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ABSTRACT 

Total variability model (TVM) was recently proposed for the com-
pression of speech utterances to low dimensional vectors (i.e., the 
so-call identity vector or i-vector). Compared to the variable-length 
nature of speech utterances, i-vectors have fixed length and there-
fore could be used with simple classifiers for text-independent 
speaker verification task. This paper proposes the local variability 
model (LVM), the central idea of which is to capture the local vari-
ability associated with individual Gaussians in the acoustic space 
that are absent in the i-vector representation. We analyze the latent 
structure of both the total and local variability models and show 
that tying the latent variable across frames and mixtures leads to 
powerful methods for extracting information from variable se-
quences. Experimental results on NIST SRE’08 and SRE’10 da-
tasets show that the proposed LVM is effective for speaker verifi-
cation. 

 Index Terms—speaker recognition, factor analysis, session varia-
bility 

1. INTRODUCTION 

Over the past few years, many approaches based on the Gaussian 
mixture model (GMM) in a GMM-UBM framework [1] have been 
proposed for text-independent speaker verification task [2]. In-
spired by the idea of joint factor analysis (JFA) [3], the total varia-
bility model [4] confines the speaker and channel variability within 
a low-dimensional subspace, leading to a fixed and reduced dimen-
sion representation for speech utterances, i.e., the so-called i-
vector. Treating an i-vector as a compact representation of a speech 
utterance, channel compensation techniques, for instance, within-
class covariance normalization [5], linear discriminant analysis 
(LDA) [6], and probabilistic LDA (PLDA) [7] can then be applied 
effectively on the low-dimensional i-vectors. 

 An i-vector could be seen as a reduced-dimension representa-
tion of a GMM mean supervector (obtained by concatenating the 
mean vectors in the GMM). Though dimension reduction could be 
performed on the supervector using deterministic techniques, e.g., 
principle component analysis (PCA) [6], the i-vector extraction is 
formulated in probabilistic terms based on a latent variable model. 
One obvious benefit is that, in addition to obtain the i-vector as the 

posterior mean of the latent variable, we could also compute the  
posterior covariance which quantifies the uncertainty of the esti-
mate and fold in the information in subsequent modeling [8]. 
Among others, probabilistic PCA and factor analysis are two 
commonly used latent variable model [6] in speech applications. 
The total variability model, and the JFA alike, is an extension to 
the classical factor analysis with additional tying of latent variable 
across frames and mixtures. We shall further elaborate on this in 
Section 2.               

In this paper, we analyze the tying scheme in the total variabil-
ity model (TVM) and propose a different approach by changing the 
point of tying from the latent variable to the loading matrix across 
mixtures. We refer to the proposed model as the local variability 
model (LVM) the central idea of which is to capture the local vari-
ability factors associate with individual Gaussian in the acoustic 
space. The difficulty of the LVM lies at the estimation of the load-
ing matrix. As the loading matrix is the same (tied) at each Gaussi-
an, the derivation becomes slightly complicated compared to that 
of the TVM. In this regard, we derive the posterior inference and 
sort out the maximum likelihood estimate of the model parameters 
using the expectation-maximization (EM) algorithm. We also 
demonstrate the use of the proposed model for text-independent 
speaker verification task. 

The rest of the paper is organized as follows. Section 2 presents 
a brief overview of the total variability model and the i-vector ex-
traction process. Section 3 proposes the local variability model. In 
Section 4, we show the use of local variability vectors for speaker 
verification with PLDA. Section 5 shows some experiment results. 
Finally, Section 6 concludes the paper. 

2. THE I-VECTOR PARADIGM 

This section gives a brief overview of the state-of-the-art i-vector 
extraction procedure. In particular, we emphasize on the idea of 
latent variable tying across frames and mixtures so as to establish 
the connection to the local variability modeling proposed in this 
paper. 

2.1. I-vector extraction 

The purpose of i-vector extraction is to represent variable-length 
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utterances with fixed-length and low-dimensional vectors for the 
classifiers that follows. The fundamental assumption is that the 
feature vector sequence of an utterance, r , was generated from a 
session-specific GMM. Furthermore, the mean supervector (i.e., 
obtained by stacking the means from all mixtures) of each session, 

rm , is constrained to lie in a low dimensional subspace T with 
origin μ , as follows 

 r r m μ Tw . (1) 

The matrix T, referred to as the total variability matrix, models the 
speaker and session variations learned from a training set. An i-
vector is then taken as the posterior mean of the latent variable wr, 
representing both the speaker and session information of an utter-
ance [4]. Here, r  is the session index, which gives a separate latent 
variable for individual utterance. Notice that the rank of the matrix 
T, and therefore the dimension of the i-vectors, is usually taken to 
be a small fraction of the supervector. The central idea of total 
variability modeling is to find a subspace that best describes the 
speaker and channel variability within the supervector space. In a 
sense, the extraction of i-vector can be regarded as performing 
factor analysis on supervector for the purpose of dimension reduc-
tion. 

2.2. Total variability model 

Figure 1 shows the total variability model in the form of a proba-
bilistic graphical model. Here, C denotes the number of Gaussian 
components, cμ  and cΣ  denote the mean vector and covariance 
matrix of the c-th Gaussian, respectively. We decompose the total 
variability matrix 

TT T T
1 2, , , C   T T T T  to its component 

matrices, one associated with each Gaussian [9]. In Fig. 1, the ob-
servations are the acoustic feature vectors to  represented with 
shaded circle. The rectangular box surrounding the circle, with the 
value ,r cN  at its bottom right corner, indicates that there are ,r cN  
number of observed vectors from the c-th Gaussian for the r-th 
session: 

    | | ,t t c c r cp o c o μ T w Σ  for ,1,2,..., r ct N . (2) 

The outer box indicates that the same operation is repeated for all 
Gaussian components, for 1, 2,...,c C . Each Gaussian component 
accounts for ,r cN  number of observed vectors  ,1, ,

r cNo o , collec-
tively represented as ,r c , the union of which gives rise to the 
observed sequence ,r r cc

  .   
One important feature of the total variability model (and the 

joint factor analysis alike) is tying of the observed distributions 
conditioned on the same latent variable across frames and mix-
tures. For the current case, the tying appears at two places. Firstly, 
the latent variable rw  is tied across observations to , for 

,1,..., r ct N , pertaining to a Gaussian. Secondly, the same latent 
variable rw  is tied across the C Gaussian components. In Fig. 1, 
the tying of variable is reflected by placing rw  outside the two 
rectangular boxes which essentially indicates that the same latent 
variable (un-shaded circle) is tied across mixtures and across 
frames of a given speech segment r . In mathematical notation, 
this is reflected by dropping the mixture index c on the latent vari-
able rw .  

The notion of tying the latent variable across frames is based on 
the assumption that the channel and speaker being constant 
throughout a given speech segment (e.g., spoken by the same per-
son using the same handset). Similar idea was used in joint factor 
analysis [3] and the local variability model proposed in this paper. 
This is different from that of the mixture of factor analyzers [10], 
and the method proposed in [11], where each frame has its own 
latent variable. These various assumptions determine the likelihood 
function used in optimizing the subspace parameter. For the case of 
total variability model (TVM), the likelihood function is given by 

     
,

TVM
1 1 1

| , | 0, .
r cNR C

t c c r c r r
r c t

l o d
  

 
   

 
  μ T w Σ w I w  (3)             

The first thing to note in (3) is that the latent variable 
 ~ 0,rw I  is assumed to follows standard normal prior. The 

same variable rw  is tied across frames and mixtures for a single 
session r  while separate variables are used for the R  speech seg-
ments or sessions available for training. Secondly,   represents 
the set of model parameters  , , ; 1,2, ,c c c c Cμ T Σ  , where the 
mean vectors and covariance matrices are generally taken as those 
of the UBM. Though it is possible to update the mean vectors and 
covariance matrices, they are usually fixed. Essentially, the loading 
matrices cT , for 1, 2, ,c C  , are the remaining parameters to be 
optimized. Concatenating these matrices one after another in a 
column wise manner, we form the so-called total variability matrix. 

In (3), we assume that the alignment of frames to Gaussian 
components is known. In practice, this information is given by the 
zero-order and first-order statistics [3] extracted using the UBM. 
Given a speech utterance r , we treat individual frames to  as if 
they were generated from individual Gaussian distributions.  An i-
vector is then taken as the posterior mean of the latent variable rw
. In particular, the formula for computing an i-vector is: 

   1 T 1
,

1

|
C

r r r r c c r c
c

E  



 
   

 
w L T Σ F , (4) 

where 

 

Figure 1: Probabilistic graphical model illustrating the total 
variability model (TVM). ,r cN  is the number of frames from 
session r that is assigned to the c-th Gaussian component, 
where C is the number of Gaussian components and R is the 
number of utterances. 

 , ,c cμ V Σ

to

,1, , r ct N 

1, ,c C 

1, ,r R 

rw

1, ,c C 
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Figure 2: Probabilistic graphical model illustrating the local 
variability model (LVM). Gaussian components are associated 
with separate latent variables so as to capture local phonetic 
variability factors at each component.   
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,

1

C

r r c c c c
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N


 



   
 

L I T Σ T  (5) 

is the posterior covariance. In (4) and (5), ,r cN  and ,r cF  are the 
occupancy count and centralized first-order statistics [3] for the c-
th Gaussian. Notice that both the posterior mean and covariance 
are estimated by summing up the statistics from all C mixtures due 
to the tying of rw  across components. 

Let F  be the dimension of the acoustic space and J  the di-
mension of the total variability space. The CF J  matrix T  con-
sists of C  sub-matrices of F J . The latent variable is tied across 
mixtures since the speaker and channel effects could be assumed 
homogenous for all mixtures. From the perspective of mathemati-
cal manipulation, tying across mixtures allows the number of col-
umns in the loading matrices cT  to be higher than the number of 
rows (i.e., the dimension F  of the acoustic space), i.e., cT  is a 
landscape matrix. This is so because the dimension of the parame-
ter space becomes C  times larger after the tying, where the total 
variability matrix T  now spans a subspace in the C F  dimen-
sional supervector space. 

3. LOCAL VARIABILITY MODEL 

We propose two modifications to the TVM. Firstly, we remove the 
tying of latent variable across mixtures. Secondly, we replace the 
former by tying together the loading matrix in each mixture. We 
refer to the new model as the local variability model (LVM). The 
motivation, derivation, and parameter learning of the LVM are 
presented below. 

3.1. Local variability model and local variability vectors 

The motivation of the proposed local variability model is to extract 
local variability factors for each component considering the fact 
that individual Gaussian components of a UBM are associated with 
specific phonetic contents. This is achieved by assigning one latent 
variable dedicated to each mixture. Figure 2 shows the proposed 
local variability model (LVM) in the form of graphical model. One 
major difference from the TVM (c.f. Fig. 1) is that the circle repre-
senting the latent variable is now located inside the second rectan-
gular box. By this we assign separate latent variable ,r cw  to the C 
components, where c = 1, 2,…, C. This essentially removes the 
tying across the mixtures leading to the following likelihood func-
tion for the LVM:  

     
,

LVM , , ,
1 1 1

| , | 0,
r cNR C

t c r c c r c r c
r c t

l o d
  

 
   

 
  μ Vw Σ w I w   (6)                     

The latent variable ,r cw  is now marginalized separately for each 
mixture as opposed to the marginalization over the product across 
mixtures in (3).  

Recognizing the fact that each component has its own latent 
variable, the posterior distributions can be estimated separately. In 
this regard, it can be shown that the posterior of the latent variables 
are normally distributed with mean vector 

   1 T 1
, , , ,|r c r c r r c c r cE   w L V Σ F , (7) 

and covariance matrix  

   11 T 1
. ,r c r c cN

  L I V Σ V , (8)       

for 1, 2,...,c C . Similar to that in (3), we assume that the latent 
variables ,r cw  follow a standard normal prior  ,0 I  and the 
frame alignment is known. Different from that in (4), we obtain C 
posterior distributions, as opposed to only one, given an observa-
tion sequence r . Comparing (4) to (7), it can be seen that the 
summation of statistics across mixtures in (4) is due to the tying of 
latent variable in the TVM which does not exist in the LVM. 

The crux of the LVM lies at the tying of loading matrices

c T V . By sharing a common loading matrix V  across mixtures, 
the set of latent variables  , 1

C

r c c
w  share the same set of axes

 1 2, , , Jv v v , i.e., they lie in the same subspace spanned by 
the columns jv  of the matrix V . This is of particular interest as 
the posterior means ,r c  of the latent variables would lie in the 
same subspace. The posterior means represent the localized charac-
teristic of the acoustic observations falling into each Gaussian. As 
they are projected on the same set of axes, we could consider them 
one dimension at a time. Let the length of the posterior mean vec-
tor c  be J , which is determined by the number of columns in 

.V  We define the local variability vectors as 

       T

1 2, , ,j Cj j j        for 1, 2, ,j J  , (9) 

where  c j  denotes the j-th element of the posterior mean vector 

c  of the c-th mixture. Notice that we have dropped the session 
index r for simplicity. For a given speech utterance, the posterior 
estimation gives rise to J  local variability vectors j , each with 
a dimensionality of C. In a sense, the local variability vector j  
represents the acoustic information captured from all the C Gaussi-
an components with a projection to a common axis jv . As indi-
vidual Gaussian components are associated with different phonetic 
events, a local variability vector j  would therefore represent all 
phonetic events at one specific dimension.  
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3.2. Tied-mixture loading matrix estimation  

The difficulty of the LVM lies at the estimation of the loading 
matrix V. The parameter tying makes the derivation, as shown 
below, slightly complicated compared to that of the TVM.  

As for most latent variable models, we resort to the EM algo-
rithm [6] for estimating V. In particular, we iteratively maximize 
the following auxiliary function: 

 T T 1 T T 1
, , , , ,

1 1

1

2

R C

r c c r c r c r c c r c
r c

Q E N 

 

   
 

 w V Σ F w V Σ Vw . (10) 

In the E-step, we estimate the posterior distributions of the latent 
variables as in (7) and (8). These are then used in (10) for estimat-
ing V  in the M-step. To this end, we take the derivative of (10) 
with respect to V , as follows 

  1 T 1 T
, , , , ,

1 1

R C

c r c r c r c c r c r c
r c

Q
E N 

 


 

  Σ F w Σ Vw w
V

.  

Setting the derivative to zero and recognizing that the expectation 
is taken with respect to the posterior distribution of ,r cw , we arrive 
at  

    1 T 1 T
, , , , ,

1 1 1 1

R C R C

c r c r c r c c r c r c
r c r c

E N E 

   

 Σ F w Σ V w w . (11) 

To solve for V, we first notice that the summation across sessions 
and mixtures on both sides of the equation leads to two F J  
matrices of the same size. Individual elements of the matrix on the 
right have to correspond to those on the left for the two matrices to 
be equal.  

Notice that the same matrix V is shared across mixtures in the 
right-hand-side of (11) due to the parameter tying. One straight 
forward way to factor V out from the summation is by assuming 
that the covariance matrices cΣ  are diagonal. With this assump-
tion, the loading matrix V can be solved one row at a time, as fol-
lows:  

    
1

1 T
, , ,

1 1

C R

i i c r c r c r cii
c r

N E




 

   
 
 v a Σ w w , (12) 

where ia  is the i-th row of the matrix 

 1 T
, ,

1 1



 


R C

c r c r c
r c

A Σ F w . (13) 

Since we assume that cΣ  is diagonal,  1

,c i i

Σ  denotes the diago-
nal elements of the precision matrices. Equations (12) and (13) 
constitute the M-step of the parameter optimization procedure for 
the proposed LVM. It is worth mentioning that an exact solution 
exists for V in (11) and the solution as given by (12) and (13) 
could be seen as a special case. We shall use the approximated 
solution for the preliminary investigation as reported in the current 
paper.         

4. PLDA FOR LOCAL VARIABILITY VECTORS 

Similar to i-vector, we need to get rid of the influence brought by 

the channel variability [12]. This is achieved with PLDA by intro-
ducing a speaker subspace to tease apart the contribution of the 
speaker factors from those of the channel factors [13].  

Recall that there are J local variability vectors for each given 
segment of speech. In the current paper, we use a simple strategy 
whereby one PLDA is applied on each of the J streams of the local 
variability vectors. The output scores from this parallel bank of 
PLDAs are linearly combined to give the final score. 

Let j  be the j-th local variability vector extracted from a giv-
en segment of speech. We assume the following marginal densities 
for the local variability vectors: 

    T T| ,j j j j j j j jp    μ F F G G Σ , for 1,2, ,j J  . (14) 

In the above equation, the vector jμ  denotes the global mean of 
the j-th stream of local variability vector, Fj and Gj are the speaker 
and channel loading matrices, while the covariance matrix jΣ  
models the remaining variability not accounted for by the loading 
matrices. We refer to the set  , , ,j j j j j  μ F G Σ  as the PLDA 
parameters which could be determined by fitting the model onto 
the each of the J streams of the local variability vectors extracted 
from a labeled training set. Details of the EM algorithm used in the 
current work could be found in [7, 14]. 

The task of speaker verification is to determine whether an en-
rollment segment and a test segment are from the same speaker or 
not [12]. This question gives rise to the following log-likelihood 
ratio: 

    
   

t e

e t

t e

,
, log

j j

j j

j j

p
l

p p

 
 

 
  for 1,2, ,j J  , (15) 

where each of the likelihood terms in the numerator and denomina-
tor is evaluated using (14). Here, we use the superscripts e  and t  
to denote enrollment and test, respectively. Detailed steps to evalu-
ate the likelihood function can be found in [15]. For each trial, we 
obtain J  number of scores. The performance of the system is part-
ly determined by how to combine the scores for final decision. The 
simplest way is to average all scores as adopted in the current pa-
per.  

5. EXPERIMENTS  

Experiments were carried out on the telephone trials of the short2-
short3 task of NIST SRE’08 and the core-core task of SRE’10. 
The nominal duration of the training and test segments was about 
two and a half minutes. The performance was evaluated based on 
the equal-error-rate (EER) and the detection cost function (DCF), 

 DET tar missC P P     tar fa1 P P    [16]. We consider the mini-
mum DCF at two different operation points, namely, DCF08 and 
DCF10. The minimum DCF is found by sliding the threshold   
for different value of miss and false-alarm probabilities denoted as 

 missP   and  faP   respectively.  
The acoustic features were 57-dimensional vectors of mel fre-

quency cepstral coefficients (MFCC) with first and second deriva-
tives appended. We trained gender-dependent UBMs of 512 
Gaussians with NIST SRE’04 dataset. For the i-vector, the Gaussi-
an components of the UBMs have full covariance matrices. For the 
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local variability model (LVM), we used diagonal covariance matri-
ces for the reason as explained in Section 3.2. The modeling capac-
ity of a UBM reduces when its covariance matrices are constrained 
to be diagonal [17]. In other words, we should have increased the 
number of mixtures for the LVM. Nevertheless, we kept the size of 
the UBM to be the same for both so as not to favor the LVM in the 
performance comparison.     

For i-vector extraction, we trained the total variability matrix T 
with J = 400 columns using the telephone data from NIST SRE’04, 
05 and 06. As such, the i-vector has a dimensionality of 400. The 
same dataset was used to train the PLDA model with an eigenvoice 
matrix of rank 200 and a full covariance matrix. For the LVM, the 
tied-mixture loading matrix V with J = 57 columns (which is the 
same as dimensionality of the acoustic features) was trained using 
the same dataset as used for training the total variability matrix T. 
This configuration resulted in 57 local variability vectors of 512 
dimensions for any given speech segment. The local variability 
vectors are then modeled with a parallel bank of 57 PLDA models 
with Fj of rank 200 and full covariance matrices jΣ . Length nor-
malization is exerted on the local vectors and i-vectors before 
PLDA modeling [18]. 

Table I and Table II compare the performances of i-vector and 
the proposed LVM on NIST SRE’08 and NIST SRE’10, respec-
tively. The i-vector PLDA system is used as the baseline. The re-
sults confirm that the local variability vectors extracted using the 
LVM are effective for speaker characterization even though there 
is still a considerable gap compared to the baseline i-vector PLDA 
system. There are two possible reasons for this. Firstly, it is ex-
pected that the diagonal covariance UBM used for LVM degrades 
the performance. Secondly, the modeling using parallel bank of 
PLDAs is obviously inadequate. As such, it is difficult at the cur-
rent stage to reach any conclusive result as if the local variability 
vectors are sufficient in capturing local phonetic information dedi-
cated to each Gaussian. One point for future work is to investigate 
the use of asymmetric bilinear model [13] for this purpose.  

Also shown in the tables is the performance of another ap-
proach (denoted as LVM+) whereby the local variability vectors 
were concatenated to form a supervector and the speaker and 
channel variability is model in the supervector space with a single 
PLDA. In this regard, the rank of both F and G used was 600.  
Comparing the results between the parallel PLDAs and supervector 
PLDA approaches, it seems that the later does not show significant 
advantage over the former especially on CC5 of SRE’10. This 
might give a hint that the local variability vectors from different 
streams are less correlated. As such, the asymmetric bilinear model 
(or tied PLDA) might be a better option.  

6. CONCLUSION 

We have proposed the local variability model (LVM) pivoted on 
the idea of cross-mixture tying upon a common loading matrix. 
The proposed LVM was formulated as an extended form of the 
classical factor analysis similar to that used in the i-vector para-
digm. The major difference lies at the tying scheme across mix-
tures, which could best be illustrated using the probabilistic graph-
ical model as shown in the paper. We also derived the posterior 

inference and the EM steps for parameter learning.  
In the LVM, the loading matrix is tied across mixtures so that 

the same set of basis are used to project local variability, observed 
in individual Gaussians, on to the same set of axes. In our current 
implementation, the local variability vectors extracted using the 
LVM are modeled separately for each of the principle directions. 
Experimental results confirm that the local variability vectors are 
effective for speaker characterization, though this approach does 
not lead to a better performance than the baseline i-vector. One 
major obstacle remains is the modeling of the local variability 
vectors for speaker verification. This will be a point for future 
research.   
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Table I: Performance comparison of i-vector and local variabil-
ity model (LVM) on DET6 of short2-short3 task in NIST 
SRE’08.  

 Male 
 EER (%) minDCF08 minDCF10 

i-vector  3.6617 0.2034 0.6660 
LVM  5.9424  0.3251 0.9542 
LVM+  6.3045  0.3380 0.8295 
 Female 
 EER (%) minDCF08 minDCF10 
i-vector 5.3716 0.2716 0.9967 
LVM 8.2940 0.4370 0.9884 
LVM+ 7.5206  0.3897 0.9873 

 
Table II: Performance comparison of i-vector and local varia-
bility model (LVM) on CC5 of core-core tests in NIST 
SRE’10. 

 Male 
 EER (%) minDCF08 minDCF10 

i-vector 3.2807     0.1224   0.3711 
LVM 4.4325 0.2113 0.6006 
LVM+ 5.3712 0.2917 0.8463 
 Female 
 EER (%) minDCF08 minDCF10 
i-vector 2.8001 0.1402 0.3465 
LVM 6.7150 0.2982 0.6648 
LVM+ 7.9109 0.3775 0.7972 
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