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Abstract
We tackle the problem of text-dependent speaker verification
using a version of Joint Factor Analysis (JFA) in which speaker-
phrase variability is modeled with a factorial prior and channel
variability with a subspace prior. We implemented this using
Zhao and Dong’s variational Bayes algorithm, an extension of
Vogt’s Gauss-Seidel method that supports UBM adaptation to
the speaker and channel effects in enrollment and test utter-
ances. We report results on the RSR2015 dataset obtained with
two types of likelihood ratio and several strategies for UBM
adaptation. We found that using a large UBM and decomposing
JFA into a feature extractor and a simple back end classifier (in
a way broadly analogous to the i-vector/PLDA cascade) gives
better results than using likelihood ratios of either type to make
verification decisions. This method involves no UBM adapta-
tion other than to the lexical content of utterances and it is based
on Vogt’s algorithm rather than Zhao and Dong’s. It results in
an equal error rate of 0.5% on the RSR2015 evaluation set.

1. Introduction
In text-dependent speaker recognition, the classes to be rec-
ognized are speaker-phrase combinations rather than speakers
as such and it is not generally possible to collect sufficient
training data to model speaker-phrase variability using the sub-
space methods that have proved to be so successful in text-
independent speaker recognition. For instance, several authors
have found that i-vector based methods are not notably more
successful than less sophisticated approaches [1, 2, 3, 4] (and
papers cited there). Channel variability, on the other hand,
ought to be amenable to subspace modeling in text-dependent
speaker recognition just as in text-independent speaker recogni-
tion. This suggests that a JFA model based on a factorial prior
for speaker-phrase variability and a subspace prior for channel
variability may be suitable for text-dependent speaker recogni-
tion. We obtained encouraging results using this type of model
in [5] but our investigation there was superficial as that paper
was primarily concerned with another question, namely using
JFA models to provide fixed-dimensional feature representa-
tions of utterances and speakers which could serve as alterna-
tives to i-vectors. We did not attempt to explore the traditional
role of JFA as a monolithic classifier (as distinct from a feature
extractor) in text-dependent speaker recognition and we left un-
explained an anomalous result, namely a degradation in perfor-
mance that occurs when feature vectors are extracted by adapt-
ing the Universal Background Model (UBM) to the data. (The
result was anomalous because we did not observe this type of
degradation for JFA models based on subspace priors.) Our pur-
pose in this paper is to resolve these issues.

In JFA and i-vector modeling it is usual to collect Baum-
Welch statistics with a fixed universal background model

(UBM). Since JFA was originally conceived as a method to
characterize utterances by GMMs adapted from the UBM, it
seems unnatural not to use utterance-dependent GMMs to col-
lect Baum-Welch statistics instead. But experience has shown
that this practice is warranted as long as there are no gross mis-
matches between the UBM and individual utterances. (An out-
standing exception is the use of vector Taylor series methods to
adapt the UBM to additive noise effects [6].) In the early litera-
ture on subspace methods (eigenvoices and eigenchannels), this
type of adaptation was generally performed [7, 8, 9] and it is
important in subspace GMM modeling for speech recognition
[10], but experiments with fully-fledged JFA models containing
both speaker and channel subspaces suggested that collecting
Baum-Welch statistics with a UBM was the most effective pro-
cedure [11].

Zhao and Dong [12] developed a variational Bayes treat-
ment of JFA which combines UBM adaptation with Vogt’s
Gauss-Seidel method [13] in a principled way but they failed to
achieve an improvement in performance on a text-independent
speaker recognition task (Table V in [12]). This failure may
have been due to the fact that, in their implementation, Zhao
and Dong performed UBM adaptation at run time but not in
training their JFA models (they used the training algorithms in
[11] instead). In this paper we will remedy this defect by devel-
oping a variational Bayes EM training algorithm for JFA which
optimizes the same criterion as the run-time variational Bayes
computation in [12].

We used the RSR2015 dataset as a test bed. For our first
experiments we used a PLDA-like speaker verification likeli-
hood ratio which Zhao and Dong refer to as “batch variational
Bayes”. This can be evaluated with or without UBM adaptation.
If the UBM is adapted, then it is adapted to both the speaker
and channel effects in all enrollment and test utterances and, in
our implementation, this adaptation is performed in training the
JFA model as well as at run time. UBM adaptation turned out
to give mixed results depending on the number of mixture com-
ponents in the UBM (it is effective in the case of small UBMs
but not large ones). On the other hand, we obtained consistent
and substantial improvements from a partial UBM adaptation
by calculating verification likelihood ratios as in Section III-G
of [11]. Adaptation here is partial because the UBM is adapted
to the speaker effects (but not to the channel effects) in the en-
rollment data, and there isno adaptation to the test data. Thus
the question of how best to do UBM adaptation in calculating
likelihood ratios for speaker verification turns out to be quite
subtle.

For most of our experiments we used a UBM with 64 Gaus-
sians. We found that the most effective type of UBM adaptation
is to the lexical content of individual phrases (using relevance
MAP). If speaker verification is performed by calculating like-
lihood ratios then adapting to the speaker effects in the enroll-
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ment data as in [11] is important. Adapting to the channel ef-
fects in the test utterance appears to make little difference one
way or the other. On the other hand, it seems that adapting to
the speaker effects in a single test utterance needs to be avoided
for reasons which can be traced to the weakness of factorial pri-
ors and the relative scarcity of test data compared to enrollment
data. In the case of a UBM with 512 Gaussians, only adaptation
to the lexical content of utterances proved to be helpful. The
weakness of the factorial prior is exacerbated by increasing the
number of mixture components in this way but it turns out that,
in the case of very short utterances such as those encountered
in text-dependent speaker verification, extracting Baum-Welch
statistics using a large, unadapted UBM provides a very good
representation of such utterances. This appears to explain why
UBM adaptation did not prove to be beneficial in this case.

Our main conclusion is that deploying a JFA model as a
feature extractor in conjunction with a simple cosine distance
classifier leads to better results than basing speaker verification
decisions on likelihood ratio calculations. In order to be compa-
rable, features need to be extracted in the same way from enroll-
ment and test utterances and since UBM adaptation to a single
test utterance needs to be avoided, UBM adaptation to enroll-
ment utterances has to be avoided as well. On the other hand,
adapting the UBM to the lexical content of individual phrases is
very effective just as in the likelihood ratio calculations. Thus
our recipe for extracting a feature from a collection of utter-
ances turns out to be very simple: use a phrase-dependent back-
ground model to collect Baum-Welch statistics and use Vogt’s
algorithm rather than Zhao and Dong’s to calculate the feature
vector.

As for the back end, a straightforward cosine distance clas-
sifier withs-norm score normalization works very well. We did
not gain any measurable performance improvement by attempt-
ing to model session effects in the back end using nuisance at-
tribute projection or PLDA. We conclude that, at least on the
RSR2015 test set, the JFA feature extractor is very effective at
suppressing session effects.

2. JFA with UBM adaptation
Recall that the general JFA model assumes that, given a UBM
with mean supervectorm and multiple recordings of a speaker
indexed byr, each recording can be modeled by a GMM whose
mean supervector has the form

m + Ux
r + V y + Dz (1)

where the hidden variablesxr, y andz are assumed to have
standard normal priors. The hidden variablexr varies from one
recording to another and is intended to model channel effects.
In text-independent speaker recognition, the termDz is usually
dropped and speakers are characterized by the low-dimensional
vectory. For text-dependent speaker recognition, we drop the
term V y and we use the variablesz to characterize speaker-
phrase combinations. The prior onz is factorial in the sense
that P (z) =

Q

c
P (zc) wherec ranges over mixture compo-

nents andzc is the part ofz that corresponds to mixture com-
ponentc. In the case of relevance MAP with relevance factor
f , the corresponding submatrixDc of D is defined by the con-
dition thatfD∗

cΛcDc is the identity matrix whereΛc is the
precision matrix of the mixture component [13]. For the expos-
itory portion of this paper we will retain both the subspace term
V y and the factorial termDz but we will not use the subspace
term in our experiments.

If the alignment of acoustic observations with mixture com-
ponents is given, posterior distributions of the hidden variables
can be calculated exactly using the methods in [17], but a much
more efficient iterative approach to calculating posterior expec-
tations was developed by Vogt [13] (the Gauss-Seidel method).
These posterior calculations are usually implemented by col-
lecting Baum-Welch statistics with the UBM (rather than with
utterance dependent GMMs), so that the effect of the hidden
variablesxr, y andz in (1) on frame alignments is ignored.

Zhao and Dong [12] showed how this effect could be han-
dled in a variational Bayes calculation which includes Vogt’s
Gauss-Seidel algorithm as a special case by introducing addi-
tional hidden variables to account for the alignment between
frames and mixture components. This variational Bayes calcu-
lation enables a coherent development of JFA in which proba-
bilities are evaluated by integrating out hidden variables (rather
than plugging in point estimates) and hyperparameters can be
estimated using a variational Bayes EM algorithm that imple-
ments the maximum likelihood II principle.

In this section we will explain Zhao and Dong’s variational
Bayes calculation and, in the next section, how it can be used to
form likelihood ratios for speaker verification. In the appendix,
we explain how to develop a variational Bayes EM training al-
gorithm for JFA models that takes account of the extra hidden
variables. (Zhao and Dong did not address this question. They
trained JFA models using the heuristics in [11] which are plau-
sible only in the case where all Baum-Welch statistics are col-
lected with the UBM.)

2.1. Notation

Firstly, it is convenient to re-write (1) in terms of mean vectors
rather than supervectors:

mc + U cx
r + V cy + Dczc (2)

(c for mixture component) and to set

W c =
`

U c V c Dc

´

.

We denote the concatenation ofxr, y andz byXr and the con-
catenation ofxr, y andzc by Xr

c so that (2) can be written as
mc + W cX

r
c . Thus ifOr

t denotes the observation at timet in
recordingr and the hidden variablesxr, y andz are given, we
can calculate the conditional probabilityP (Or

t |X
r
c) by plug-

ging the mean vectormc +W cX
r
c into the Gaussian kernel to

obtain

ln P (Or
t |X

r
c) =

1

2
ln
|Λc|

(2π)F
−

1

2
ǫ

r∗
tc Λcǫ

r
tc (3)

whereF is the dimension of the acoustic observations,Λc is
the precision matrix for the mixture compnentc in the UBM,
and

ǫ
r
tc = O

r
t −mc −W cX

r
c . (4)

Secondly, for eacht = 1, . . . , T r, we denote the mixture
component which accounts for the acoustic observationOr

t by
cr

t and we setcr = cr
1:T r . HereT r is the duration of therth

recording. We use underlining to indicate aggregation overr =
1, . . . , R so thatc denotes the set{c1, . . . , cR} (and similarly
for X , x andO).
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For each mixture componentc, Baum-Welch statistics are
defined by

N
r
c =

T r

X

t=1

Q(cr
t = c)

F
r
c =

T r

X

t=1

Q(cr
t = c)(Or

t −mc)

HereQ(cr
t = c) is the posterior probability of the event that

the observationOr
t is accounted for by the mixture component

c. We define ‘whitened’ Baum-Welch statistics̃F
r

c by setting
F̃

r

c = L−1
c F r

c whereLc is the lower triangular matrix such
that LcL

∗
c is the Cholesky decomposition ofΛ−1

c . Similarly
we setŨ c = L−1

c U c and likewise forṼ c, D̃c andW̃ c.

2.2. Variational posterior calculations

To calculate the variational posteriors for(X , c) we assume a
factorization

Q(X)Q(c)

which induces a factorization

Q(c) =
Y

r

Q(cr).

It turns out thatQ(X) is Gaussian but intractable so we impose
a factorization

Q(X) = Q(x)Q(y)Q(z)

which induces a factorization

Q(x) =
Y

r

Q(xr).

Consider firstQ(X). For each recordingr,

ln Q(xr) ≡ EXr\xr,cr [ln P (Xr
, c

r
, O

r)]

whereXr\xr indicates the complement ofxr in Xr, that is
{y, z}, and we use≡ to indicate equality up to an additive con-
stant. This expression is quadratic inxr so the variational pos-
terior distribution ofxr is Gaussian with precision matrixP
and expectation〈xr〉 given by

I +
C

X

c=1

N
r
c Ũ

∗
cŨ c

P
−1

C
X

c=1

Ũ
∗
c(F̃

r

c −N
r
c Ṽ c〈y〉 −N

r
c D̃c〈zc〉)

Similarly for the variational posterior ofy, the precision matrix
P and expectation〈y〉 are given by

I +

C
X

c=1

NcṼ
∗
c Ṽ c

P
−1

R
X

r=1

C
X

c=1

Ṽ
∗
c(F̃

r

c −N
r
c Ũ c〈x

r〉 −N
r
c D̃c〈zc〉)

and, for each mixture componentc, the corresponding expres-
sions forzc are

I + NcD̃
∗
cD̃c

P
−1

R
X

r=1

D̃
∗
c(F̃

r

c −N
r
c Ũ c〈x

r〉 −N
r
c Ṽ c〈y〉).

Turning now toQ(c), by the variational update formula,

Q(cr) ≡ EXr [ln P (cr
, O

r|Xr)]

≡
T r

X

t=1

〈ln P (cr
t , O

r
t |X

r)〉

so that

Q(cr
t = c) ≡ 〈ln P (cr

t = c, O
r
t |X

r)〉

≡ ln πc + 〈ln P (Or
t |X

r
c)〉

whereπc is the mixture weight for componentc. Denoting this
quantity byγ̃r

tc, we have

Q(cr
t = c) =

γ̃r
tc

zr
t

(5)

wherezr
t is determined by the condition that probabilities sum

to 1. To evaluatẽγr
tc, we can write it in the form

ln πc +
1

2
ln
|Λc|

(2π)F
−

1

2
〈ǫr∗

tc Λcǫ
r
tc〉 .

To evaluate〈ǫr∗
tc Λcǫ

r
tc〉 we can write it as

〈ǫr∗
tc 〉Λc 〈ǫ

r
tc〉+ tr (Λc Cov (ǫr

tc, ǫ
r
tc))

and write the second term astr
“

W̃
∗
cW̃ c Cov (Xr

c , X
r
c)

”

which simplifies to

tr
“

Ũ
∗
cŨ c Cov (xr

, x
r)

”

+ tr
“

Ṽ
∗
c Ṽ c Cov (y, y)

”

+ tr
“

D̃
∗
cD̃c Cov (zc, zc)

”

.

2.3. Variational Lower Bound

The variational lower boundL which serves as a proxy for
ln P (O) is given by

L = E

»

ln
P (c, X , O)

Q(c)Q(X)

–

where the expectation is taken with respect to the variational
posterior of the hidden variables. It is generally convenient to
write this sort of expression in the form

〈ln P (O|X , c)〉+ negative divergences (6)

but, in this situation, it is most easily evaluated by writing it in
the form

E

»

ln
P (c, O|X)

Q(c)

–

− D (Q(X) || P (X)) . (7)

The divergence term can be evaluated using the formula for the
divergence of two normal distributions. A simple calculation
using (5) shows that the contribution of the first term reduces to

R
X

r=1

T r

X

t=1

ln z
r
t .

Alternatively, the lower bound can be expressed in terms
of Baum-Welch statistics by evaluating the first term in (7) by
writing

E

»

ln
P (cr, Or|Xr)

Q(cr)

–

= 〈ln P (cr
, O

r|Xr)〉+ H(Q(cr))
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and writing the first term here as

X

c

T r

X

t=1

Q(cr
t = c) ln γ̃

t
rc

=
X

c

T r

X

t=1

Q(cr
t = c)

„

ln πc +
1

2
ln
|Λc|

(2π)F
−

1

2
〈ǫr∗

tc Λcǫ
r
tc〉

«

then substituting the expression

tr (ΛcS
r
c)− 2F̃

r∗
c W̃ c〈X

r
c〉+ N

r
c 〈X

r
c〉

∗
W̃

∗
cW̃ c〈X

r
c〉

+ N
r
c tr

“

W̃
∗
cW̃ c Cov (Xr

c , X
r
c)

”

for

T r

X

t=1

Q(cr
t = c) 〈ǫr∗

tc Λcǫ
r
tc〉 .

HereSr
c denotes the second order Baum-Welch statistics. (In

some situations the contributions of the second order statistics
and the entropyH(Q(cr)) can be ignored and need not be cal-
culated.)

3. Three Approaches to Speaker
Verification

3.1. Bayesian model selection

Given a speaker verification trial consisting of a collection
of enrollment utterancesE and a test utteranceT , the most
straightforward way to make a verification decision is to cal-
culate a likelihood ratio of the form

P (E, T )

P (E)P (T )
(8)

using variational lower bounds as proxies for each of the terms
in this expression. Zhao and Dong [12] obtained their best re-
sults using this type of likelihood ratio (Table IV).

In experiments in text-dependent speaker recognition on the
RSR2015 dataset which we will describe in detail below, we
found that doing UBM adaptation (both in JFA training and at
verification) gave mixed results when likelihood ratios are eval-
uated in this way (performance degraded in the case of large
UBMs but improved in the case of small UBMs).

To gain some insight into the reasons for this misbehavior,
it can be noted that (8) can be interpreted as a Bayesian model
selection criterion. The question is whether the union of the en-
rollment dataE and the test dataT can be better accounted for
by positing a two speaker model or a single speaker model. Re-
ferring to the expression for the variational lower bound (6), the
first term measures how well a model fits the data and the sec-
ond term penalizes model complexity. Modeling the data with
two z vectors rather than one increases the value of the first
term but turns out to have a relatively minor effect on the sec-
ond term. Rather than having a single divergence of the form
D (Q(z) || P (z)), two divergences are introduced, one calcu-
lated with the enrollment data and the other calculated with the
test data. Irrespective of whether or not UBM adaptation is per-
formed at run time, this type of divergence (which is primarily
determined by the value of the posterior covariance matrices
Cov (z, z)) tends to be small, particularly if it is evaluated with
a single, short test utterance becausez is of very high dimen-
sion and the priorP (z) is factorial. (Subspace priors would

result in larger divergences.) On the other hand the effect of
UBM adaptation is to greatly increase the value of the first term
in (6). Thus if UBM adaptation is performed the model selec-
tion criterion is apt to break down because the prior onz is too
weak.

Henceforth we will refer to (8) as the model selection like-
lihood ratio.

3.2. JFA as a feature extractor

In [5] we introduced the idea of decomposing a JFA model into
a front end and a back end in a manner which is broadly anal-
ogous to the i-vector/PLDA cascade. Given a collection of (en-
rollment or test) utterances by a given speaker, we characterize
the speaker by a point estimate of thez vector calculated us-
ing Vogt’s Gauss-Seidel algorithm. Even though multiple ut-
terances are typically available for enrollment, a single feature
vector is extracted at enrollment time and similarly at test time.

Our experience in [5] was that performance degraded when
we tried to extractz-vectors with UBM adaptation (by training
JFA models with UBM adaptation and using Zhao and Dong’s
algorithm rather than Vogt’s at run time). If az-vector is ex-
tracted from multiple recordings (as at enrollment time) and
UBM adaptation is performed then it is to be expected that
the JFA model will succeed in finding a good alignment of
the acoustic observations with the mixture components in the
adapted UBMs. On the other hand in processing asingle test
utterance with a factorial prior (rather than a subspace prior),
the UBM mean vectors are allowed to adapt to the dataindepen-
dently of each other, so that the constraints on the way acous-
tic observations align with mixture components in the adapted
UBM are extremely weak. We believe that this asymmetry be-
tween enrollment and test data accounts for our lack of success
with UBM adaptation in [5].

This suggests that in exploring the question of UBM adap-
tation with JFA models based on factorial priors, particular at-
tention needs to be paid to the way test utterances are handled.

3.3. Alternative likelihood ratios

In evaluating the numerator of (8) using the variational posterior
calculation to iteratively improve the variational lower bound,
one way to proceed is to alternate between updating the varia-
tional posteriors of (i)y andz (which are tied across all record-
ings, be they enrollment or test) and (ii)c andx (which are
untied). This is referred to as batch variational Bayes in [12]. It
involves processing the enrollment dataE from scratch in each
verification trial, something that is impractical and intuitively
unappealing. An alternative approach (called sequential varia-
tional Bayes in [12]) is to split the variational posterior calcu-
lation into two stages, one of which is carried out at enrollment
time and the other at test time. That is, in stage one alternate
between (i) and (ii) using only the enrollment data and in stage
two alternate between (i) and (ii) using only the test data. When
stage one has been completed, posteriors for the tied hidden
variablesy andz have been calculated and these posteriors are
further updated in stage two. This two stage calculation gives
similar results to the straightforward method which makes no
distinction between enrollment and test recordings. As such, it
cannot be expected to improve on the anomalous result that we
obtained with UBM adaptation using the likelihood ratio (8).
(The results of the two approaches are similar but not identi-
cal because the order in which the variational updates are per-
formed in the two stage approach breaks the symmetry between
the enrollment and test data.)
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The two stage approach can be thought of as evaluating a
likelihood ratio of the form

P (T |E)

P (T )
(9)

which highlights the test utteranceT and which we will refer
to as a predictive likelihood ratio. Several possibilities can be
explored to evaluate the numerator and denominator here. In a
two stage calculation such as the one we have described, it is
usual to simplify the second stage by setting to 0 the posterior
covariance matrices ofy andz calculated in stage one. This
is equivalent to using a point estimate of a speaker-dependent
GMM in stage two which isnot further adapted to the speaker
effects in the test utterance and it is well motivated if there is ad-
equate enrollment data. Depending on the implementation, this
speaker-dependent GMM may be adapted to the channel effects
in the test utterance (as in eigenchannel modeling where several
alignment iterations are performed and speaker verification de-
cisions are made with conventional GMM scoring [8, 9]) or the
speaker-dependent GMM may merely be used to collect Baum-
Welch statistics (in which case scores for verification decisions
are evaluated by integrating over channel factors as in equation
(19) in [14]).

A strong argument in favour of adapting the UBM to the
speaker effects in the enrollment utterances is that in the case of
text-independent speaker recognition with a JFA model based
on a factorial prior, it turns out to be better to collect Baum-
Welch statistics with speaker-dependent GMMs than with the
UBM (whereas the opposite is true in the case of JFA models
based on subspace priors). See Section III-G in [11] entitled
“Note on collecting Baum-Welch statistics”. For that experi-
ment, we used a JFA model of the formm+Dz+Uxr to cre-
ate speaker-dependent GMMs for target speakers and we used
the channel component of this model, namelyUxr, to evalu-
ate both the numerator and denominator of (9) by centering the
Baum-Welch statistics with the target speaker’s supervector in
one case and with the UBM supervector in the other. This ig-
nores the uncertainty in the point estimate of the target speaker’s
supervector that arises from the fact that the factorial prior is rel-
atively weak (compared with a subspace prior) and the amount
of data available to enroll the target speaker is limited. This
consideration led us to adopt a slightly different approach for
our experiments here.

We used two factor analysis models, one at enrollment time
and the other at verification time, which we trained indepen-
dently. For enrollment, we trained JFA models of the form
m + Dz + Uxr (using the VBEM algorithms summarized
in the appendix) with and without UBM adaptation. To enroll
a target speaker, we created a speaker-dependent GMM by es-
timating the speaker’sz vector from the enrollment data (us-
ing Vogt’s or Zhao and Dong’s algorithm) taking the speaker-
dependent supervector to bem + D〈z〉.

To train the factor analysis model used at verification time,
we first created speaker-dependent GMMs for each of the train-
ing speakers using the enrollment JFA model. We then trained
a model of the formm(s) + Uxr to account for channel ef-
fects at verification time. The notationm(s) here indicates the
mean supervector in the model varies from one target speaker
to another; formally, this model is just an i-vector extractor with
Baum-Welch statistics being centered in different ways for dif-
ferent speakers. Again, we trained this type of model with and
without further adapting target speakers’ GMMs.

If a target speaker’s GMM is not adapted at verification
time, then evaluating the numeratorP (T |E) of (9) using the

variational lower bound described in Section 2.3 implements
exact integration over the channel factors and so is equivalent
to equation (19) in [14]. (Integration is exact here because the
JFA model used at verification time is formally just an i-vector
extractor so posteriors of the hidden variables are evaluated ex-
actly by the variational Bayes algorithm.) On the other hand, if
adaptation is performed at verification time, then acoustic ob-
servation vectors in a test utterance are aligned with mixture
components in the target speaker’s GMM in such a way as to
take account of channel effects. In this case the lower bound
calculation can be viewed as combining eigenchannel modeling
as implemented in [8, 9] with channel factor integration.

Generally speaking the question of UBM adaptation needs
to be investigated because mismatches between the UBM and
the enrollment and test data may be sufficiently serious that
some sort of compensation is required. In the context of text-
dependent speaker recognition, in each verification trial the
same phrase is repeated at enrollment and test time but different
trials may involve different phrases. For example, there are 30
different phrases in Part I of RSR2015 and lexical variability is
the principal source of UBM mismatch in this dataset. Adapting
a UBM to compensate for lexical mismatch is straightforward
(relevance MAP works well) and we included this type of adap-
tation in our experiments by modifying the JFA model used at
enrollment time to have the formm(p) + Dz + Uxr where
the notationm(p) indicates that the mean supervector in the
JFA model varies from one phrasep to another. Similarly, to
evaluate the denominator of (9) we centered the Baum-Welch
statistics with the phrase-dependent supervectorm(p) rather
than the UBM supervector.

Thus we experimented with three distinct types of UBM
adaptation in evaluating predictive likelihood ratios: adapt-
ing the UBM to produce phrase-dependent background mod-
els, adapting phrase-dependent background models to produce
speaker-phrase-dependent GMMs (in such a way as to take
account of the speaker effects in the enrollment data but not
the channel effects) and adapting speaker-phrase models to the
channel effects in test utterances. We introduce the notation
a − b − c to keep track of the number of alignment iterations
performed at each stage. In our experiments we tooka to be 0,
1 or 5 (0 indicates that we used the UBM rather than a phrase
background model); we tookb to be 1 or 5 (1 indicates that a
single alignment iteration was performed in enrolling a speaker)
and similarly forc.

4. Experiments
4.1. Data

We used the RSR2015 data set for our experiments (using the
background set for UBM and JFA training and the Part I evalu-
ation set for testing) [2]. For algorithmic development we used
a restricted test set consisting of all of the female trials obtained
by selecting all of the target trials and 50 000 high scoring non-
target trials. (Low scoring non-target trials are too easy to be
interesting. Working with the restricted test set inflates the error
rates by a factor of two.)

4.2. Model configurations

We used a standard 60 dimensional front end (MFCCs with
short term Gaussianization) and UBMs having 64 and 512 di-
agonal Gaussians. In all of our experiments (except where oth-
erwise indicated), we took the rank ofU to be 50, we used a
relevance factor of 2 and we useds-norm for score normaliza-
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tion.

4.3. Benchmarks

We used the Bayesian model selection likelihood ratio (8) for
benchmarking. (Results obtained with a standard GMM/UBM
approach will be presented later.) We did not use phrase-
dependent background models at this stage. The results are
summarized in Table 1. In lines 1 and 2, speaker verification
likelihood ratios were evaluated using (8). UBM adaptation was
performed for line 2 but not for line 1. UBM adaptation is seen
to be helpful in the case of 64 Gaussians but not in the case
of 512 Gaussians. (Reducing the number of components in the
UBM increases the mismatch between the UBM and the data,
so this can be expected to favor UBM adaptation.) For line 3 we

Table 1: Restricted test set, 512 component UBM (columns 1
and 2) and 64 component UBM (columns 3 and 4).

EER 2008 NDCF EER 2008 NDCF
1 2.2% 0.085 3.6% 0.145
2 2.7% 0.096 3.4% 0.133
3 1.7% 0.065 2.7% 0.110

used a predictive likelihood ratio (9) calculated using two JFA
models, one of which is used to enroll speakers and the other
to evaluate test utterances, as explained in Section 3.3. A sin-
gle alignment iteration was used to create a speaker-dependent
GMM from the UBM at enrollment time and a single align-
ment iteration was performed at test time. (Thus the only type
of UBM adaptation performed here is adaptation to the speaker
effects in the enrollment data anda = 0, b = 1 andc = 1.)
Substantial improvements in performance are observed for both
UBM configurations.

4.4. Predictive likelihood ratios

In line 3 of Table 1, the denominator of the likelihood ratio is
evaluated using the UBM supervector. In effect, we are try-
ing to determine whether the test speaker is closer to the target
speaker or the UBM “speaker”. This sort of calculation is typ-
ically used in text-independent speaker recognition because, in
practice, it works as well as the more principled sequential vari-
ational Bayes calculation described in Section 3.3. But it fails
to take account of the fact that in text-dependent speaker recog-
nition the lexical content of the test utterance (the “phrase”) is
given and this has a greater effect on the acoustics of the test ut-
terance than the identity of the test speaker. Thus we retrained

Table 2:Restricted test set, 64 component UBM adapted to each
phrase

a-b-c EER 2008 NDCF
1 1-1-1 2.1% 0.092
2 1-1-5 2.0% 0.086
3 1-5-1 2.0% 0.080

the JFA model used to enroll target speakers by centering the
Baum-Welch statistics with phrase-dependent supervectors and
we treated the Baum-Welch statistics in the same way in evalu-
ating the denominator of the likelihood ratio. Line 1 of Table 2
shows that adapting the UBM to the lexical content of phrases
leads to a substantial gain in performance (compare with line 3

of Table 1). Further minor gains can be obtained by performing
multiple alignment iterations on test utterances (line 2) and in
enrolling speakers (line 3).

Creating phrase-dependent background models by adapting
the UBM with 5 iterations of relevance MAP rather than one,
turned out to give further major improvements, as shown in Ta-
ble 3 (compare with Table 2). The EER of 1.6% (line 3) is the
lowest that we achieved in any of our experiments with likeli-
hood ratios on the restricted test set.

Table 3:Restricted test set, 64 component UBM, phrase adap-
tation with 5 iterations of relevance MAP

a-b-c EER 2008 NDCF
1 5-1-1 1.7% 0.076
2 5-5-1 1.7% 0.070
3 5-5-5 1.6% 0.066

Another question that we sought to resolve in this paper is
whether it is possible to improve on relevance MAP by estimat-
ing the matricesDc using the maximum likelihood II principle
rather than relevance MAP. (That is, with the same criterion
used to estimateU . See the appendix.) It turns out that minor
improvements can be achieved in this way. Line 1 of Table 4
is copied from line 2 of Table 3 which was obtained with rel-
evance MAP (relevance factor 2); for line 2, the matricesD̃c

were constrained to be diagonal and estimated using maximum
likelihood II and, for line 3, these matrices were taken to be full.
This yielded the best result that we obtained with likelihood ra-
tios on the restricted test set as measured by the 2008 detection
cost function. (And likewise for the 2010 cost function, whose
minimum value was a respectable 0.211.) An aspect of this ex-
periment which took us by surprise is that when the matrices
Dc are not constrained to be diagonal, they turn out to be of
low rank (so that, for each mixture component, speaker varia-
tion is confined to a low dimensional subspace of the acoustic
feature space). This provides intuitive support for the acoustic
factor analysis in [15].

Table 4:Restricted test set, 64 component UBM, relevance MAP
vs maximum likelihood II

a-b-c EER 2008 NDCF
1 5-5-1 1.7% 0.070
2 5-5-1 1.7% 0.069
3 5-5-1 1.7% 0.065

We replicated the5 − 1 − 1 and5 − 5 − 5 experiments
from Table 3 with 512 Gaussians rather than 64 and found that
5 − 1 − 1 works best in this case. Results are presented in
Table 5. Comparing line 1 of this table with line 3 of Ta-
ble 1, we note a modest improvement (attributable to the phrase-
dependent background models). But comparing with lines 1 and
2 of Table 1 shows that multiple alignment iterations at enroll-
ment and test time (the 5-5-5 configuration in Table 5) leads to
degradations in performance in the case of 512 Gaussians. This
is consistent with our initial observation that UBM adaptation
was not helpful in evaluating likelihood ratios of the form (8) in
the case of 512 Gaussians, although it did work in the case of
64 Gaussians.

The results in line 3 and 4 of Table 5 were obtained by us-
ing a JFA model with 512 component phrase-dependent back-
ground models as a feature extractor and a cosine distance back
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end as in [5] which we will explain in the next section. These re-
sults turn out to be better than any of the results that we obtained
on the restricted test set by using likelihood ratios of either form
to make verification decisions (although the performance gap is
not very wide). The notation5 − 1− in lines 3 and 4 indicates
that 5 alignment iterations were used to create phrase-dependent
background models and one alignment iteration was used in ex-
tracting the feature vector at enrollment and test time, as in [5]
(so that we used Vogt’s algorithm rather than Zhao and Dong’s
to obtain point estimates of thez-vector features).

Table 5: Restricted test set, 512 component UBM, phrase-
dependent background model

a-b-c EER 2008 NDCF
1 5-1-1 1.5% 0.062
2 5-5-5 2.0% 0.083
3 5-1- 1.3% 0.056
4 5-1- 1.4% 0.055

4.5. Results on the full evaluation set

We now report results on the full RSR2015 evaluation set using
phrase-dependent background modeling and JFA as a feature
extractor (Zhao and Dong’s algorithm as well as Vogt’s), co-
sine distance scoring, two versions of PLDA and a GMM/UBM
benchmark. In using thez-vectors as features we did not find
that any type of pre-processing was helpful. The results in lines
4 and 3 of Table 5 were obtained with and without 50 dimen-
sional nuisance attribute projection (NAP); they led us to con-
clude that NAP is not needed apparently because JFA succeeds
well in removing session effects from thez-vectors.

As an alternative to cosine distance scoring, we imple-
mented a PLDA classifier with diagonal matrices as in [5]. Be-
cause thez features are supervector-sized, estimating a full
rather than a covariance residual covariance matrix is not fea-
sible but we attempted to compensate for this by incorporating
channel factors (50 in our implementation) as in [16].

In Table 6, all of the results except those in line 3 were ob-
tained by extractingz vectors with Vogt’s algorithm rather than
Zhao and Dong’s. Line 1 refers to cosine distance scoring with-
out score normalization, line 2 (the best result on the female
trials) to cosine distance scoring withs-norm and similarly for
line 3, line 4 refers to a PLDA classifier without channel fac-
tors or score normalization, line 5 to a PLDA classifier with
50 channel factors but with score normalization, line 6 to the
PLDA classifier without channel factors but withs-norm (the
best result on the male trials, but not significantly better than
line 2), and line 7 to a standard GMM/UBM implementation
with t-norm.

As we found with NAP, neither version of PLDA performs
appreciably better than simple cosine distance scoring. Thus
there appears to be no benefit from modeling session effects in
the back end.

5. Conclusion
We have conducted a comprehensive investigation of the ques-
tion of UBM adaptation in JFA-based text-dependent speaker
verification with Bayesian model selection and predictive like-
lihood ratios using the RSR2015 dataset as a testbed. We found
that, with 64 Gaussians and the predictive likelihood ratio, using

Table 6:Full RSR2015 evaluation set, female trials (columns 1
and 2), male trials (columns 3 and 4)

EER 2008 NDCF EER 2008 NDCF

1 0.92% 0.045 0.61% 0.038
2 0.61% 0.027 0.44% 0.028
3 0.93% 0.042 0.79% 0.042
4 1.12% 0.050 0.54% 0.033
5 1.11% 0.050 0.54% 0.033
6 0.87% 0.041 0.37% 0.024
7 1.06% 0.045 0.60% 0.034

phrase-dependent background models leads to major improve-
ments and best results are obtained with multiple iterations of
relevance MAP; further minor improvements can be obtained
from doing more than one alignment iteration at enrollment
time or test time; and small improvements can also be obtained
by using maximum likelihood II rather than relevance MAP to
estimate the matricesDc. Although the Bayesian model selec-
tion likelihood ratio with UBM adaptation has a better theoret-
ical motivation, the predictive likelihood ratio works better in
practice because it avoids adapting to the speaker effects in test
utterances.

This type of adaptation is treacherous in the case of asin-
gle test utterance because the factorial prior onz is so weak:
contrary to a subspace prior, the mean vectors for the UBM
mixture components adapt to the data instatistically indepen-
dent ways so, if multiple alignment iterations are performed, the
constraints on the way the data aligns with the adapted mixture
components are extremely weak.

In the case of a large UBM with 512 Gaussians, even the
restricted types of adaptation used in evaluating predictive like-
lihood ratios are unhelpful. It seems likely that the reason for
this is that the weakness of the factorial prior is exacerbated by
an eightfold increase in the number of mixture components. In
the case of a 2 second utterance, the occupation count for a mix-
ture component is less than 1 on average. Fortunately, it turns
out that Baum-Welch statistics collected without UBM adapta-
tion provide a very good representation of such utterances so
that UBM adaptation (other than to the lexical content of utter-
ances) is not needed.

We obtained our best results by using a JFA model built
with the 512 component UBM as a feature extractor together
with a simple cosine distance based back end. We used phrase-
dependent mean supervectors in the JFA model and extracted
the feature vectors with Vogt’s algorithm rather than Zhao and
Dong’s. We obtained no benefit from modeling session effects
in the back end, leading us to conclude that the JFA feature ex-
tractor does a very good job of suppressing such effects (at least
on the RSR2015 testbed). An appealing aspect of this result is
that labeled training is not required to train the back end classi-
fier.
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Appendix: Training a JFA model with UBM adaptation

Contrary to simpler models such as an i-vector extractor or
Gaussian PLDA, posterior distributions of the hidden variables
in JFA with UBM adaptation cannot be calculated exactly so
we use Zhao and Dong’s variational Bayes algorithm to calcu-
late approximate posteriors. We have already seen how to use
variational lower bounds as a proxy for the model evidence; we
now explain how to use them as a criterion for hyperparameter
training with a variational Bayes EM algorithm in which VB
updates alternate with updates of the hyperparameters.

We assume that the UBM means and precision matrices are
given. We have to estimate the matricesU c, V c andDc, or
equivalently,Ũ c, Ṽ c and D̃c, whereD̃c may be subject to
diagonal constraints.

We assume that we have at our disposal recordings of mul-
tiple training speakers indexed bys. For each speakers, the

recordings are indexed byr = 1, . . . , R(s), the hidden vari-
ables byXr(s) andcr(s) and so forth. The evidence criterion
is

P

s
L(s). Writing this in the form (6), only the first term de-

pends on the hyperparametersW̃ c. Ignoring additive constants,
we can write it as

−
1

2

X

s

R(s)
X

r=1

T r(s)
X

t=1

X

c=1

Q(cr
t (s) = c)〈ǫr∗

tc (s)Λcǫ
r
tc(s)〉

which is the auxiliary function for maximum likelihood estima-
tion.

Setting to zero the derivative of the auxiliary function with
respect toW̃ c gives

W̃ c

X

s

R(s)
X

r=1

N
r
c (s) 〈Xr

c(s)X
r∗
c (s)〉

=
X

s

R(s)
X

r=1

F̃
r

c(s) 〈X
r∗
c (s)〉 . (10)

This is the update formula for̃W c; it is formally identical to
the update formula used in training an i-vector extractor [7].
(Slight modifications are needed if the matricesD̃c are con-
strained to be diagonal rather than full or if they are fixed by
relevance MAP. See for example equation (25) in [17].) In or-
der to ensure that the evidence criterion increases monotonically
from one training iteration to the next, variational posterior cal-
culations performed after updating the model parameters have
to be initialized with the variational posterior distributions used
to evaluate the expressions in (10). (This complication does
not arise in training a standard i-vector extractor where exact
posteriors can be calculated on each training iteration and no
initialization is required.)

The contribution of the negative divergences to the evidence
criterion can be minimized by replacing the standard normal
priors by non-standard normal priors of the form

P
′(xr) = N(xr|0, A)

P
′(y) = N(y|0, B)

P
′(zc) = N(zc|0, Cc) (11)

whereN(·|·) is the Gaussian kernel and

A =
1

R

X

s

R(s)
X

r=1

〈xr(s)xr∗(s)〉

B =
1

S

X

s

〈y(s)y∗(s)〉

Cc =
1

S

X

s

〈zc(s)z
∗
c(s)〉.

HereS is the number of training speakers andR =
P

s
R(s).

The priors can be brought to standard form in the usual way
by modifying the matrix hyperparameters in such a way as to
preserve the value of the evidence criterion. LetT c be the up-
per triangular matrix such thatT ∗

cT c is the Cholesky decom-
position of the block diagonal matrix whose diagonal blocks
areA, B andCc. Then the model with non-standard priors
can be brought to standard form by making the substitutions
W̃ c ← W̃ cT

∗
c and replacing the posterior expectation and co-

variance ofXr
c(s) by

T
−∗
c 〈X

r
c(s)〉

and T
−∗
c Cov (Xr

c(s), X
r
c(s)) T

−1
c . (12)


