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Abstract. Every purposive interactive action begins with an intention
to interact. In the domain of intelligent adaptive systems, behavioral
signals linked to the actions are of great importance, and even though
humans are good in such predictions, interactive systems are still falling
behind. We explored mouse interaction and related eye-movement data
from interactive problem solving situations and isolated sequences with
high probability of interactive action. To establish whether one can pre-
dict the interactive action from gaze, we 1) analyzed gaze data using slid-
ing fixation sequences of increasing length and 2) considered sequences
several fixations prior to the action, either containing the last fixation
before action (i.e. the quiet eye fixation) or not. Each fixation sequence
was characterized by 54 gaze features and evaluated by an SVM-RBF
classifier. The results of the systematic evaluation revealed importance
of the quiet eye fixation and statistical differences of quiet eye fixation
compared to other fixations prior to the action.
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1 Introduction

Understanding users, their interests and actions computationally is key for tap-
ping into user’s needs and provision of seamless interactions where the interactive
systems knows user’s intentions. A good interface design gives an impression of
being able of anticipating future interactions because designers succeeded in un-
derstanding of the model in head and the user’s needs. If they succeeded, the
interface is perceived as natural, user friendly, responsive, immersive and intu-
itive.

Everyday experience unfortunately indicates that such user interfaces are
still scarce. Current interactive systems typically do not contain mechanisms for
prediction of the user’s actions, and consequently restrict them from implement-
ing their intentions effectively. It is however not only the designers who have to
anticipate the user’s actions; the interface itself needs to play an active role and
just in time, or even ahead of time, adapt to the changing user needs proactively.
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There are numerous benefits if an interface is able to predict that the user
wants to interact with it, but one of the primary motivations is to mitigate
consequences of interaction errors. For example, when a system assumes the
cursor to be located at the respective field for user input – such as when starting
to type a search query– a truly proactive interface needs to be able to detect
user’s intention to input. Detection can then trigger automatic assistance to
adjust the cursor location to avoid an unintended error. The eventual errors
could be avoided if the intention to type was predicted early enough.

This work considers modeling and automatic detection of actions in human
computer interaction. All interactive actions begin with an intention to interact.
Specifically, the formation of the intention to explicitly interact is a stage pre-
liminary to interactive activity [21] and part of larger planning activities. For
instance, to press a button a user has to first internally formulate an intention
to interact, then execute the hand movement toward the button, and finally, flex
the finger to issue the button press. Finger flexes, however, are not the most reli-
able indicators of intention, since they embody the post-intention activity that is
merely mechanically executed (a button was pressed after an intention to press it
occurred). The novelty of this work is to model computationally the stages pre-
liminary to actions. In this work we consider an intention as an entity for action
recognition. To access the plan formation activities, we employ eye-movement
analysis as a proxy to cognitive processes related to action formation.

Eye movements have for long been established as a window to human cog-
nition, including planning and motor action [16, 23, 12]. As indicators of volun-
tary and involuntary attention, eye movements can reveal intention origins and
uncover the mechanisms of action planning, execution and evaluation. In this
work we examine mouse interaction, we focus on action detection from user’s
eye-movements and lay down pathways towards interaction design enhanced by
user’s actions.

1.1 Gaze in proactive user interaction

The problem of plan recognition using a computational agent have for long been
a central issue in artificial intelligence research [18]. In this work we deal with
intention on the level of motor-interactive action. While there are higher- and
more sophisticated levels of intentions, such as social intentions (A wants to leave
a good impression on B), here we explore intentions at the lower level of action
implementation [13]. Our overall goal is to develop a system that would be able
to reliably and effectively perform online intention detection.

We employ eye-gaze as a source of intention information since gaze reliably
indicates the person’s focus of visual attention and can be unobtrusively tracked.
Gaze is also proactive as it reflects the anticipated actions when gathering critical
information before performing actions [12], and therefore modeling of proactive
gaze can potentially lead to prediction of the resulting actions. Understanding
this level of interactive action planning is key for implementation of proactive
intelligent systems, in particular, for avoidance of interaction slips [21], Midas
Touch effect [15], action slips [13] and human errors in interface design [22].
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1.2 Eye tracking in interaction modeling

Eye-tracking data can be used to discover user’s cognitive states [6, 10, 24], work-
load [1, 2], expertise [19, 11, 5] or to predict the context of interaction [14, 9] and
aspects of learning with intelligent tutoring systems [17, 7]. Eye-tracking is also
expected to become a ubiquitous interaction technique [15, 8, 27]. If eye-tracking
is indeed going to be a pervasive source of user data, the implicit behavioral
information can be used for modeling of user states.

Because of the voluminous eye-tracking stream, current research employed
customized machine learning techniques as a feasible modeling approach and
achieved acceptable levels of predictions. Existing research reached acceptable
predictions in human-computer interaction, such as mind-wandering [6] and cog-
nitive abilities [25].

Starting from the pioneering work that adopted a standard classification
method for prediction of problem solving states [5], recent research investigated
the nuances of eye-tracking pattern-recognition systems in terms of data pre-
processing methods [3] or classifier training approaches [28].

In prior work, we and others explored a machine learning pipeline for eye-
tracking data that performs training of a classifier to detect various states and in-
dividual characteristics of a user. In [5] we presented a machine learning pipeline
for intention detection from gaze. Later, we improved the efficiency of the method
[28] and evaluated various options for data processing, such as effect of the data
before and after an intention occurs, and simplified classifier training.

Although the eye-tracking pattern-recognition systems presented so far achieve
classification accuracies far above the chance levels, there are several technical,
methodological, and practical questions that motivate the improvements of the
prediction pipeline.

In this work we deal with one of the essential questions, namely, how much
information an automated modeling system needs to make a reliable decision?

2 Methods

We explore interactive actions during problem solving and recording framework
of 8Puzzle[4]. In the 8Puzzle game (Figure 1), users re-arrange the moving tiles
into final configuration using a traditional computer mouse. The interaction in
detail consisted of moving the mouse cursor onto the tile to be moved, pressing
a button, upon which the tile moved to the empty position. The final mouse
click represents the interactive action and was recorded with the timestamp in
the gaze signal data and represent the ground truth.

2.1 Experimental task and procedure

The task was to arrange the originally shuffled eight tiles into a required tar-
get configuration. There were altogether one warm-up trial (data was excluded
from the analysis) and three sessions from which data has been collected. On
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Fig. 1: The interface of 8Puzzle. The shuffled tiles with numbers illustrate a current
configuration of the game and the lower left corner the target configuration. Blue
circles represent the participant’s fixations in sequence; the visualization of the gaze
was hidden to the participants during the experiment.

Fig. 2: Overview of the experimental design

average a session took about five minutes, and participants were instructed to
solve the puzzle till the end. Each participant interacted with the interface indi-
vidually and participants were motivated to think aloud. Figure 2 summarizes
the experimental design, number of participants and the size of the collected
dataset.

2.2 Participants and apparatus

The mouse-based experiment consisted of 11 participants (5 male and 6 female)
with normal or corrected-to-normal vision, in the 24-47 age range (mean age =
30.36, sd=7.90).

The experiments were conducted in a quiet usability laboratory. Participants’
eye movements were recorded binocularly using a Tobii ET1750 eye-tracker, sam-
pling at 50Hz. The default settings of event identification were set for fixation de-
tection (ClearView, fixation radius 30px, minimal fixation duration 100ms). The
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Fig. 3: Scheme of the sequence lengths. The sequence ending right before the mouse
click has been annotated as action, the rest of sequences before and after the mouse
click as non-action.

mouse button press was automatically logged into the stream of eye-tracking data
and sets the boundaries for action prediction. The following analysis and classi-
fication were performed using custom Python scripts, RapidMiner and SPSS.

2.3 Analysis of data

To understand how much data is needed to reliably predict the upcoming ac-
tion, we employ gaze fixations as a unit of analysis. Fixations are indices of
cognitive processing, and extracted short and long sequences of gaze fixations
captured before the mouse click should correspond to various stages of cognitive
activities. Here, we systematically shifted the fixation sampling window through
the data and created following datasets, illustrated in Figure 3. All data was
sequenced and annotated as either action (action happened after the last fixa-
tion in the actual sequence) or non-action (other sequences where no interaction
occurred). The sequences were extracted with one-fixation overlap to emulate
fixation processing as implemented in a hypothetical real-time system.

In a real-time scenario when the intelligent system predicts the upcoming
action, we would like to answer the question when it is possible to predict the
action before it happens. For this purposes, we analyzed sequences of one fixation
and two fixations prior to the action, as demonstrated in Figure 4, and evaluated
how predictive power changes further from the mouse click. The motivation here
is to predict the upcoming action as soon as possible so that the adaptive system
can proactively respond.
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Fig. 4: Analysed datasets: the dataset with the quiet eye fixation (QE), 1-fixation and
2-fixations ahead of the action. The quiet eye fixation (double-circle) is the last fixation
before the action. The empty circles indicate 1 and 2 excluded fixations.

2.4 Feature sets

Each sequence of gaze fixations was encoded into a feature vector represented
by gaze events: fixation duration, distance between fixations, saccade duration,
saccade orientation, saccade velocity and saccade acceleration. Each gaze event
was described by statistical parameters (mean, median, variance, standard de-
viation, first, last) and ratio-based parameters (ratio of first vs. last fixation).
All together each sequence was represented by the 54 gaze features. Datasets of
2-fixation based sequences were represented by 11 gaze features (fixation dura-
tion: mean, standard deviation, variance, sum, first, last, ratio of first vs. last,
fixation distance, saccade duration, saccade direction and saccade velocity) as
there were lacking enough gaze events for other statistical parameters.

We balanced datasets of action and non-action feature vectors. All available
action-related sequences were included and non-action feature vectors were ran-
domly sub-sampled. Since the amount of extracted actions slightly differed across
datasets (within 10-50 samples), all datasets were evened out to 2500 action and
2500 non-action vectors. The balanced setting allowed to examine optimal setup
for classifier training and for cross-study comparison. In real interaction, the
proportion of user actions is more imbalanced, the original dataset contained
over 2500 actions (12.5%) compared to 17500 non-actions. The search for the
optimal class weights for the imbalanced datasets is out of scope of this work.

2.5 Classification framework

The classification in this study builds on the baseline prediction framework pro-
posed by [5]. A nested parameter grid search employs Support Vector Machine
(SVM) as a core classifier with an RBF kernel. Parameter search is the cen-
tral process in model learning. In the two nested cross-validations (3 x 3-fold),
the learning process estimated the most fitting hyperparameters for SVM-RBF
(C, Gamma). The remaining settings, such as parameter grid search and SVM
classifier, adhered to the classification standards employed in current machine
learning studies. Using output SVM.C and SVM.Gamma, the model was built
on training data (2/3 of the balanced dataset) and tested on the unseen data
(1/3 of the balanced dataset).
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3 Classification Results

To understand dependencies between context length (number of fixations in the
sequence), context timing (omitting fixations prior to action) and gaze signal, we
evaluated 6 sequence lengths (2 up to 7 fixations at once), and compared datasets
with quiet eye (QE dataset) and two datasets prior to action; all together 18
datasets were classified using the classification framework introduced above. Here
we report on classifier accuracy and Area Under the Curve (AUC), as the primary
performance metrics, and training and testing AUCs for all datasets, as measures
of classifier generalizability.

3.1 Context length and timing

When comparing length of the context, the datasets from longer fixation se-
quences performed better than the shorter ones. Figure 5 summarize classi-
fier training performance for all timing variants and all sequence lengths. The
best performance was reached with sequences of length 5 (accuracy=67.8%,
AUC=0.735) and length 7 (accuracy=67.57%, AUC=0.745) in the QE dataset;
the dataset 1-fixation-ahead performed best on sequence lengths 6 (accuracy=59.9%,
AUC= 0.647) and the dataset 2-fixations-ahead of the action scored the best ac-
curacy with length = 7 (accuracy = 60.6, AUC = 0.653) .

When comparing the effect of sequence length, the original datasets per-
formed similar in all lengths with just slight deviations in accuracy and AUC;
the difference between the best and worst performance was 2.6% in the accuracy
measure and ∆ AUC = 0.026. Both datasets prior to action revealed higher dif-
ferences between the best and the worst performance than the QE dataset; the
difference in the dataset 1-fixation-ahead of the action reached an accuracy of
6.43% (∆ AUC = 0.05) and sequences 2-fixations-ahead differed in the best and
the worse accuracy of 9.2% (∆ AUC = 0.075).

The primary difference between QE and prior-to-action datasets was in miss-
ing quiet eye fixation [26], therefore we statistically compared durations of the
quiet-eye fixation and two previous fixations.

Informally, we observed a moderate decrease in fixation duration towards the
action. A one-way ANOVA showed a significant difference between the duration
of three fixations: the QE-fixation (M = 243.96, SD=133.69), the previous fixa-
tion (M = 253.83, SD = 134.90) and the second last fixation (M = 294.10, SD =
158.92), F(2, 3213) = 36.99, p < .001). The mean duration of QE fixation was
significantly shorter than second last fixation (Shapiro-Wilk test p< 0.001).

3.2 Generalizability of classifier

The classifier generalizability was evaluated using unseen data (1/3 of the whole
dataset) in all datasets. Figure 6 captures the AUC rates for training and testing
classifications using the QE and prior-to-action datasets. The classifier trained on
the QE dataset proved stable performance in line with the training; the testing
results outperformed the training performance (mean difference between testing
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Fig. 5: Performance on datasets with different sequence lengths (number of fixations
analyzed in the sequence). Accuracy (top) and Area Under the Curve (bottom).

and training AUC= 0.004, SD = 0.016 ), suggesting good classifier generaliz-
ability on the unseen datasets.

Differences between training and testing AUC for the prior-to-action datasets
were also minimal (1-fixation prior to action: mean difference in AUC = 0.008,
SD = 0.01) and (2-fixations prior to action: mean difference in AUC = -0.0018,
SD = 0.01). The negative value of the difference indicates that training classifier
AUC was on average better than the testing one.
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Fig. 6: Comparison of training and testing AUCs for all analyzed datasets.

4 Discussion

Detection of user actions remains a persistent challenge in intelligent system de-
sign. To tackle the action detection from gaze, we systematically modified con-
text length (number of fixations) and timing (excluding quiet eye fixations and
two fixations prior to the action), and classified the sequences with a standard
SVM framework. We compared cross-validation and testing results to demon-
strate generalizability of the approach. The main novelty is the analysis of the
individual fixations and their contribution to the action detection performance.

4.1 Context length and timing

When comparing length of the context, the datasets from the longer fixation
sequences performed better than the shorter ones. The best scores in terms of
accuracy and AUC were received with 5 to 7 fixations in the sequence. How-
ever, the number of fixations did not affect the action detection when the quiet
eye fixation was included. The systematic evaluation of the fixation sequences
revealed minor improvements, the increasing performance was achieved gener-
ally with longer sequences. Omitting the quiet eye fixation from the analysis, on
the other hand, decreased the classifier performance and highlighted the higher
recognition rates in longer sequences.

Quiet eye fixation is the important part in movement programming of tar-
geting tasks [29] and in our experiment, we observed how properties of quiet eye
fixations contributed to action recognition. When we compared fixation dura-
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tions of quiet eye fixations and previous two fixations, the quiet eye fixation was
significantly shorter.

4.2 Applications of action detection and further considerations

In this work we investigated the links between interaction actions and user’s
gaze, and how one can use such knowledge in the interaction design. The core of
the work lies in computational evaluation of the connections between properties
of the proactive gaze, the phases of actions and its manifestation. We envisage
that such computational model, mediated by machine learning methods, will
automatically detect the interaction actions from the stream of eye movements
and inform the interactive system about user’s goals.

Our work can also extend the systems of classical activity recognition. For
example, one explanation for the results obtained in this paper is that users were
often multitasking. Thus, while performing the action -which is the ground-truth
for our work- another planning activities may have taken the place. Therefore,
the patterns of eye movements were not entirely constant and reflected at times
other activities than action and planing. Here, the recent work on detection of
interleaved activities [20] can be utilized.

5 Conclusion and future work

Reliable detection of user actions is a fundamental challenge in building intel-
ligent interfaces that interact with the user in a human-like way. Based on the
results of our study, it is safe to argue that eye movements reveal interactive
actions and that eye-movement patterns around the interactive actions differ
from other types of activities. We presented that processing eye movements as
signals is a feasible way for detection of interaction actions. We adopted a pat-
tern recognition system and applied it on the dataset from interactive problem
solving. In order to evaluate its effects on the classification performance, we var-
ied the contextual information and timing available for the decision, in terms of
fixation counts and the analysis ahead of the action.

Our findings pointed out that the context length does not affect the action
detection as much when the quiet eye fixation is part of the analyzed sequence.
Systematic evaluation of the fixation sequences revealed minor improvements in
the classification towards longer sequences. Omitting the quiet eye fixation from
the analysis, on the other hand, decreased the classification performance and
highlighted higher recognition rates with longer sequences.

Recent research in this domain employed classifiers trained on general popu-
lation as descriptors and models of individual user behavior. Studies that would
focus on personalized classification and performance differences when each par-
ticipant presents own training and testing environment are however rare. In
future work we will compare the performance of the existing system trained for
the individual to the one trained for global behavioral data. It is essential that



Action detection from gaze 11

future work will couple both personal and global models, and will assess the
contribution of each.

Independently on the type of the adaptation style, the complex domains
demand collections of reliable datasets with genuine samples of the ground-truth
actions. While in this work the ground-truth was objective, eliciting higher-level
actions, for instance an intention to influence a person, will require a careful
methodological work.
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