Usability of gaze-transfer in
collaborative programming: How

and when could it work, and some
implications for research agenda

Roman Bednarik Andrey Shipilov

AuthorCo, Inc. AuthorCo, Inc.

123 Author Ave. 123 Author Ave.
Authortown, PA 54321 USA Authortown, PA 54321 USA
authorl@anotherco.com author5@anotherco.com

Copyright is held by the author/owner(s).
DUET 2012, Feb 5-10, 2012, USA.
ACM XXX=-X=-XXXX-XXXX-X /XX [XX.

Abstract

Dual eye-tracking is becoming popular in CSCW
community as a method to investigate and support
collaboration and interaction. Based on our preliminary
study and subjective feedback of the participants, we
reflect on the usability and possibilities of synchronous
gaze transfer during collaborative programming. We focus
on a discussion of when gaze-cursor is beneficial and what
forms it could take, and on some challenges and lessons
learned when implementing gaze transfer. Our results
inform about the research and design of future
gaze-contingent collaborative interfaces.

Keywords
gaze transfer, programming, collaboration

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

General Terms
Human Factors, Experimentation

Introduction

Eye-tracking has become a standard tool in many domains
as a tool to understand the visual attention of users.
Recently, eye-tracking research has witnessed a leap from

the single-user scenarios to multiple user, collaborative
domains. In this research we are focusing on the role of
gaze in collaborative programming, in particular on
synchronous tasks such as pair programming,
collaborative debugging, and code co-comprehension.

As in other problem-solving tasks, gaze has an important
role in solo programming [1]. When software development
happens in a collaborative way, however, the gaze and
visual attention are also employed to maintain a good
quality of communication between the peers. An effective
collaboration requires efforts towards planning joint action
and interpreting the peers’ action, to name few.

In distributed programming teams, joint attention, by the
means of gaze direction, and as a way of establishing and
maintaining the common ground for joint action, has been
till recently virtually impossible to achieve. Using a tool
we developed to allow multiple-participant gaze-transfer
between networked workstations [3], we conduct studies
that investigate not only where the participants look at
during collaboration, but we evaluate what are the effects
of displaying the gaze of the programmers on the quality
of collaboration [2].

Our results indicate that real-time gaze transfer! has some
measurable effects on the behavior of the peer who
receives it. These include the increased mean fixation
duration and a more balanced distribution of the total
fixation time between a code and a graphical display [2].

In other studies, real-time gaze-cursor, a replay of other’s
gaze, or a modification of the stimuli based on other’s
gaze have been found to improve learning [7, 4, 5].

Un this paper we interchangeably refer to gaze transfer as gaze-
cursor or gaze-mark, due to the particular technique of gaze visual-
ization employed.

Despite the growing evidence suggesting that gaze-display
and related methods do have important effects on the
collaboration processes, there are numerous questions that
remain open. We suggest that the challenges we should
ask next are then,

e When gaze-cursor (gaze-transfer, gaze-display)
works

e How should gaze of a collaborator be displayed

After an overview of the subjective feedback we collected
in a collaborative programming study, in this paper we
discuss these questions in a more detail.

Gaze transfer in programming: subjective pref-

erences of participants

We conducted a synchronous programming lecture study,
in which gaze of an expert programmer was displayed on
the screen of a novice programmer. The task of the
expert was to explain functioning of an algorithm. The
task of the novice was to try to understand the way the
algorithm works and then apply it on an unseen
data-structure. The two programmers worked in a shared
desktop environment, see Figure 1; for more details about
the study see [2]. The environment presented the problem
using two adjacent representations: the source code of an
algorithm and a graphical visualization of input data.

The study has been designed as a within-subject
experiment, in which all participants experienced both
with-gaze and without-gaze conditions. There was no
transfer of the gaze from the novice to the expert, as the
expert was proceeding according to a script. A preliminary
analysis of the effects of the gaze transfer on performance
showed no significant improvements [2].

[EZ C:\Andrey ETI Tests\Ready Documents)

° ollad| & O g ® % O

02 DepihGoschisva (= 03_BroadthSearch iava |

[} Fle Edt View Comments Forms Took Help

Jpublic cless BreadthSearch (

found = false:

while (1 < path.size() && ifound)

= [
Set<String> childNodes = cg.getChildren{pach.get(i++));
Iterator<String> iter = childNodes.iterator()

While{iter.hasNext(})
= <
String e = iter.mext():
4f (Ipath.contains(e))
«
path.add(c) :
if (c.equalsTgnoreCass(actorz))
o t
found = true:
break:
)
4 H
s »
return found;
)

<

private boolean BreadthBuildSearchPach(LinkedlList<String> path, BaconGreph cu, 5t WM& [|1 &= A |§ - (7]

x a >
[(=1~ o &
k- e -e -ifdE EC LT Gal
04_MainGraph ‘ 05_Test_task_graph
— ~
\E
5 Kevin
L Baco

Denise Scott Phoebe
Richards Caan Strole
Charlie Teryn Chris Chris
Sheen Southemn Noth Pratt
e

1522 chars 1676 bytes 78 lines Ln:1 Col:1 Sel:0(0bytes)in0ranges Dosiwindows ANSI
<

e ~ szga% ~ L I5

Figure 1: A screenshot from the experiment. Expert gaze in grey color (shown realtime) is denoted by "E", novice's gaze (not shown

during experiment) is reconstructed from recorded data.

In the gaze transfer condition, the size of the gaze-mark
was approximately 25 pixels in radius, resulting in about
0.65 degrees of visual angle at a viewing distance of 60cm.
The rendering of the gaze-mark was based on fixation
data. This means that every time the expert client has
identified a fixation, it was transferred to the server side
and immediately rendered on the novice's client screen.

Using a primarily close-ended questionnaire form we
collected the following data:

e 1. Did gaze-mark help to understand explanation?
e 2. Was gaze-tracking mark distracting?

e 3. What was most distracting?

4. What do you think about the size of the
gaze-mark?

e 5. What do you think about the filling of the mark?
e 6. What do you think about the shape of the mark?

e 7. What do you think about tracking the
movements of the gaze-mark?

e 3. What would you change in the user interface,
concerning presenting eye-tracking information to
make it more usable for you?

Altogether, twelve novice participants completed the
questionnaire, six were male and six female. While
typically participants responded by one answer only, in

some questions related to the appearance few of the
participants selected more than one option.

Results

Regarding the first item, only two participants considered
the gaze-cursor as not helping in understanding the
explanation of the program code?. Five participants
replied with 'yes’, while three selected 'sometimes’ and
one with more specific answer that the gaze-cursor was
helping when attending the graphical representation.

The second and third questions were related to possible
distractions by the gaze-cursor. Seven (58%) participants
replied with 'No’, three with 'Sometimes’, and remaining
two with "Yes'. Of the five that replied No or Sometimes,
three participants responded that most distracting about
the gaze-cursor was its trembling.

The fourth item, related to the size of the gaze-mark,
prompted seven participants to reply with 'It should be
smaller’. One of the seven replies contained a note 'lt was
good on the graph’. Another four subjects responded with
"It was good'. Finally, two participants suggested that the
size of the gaze-cursor should be adjustable depending on
the actual task.

In the fifth question, we were interested about the
appearance of the gaze-cursor, specifically about the
saliency, opacity and pattern of filling. The distribution of
the responses contained seven responses with 'lt was
good’, two replies with 'Depending on the background
media’. One participant would prefer more transparency,
and one less transparency. Finally, one response suggested
changing the saliency of the gaze-cursor (by the means of

20ne of the participants was not paying attention to the expla-
nations coming from the expert. We are including the outlier here for
completeness.

opacity) depending on the distance to the current point of
regard.

The last item related to the appearance of the gaze-cursor
concerned the shape. Eight (67%) participants had no
complains about the shape. Two participants suggested
the gaze-mark should take a shape of a cursor and thus be
more accurate over the text. Another two participants
wished for an 'As simple as possible ' solution, specifying
that for textual representations whole lines of source code
should be highlighted, and that no animations or other
special effects should be used. Although one option
suggested an animated, more visible form of a bouncing
ball, none of the participants selected that option.

With presenting the two last questions, we aimed at
collecting more ideas for further development of the
visualization of the gaze transfer. In total, nine (75%) of
participants specifically suggested that no trail should be
added to the gaze (eighth question), while on the other
hand three saw some benefits such as in improving
concentration. Three participant suggested smoothing of
the movements of the gaze-mark or required that
trembling should be reduced. Other individual suggestions
included customizable color, bigger font on the
annotation, and using red color for better visibility.

Discussion

When gaze-transfer works

In what kind of situations does gaze transfer work? The
responses we collected give us a good evidence that
gaze-transfer should be task-dependent and should be
adaptive on the progress of the process. Not only our
participants suggested that seeing other person's gaze is
at times disturbing, they also indicated that certain stages
of the collaborative code explanation call for varying

degree of intrusiveness.

Despite striving for technical perfection when processing,
transferring and rendering the gaze data, the properties of
human visual system make it hard to visualize the real
time gaze deployment in a meaningful and non-distracting
way. Trembling of the gaze-cursor and swift saccadic
movements of the sender require extra efforts on the side
of the receiver.

How should gaze of a collaborator be displayed

Some of the participants expressed that the gaze-cursor
could be smaller. We believe this is due to two related
reasons. First, it is understandable that if a bigger opaque
shape stays in the current point of regard, it is difficult to
extract information that is being covered. This is related
to the second aspect, namely, the occlusion is more
serious on small-size stimulus such as text. When a peer
explains some details about a certain piece of source code,
it is distracting for the receiver to see the part in question
covered. The same was not true when talking about the
graphical visualization, perhaps due to the larger
geometrical shapes involved.

While a more subtle form of gaze-cursor could be used, we
believe this would not contribute to easier discovery of the
peer's gaze location. A smaller size or a more translucent
form could simply be harder to spot. We suggest that a
possible solution could be to adaptively adjust the opacity
(and saliency of the enhanced presentation) based on the
actual distance between the gaze of the sender and the
gaze of the receiver.

Apart from the actual form of presentation of the
gaze-mark, we suggest that some other, media-sensitive
forms of cuing the receiver’s visual attention based on the
gaze transfer could be implemented. For instance, in the

integrated development environments, a certain block of
the source code of the program could have only been
highlighted, depending on the position of the gaze cursor
and task being carried out. Similarly, graphical
representations could be enhanced by the knowledge
about the peer’s point of regard, instead of the currently
used circular point overlaid over them.

Future research

One of the primary challenges of the research into effects
of gaze-transfer is to delineate when precisely gaze-display
works. To help answering this problem, we suggest future
studies can make use of explicit feedback from the
receivers. As an extension, a concept of 'gaze on demand’
should be investigated. Similarly as in the studies of
radiology and gaze replay for feedforward training [4], the
effects of various levels of fidelity of the displayed gaze on
performance should be investigated.

We envision future peer-gaze-contingent systems. Such
kind of intelligent interfaces would be built on a detailed
knowledge of the task at hand, type of media, current
point of regard, and collaborator skills; the list of factors
and inputs, on which a model would be built and
maintained, is longer.

Other methodological considerations

In the following, we discuss the challenges we met when
connecting two or more eye-trackers and used them for
gaze-cursor display. While we are aware our experience is
hard to generalize, we believe that some problems may be
more common and thus the discussion can improve the
state-of-art of the dual eye-tracking methodology.

Synchronization of data streams, processing lag, and preci-
sion

If in single-user situations the eye-tracking researcher’s
task was to align data from an eye-tracker with audio,
video and other protocols, the situation becomes more
complex in dual eye-tracking and in distant, networked
collaborations. The lag of the network, transport of data,
processing times including fixation identification on one
hand, and the swiftness of the gaze on the other hand, all
contribute to sometimes experienced instability and flicker
of the gaze-cursor.

To decrease the effects we implemented a mechanism that
limits the number of messages sent from the client to the
server application. As a result, the server software collects
a buffer of previously recorded gaze positions and outputs
only a representation of it, such as a weighted average of
previously seen fixations. This feature will also be useful
when connecting low-cost eye-trackers, whose precision or
sample rate are currently lower than those of commercial
devices.

Connecting different eye trackers

Another common problem concerns connecting devices
from different vendors, or connecting low-cost self-made
eye-trackers. Our approach provides a platform
independent solution, by employing a middleware layer for
independent gaze-date collection and processing, the ETU
driver [6]. The system supports numerous devices and
models, see [6] for an up-to-date list.

Conclusions

We presented an evaluation of gaze-transfer in the domain
of collaborative programming. Our representation of the
gaze-cursor was a fixation-associated point overlapped
over the user interface. Taking a usability perspective, we

collected feedback from the participants using a
questionnaire.

The analysis of the responses shows that gaze-cursor
should be media dependent and that instead of using a
pointer-style representation, some form of highlighting
may be preferred. In addition, our participants disliked the
trembling and flicker of the gaze-cursor, especially when
the sender performed a series of larger saccade. Such
event was then hard to follow and our subjects reported
the feeling of being lost.

To achieve the proposed gaze-contingency, task, expertise
and media understanding should be in the center of the
future research.

References

[1] R. Bednarik. Expertise-dependent visual attention
strategies develop over time during debugging with
multiple code representations. International Journal of
Human-Computer Studies, 70(2):143 — 155, 2012.

[2] R. Bednarik and A. Shipilov. Gaze cursor during
distant collaborative programming: A preliminary
analysis. In Proceedings of the DUET 2011: Dual Eye
Tracking in CSCW, 2011, 2011.

[3] R. Bednarik, A. Shipilov, and S. Pietinen. Bidirectional
gaze in remote computer mediated collaboration:
setup and initial results from pair-programming. In
Proceedings of the ACM 2011 conference on
Computer supported cooperative work, CSCW '11,
pages 597-600, New York, NY, USA, 2011. ACM.

[4] D. Litchfield, L. Ball, T. Donovan, D. Manning, and
T. Crawford. Viewing another person's eye
movements improves identification of pulmonary
nodules in chest x-ray inspection. Journal of
Experimental Psychology: Applied, 16(3):251, 2010.

[5] S. Sadasivan, J. Greenstein, A. Gramopadhye, and
A. Duchowski. Use of eye movements as feedforward
training for a synthetic aircraft inspection task. In
Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 141-149. ACM,
2005.

[6] O. Spakov. Eye-Tracking Universal Driver
(ETUDriver), COM interface description, Version
1.25. University of Tampere, 2006.

[7] R. Stein and S. Brennan. Another person's eye gaze

as a cue in solving programming problems. In ICMI,
pages 9-15, 2004.

	Introduction
	Gaze transfer in programming: subjective preferences of participants
	Results

	Discussion
	When gaze-transfer works
	How should gaze of a collaborator be displayed
	Future research

	Other methodological considerations
	Synchronization of data streams, processing lag, and precision
	Connecting different eye trackers

	Conclusions
	References

