 0.6838
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