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Abstract: This Lecture Notes gives supporting material for the graduate level course Design and Analysis of Algorithms. The document introduces to local search, tabu search, genetic algorithms and swarm intelligence. Examples are given for three sample problems: Knapsack problem, traveling salesman problem (TSP) and clustering.

1. Introduction
Many combinatoric optimization problems are known to be NP-complete and therefore no polynomial time algorithm are known to solve them exactly. An alternative approach for exact algorithms is to use heuristic algorithms for finding solution that is not optimal but “good enough”. Unlike in approximate algorithms, heuristic methods do not give any upper limits of how far a given solutions is to the optimal solution. On the other hand, the methods try to “squeeze” the best possible results without and solid proof of how close to optimum they can get.

The goal of combinatoric optimization problems is to find a given valid combination of the problem instance so that given optimization function f is either minimized (minimization problem) or maximized (maximization problem). We study next different approaches applicable for combinatorial optimization problems. These can roughly be classified to the following three groups:

· Local search

· Stochastic variations of local search

· Genetic algorithms

A common property of these optimization methods is that they start with any given initial solution (or a set of solutions), which is iteratively improved by making small modifications at each step of the algorithm.

2. Local search
The structure of a local search algorithm is shown in Fig. 2.1. It starts with an initial solution, which is iteratively improved using neighborhood search and selection. In each iteration a set of candidate solutions is generated by making small modifications to the existing solution. The best candidate is then chosen as the new solution. The use of several candidates directs the search towards the highest improvement in the optimization function value. The search is iterated a fixed number of iterations, or until a stopping criterion is met.

In a local search algorithm, the following design problems must be considered:

· Representation of a solution

· Neighborhood function

· Search strategy

The representation of a solution is an important choice in the algorithm. It determines the data structures which are to be modified. The neighborhood function defines the way the new solutions are generated. An application of the neighborhood function is referred as a move in the neighborhood search. The neighborhood size can be very large and only a small subset of all possible neighbors are generated. The search strategy determines the way the next solution is chosen among the candidates. The most obvious approach is to select the solution minimizing the objective function.

Hill-climbing is a special case of local search where the new solutions are generated so that they are always better than or equal to the previous solution. In other words, the algorithm makes only “uphill moves”. Problem-specific knowledge is usually applied to design the neighborhood function. It is also possible that there is no “neighborhood” but the move is a deterministic modification of the current solution that is known to improve the solution. Hill-climbing always finds the nearest local maximum (or minimum) and cannot improve anymore after that.

	LocalSearch:
Generate initial solution.

REPEAT

Generate a set of new solutions.

Evaluate the new solutions.

Select the best solution.

UNTIL stopping criterion met.

	Figure 2.1. Structure of the local search.


2.1. Components of the local search

Representation of solution: A solution could be coded and processed as a bit string without any semantic interpretation of the problem in question. A new solution would then be generated by turning a number of randomly chosen bits in the solution. However, this is not a very efficient way to improve the solution and it is possible that certain bit strings do not represent a valid solution. It is therefore sensible to use a problem specific representation and operate directly on the data structures in the problem domain.

Neighborhood function: The neighborhood function generates new candidate solutions by making modifications to the current solution. The amount of modifications must be small enough not to destroy the original solution completely, but also large enough so that the search may pass local minima. Some level of randomness can be included in the neighborhood function but it is unlikely that random modifications alone improve the solution. A good neighborhood function is balanced between random and deterministic modifications.

Search strategy: The most obvious search strategy is the steepest descent method. It evaluates all the candidate solutions in the neighborhood and selects the one minimizing the objective function. With a large number of candidates the search is more selective as it seeks for the maximum improvement. An alternative approach is the first-improvement method, which accepts any candidate solution if it improves the objective function value. This is effectively the same as the steepest descent approach with the neighborhood size 1. 

2.2. Stochastic variations of local search 

The best-improvement strategy and especially hill-climbing techniques seek to the nearest local optimum. The algorithm can therefore get stuck to the first local minimum, which may be far from the global optimum. There are several alternative search strategies for avoiding this:

· Simulated annealing

· Stochastic relaxation

· Tabu search

Simulated annealing (SA) and stochastic relaxation (SR) are both probabilistic approaches accepts solutions that do not improve the objective function value. In other words, randomness is added to the evaluation function or to the selection process. The motivation is to allow suboptimal moves during the search and, in this way, make the search pass local minima. 

In simulated annealing, the new candidate solution is accepted by a probability that depends on the goodness of the solution, and on the amount of randomness (referred as “temperature”. The higher the temperature is the more likely it is that a worse solution will be chosen. The temperature gradually decreases during the search and eventually, when the temperature is set to zero, the search reduces back to normal local search. In stochastic relaxation, the randomness is implemented by adding noise to the evaluation of the objective function. The amount of noise gradually decreases at the same way as in simulated annealing.

Tabu search (TS) is a variant of the traditional local search, which uses suboptimal moves but in a deterministic manner. It uses a tabu list of previous solutions (or moves) and, in this way, prevents the search from returning to solutions that have been visited recently. This forces the search into new directions instead of stucking in a local minimum.

2.3. Knapsack problem

Consider the knapsack problem with a set of weights {wi} and knapsack size S. The task is to find such combination of the elements to maximize but not exceeding the knapsack size. For exmaple, consider the example with weights wi= (2,3,5,7,11), and knapsack size = 15. The solution can be represented by bit string (x1x1,…xn), where xi ({0,1}. For example, the solution with elements 2,3 and 7 is represented as 11010.

Neighborhood for a solution x can be defined as the set of solutions which differ from x by one bit, see Fig. 2.2. The change of a bit from 1(0, however, never improves the solution. By using changes from 0(1 is not sufficient alone, as this would only add new elements, which would implement a greedy algorithm. Therefore, a larger neighborhood is needed by adding also bit change operation. The following operations are used:

· Element addition (0(1)

· Element change (0(1 and 1(0)
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	Figure 2.2. Neighbor solutions for x=(11010) by single bit changes.
	Figure 2.3. Neighbor solutions for x=(11010) by element addition and change operations.


	Step 1:
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	Step 2:
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	Step 3:
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	Figure 2.4. Tabu search starting from solution x=(10001). The chosen solution in each step is emphasized by shadowing.


2.4. Traveling salesman problem

Given a graph (V, E) with a set of N nodes (vi) and a set of edges (ei,j) connecting two nodes vi and vi. A traveling salesman tour is a path that visits all the nodes in the graph and returns to the starting node. In other words, the path is a set of N-1 edges so that they form a Hamilton cycle. The objective of traveling salesman problem (TSP) is to find a path that is a Hamilton cycle with minimum length of the path. The solution of TSP instance is represented by a permutation of the nodes {p1, p2, ..., pN}. The solution is a valid if there exists an edge between all subsequent nodes in the permutation, and if p1=pN. The length of non-existing edges can be defined to be infinite.

A local search algorithm for traveling salesman problem (TSP) is outlined in Fig. 2.5. The initial solution is generated by selecting a random permutation of the nodes. The algorithm is iterated for a fixed number of iterations. At each step, a new candidate solution is generated using as follows. We select any (randomly chosen) node along the path denoted by its index i. Consider the triple ...( pi-1 ( pi  ( pi+1 (... along the path where pi is the chosen node. The neighborhood function is now defined as all possible re-organization of any chosen part of the path. For the selected node, there are six possibilities combinations:


...( pi-1 ( pi  ( pi+1 (...


...( pi-1 ( pi+1 ( pi (...


...( pi ( pi-1 ( pi+1 (...


...( pi ( pi+1 ( pi-1 (...


...( pi+1 ( pi  ( pi-1 (...


...( pi+1 ( pi-1 ( pi (...

The goodness of a given solution is defined as the length of the path. The local re-organization of the path affects only the length of the four edges in and around the triple. We can therefore evaluate the goodness of these candidates by summing up the lengths of these four edges only. We evaluate the goodness of the six combination and select the one with minimum length. This is rather simple to implement although it does not guarantee that the optimal solution for the full path can be found in this way. The algorithm can be applied to improve any given solution.

	LocalSearchTSP(G:graph): solution;
S ( {1,2,...,N}.

FOR i:=1 TO N DO

Swap( S[i], S[random(1,N)] ).

REPEAT

i ( Random(2..N-1).

{S1,S2,...,S6 } ( PermutateTriple(i-1 i, I+1).

S ( SelectBest(S1,S2,...,S6).

UNTIL no improvement.



	Figure 2.5. Local search algorithm for TSP.


The algorithm is demonstrated next for the graph shown in Fig. 2.6. Assume that the initial solution is the path A-B-C-D-E-F-G-H-A. Note that the solution do not need to be a valid solution if we define that the length of a non-existent edge is ( (or any predefined large constant). Let us assume that the triple F-G-H is chosen. This part of the path can be re-organized by the following six ways:
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Figure 2.6. Sample instance for TSP.

2.5. Clustering

Given a set of N data objects (xi), clustering aims at partition the data set into M clusters such that similar objects are grouped together and objects with different features belong to different groups. Partition (P) defines the clustering by giving for each data object the cluster index (pi) of the group where it is assigned to. The groups (C) are described by their representative data objects (xi), which are typically the centroids (center points) of the cluster. The aim of clustering is to find P and C so that they minimize given evaluation function f(C,P). Typically f is the average squared distance between data objects from their cluster centroid.

Hill-climbing algorithm: 

K-means is a well known hill-climbing technique for the clustering problem in Fig. 2.7. The algorithm is also known as Generalized Lloyd algorithm (GLA) or Linde-Buzo-Gray (LBG), in the context of vector quantization. The algorithm starts with an initial solution, which is iteratively improved until a local minimum is reached. In the first step, the data objects are partitioned into a set of M clusters by mapping each object to the nearest cluster centroid of the previous iteration. In the second step, the cluster centroids are recalculated corresponding to the new partition. The quality of the new solution is always better than or equal to the previous one. The algorithm is iterated as long as improvement is achieved.

	KmeansClustering(X,P0,C0): returns (C,P)
REPEAT

FOR i:=1 TO N DO

P[i] ( FindNearestCentroid(X,C).

FOR i:=1 TO M DO

C[i] ( CalculateCentroid(X,P).

UNTIL no improvement.


Figure 2.7. Hill-climbing algorithm for the clustering problem.

Randomized local search:
Local search algorithm for the clustering is outlined in Fig. 2.8. The initial solution is generated by taking M randomly chosen data objects as the cluster representatives. Partition is then generated by mapping each data object to its nearest cluster centroid. This initialization distributes the clusters evenly all over the data space except to the unoccupied areas. Practically any valid solution would be good enough because the algorithm is insensitive to the initialization.

The first-improvement strategy is applied by generating only one candidate at each iteration. The candidate is accepted if it improves the current solution. The algorithm is iterated for a fixed number of iterations. At each step, a new candidate solution is generated using the following operations. The clustering structure of the current solution is first modified using so-called random swap technique, in which a randomly chosen cluster is made obsolete and a new one is created. This is performed by replacing the chosen cluster representative by a randomly chosen data object. The partition of the new solution is then adjusted in respect to the modified set of cluster representatives.

The random swap modifies the clustering structure by changing one cluster per iteration. However, even a single swap may be too big change and a local optimizer is therefore used in order to enhance the new solution. In clustering, few iterations of k-means is applied. This would direct the search more efficiently by resulting in better intermediate solutions but it would also slow down the algorithm. The quality of the new solution is finally evaluated and compared to the previous solution. The new solution is accepted only if it is better than the previous solution (before random swap).

	ClusteringbyLocalSearch(X): returns (C,P)
FOR i:=1 TO M DO

r ( Random(1,M).
C[i] ( X[r].

P ( PartitionDataSet(X,C).
REPEAT

Cnew ( C.

i ( Random(1,M).

r ( Random(1,N).

C[i] ( X[r].

Pnew ( PartitionDataSet(X,C).

P,C ( KmeansClustering(X,P,C).

IF f(Pnew,Cnew) < f(P,C) THEN

P ( Pnew.

C ( Cnew.

UNTIL no improvement.




Figure 2.8. Local search algorithm for the clustering problem.
	Initial solution obtained by GLA:
	Random swap operation:
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	Repartition after random swap:
	After K-means iterations:
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Figure 2.9. Illustration of the local search algorithm.

3. Genetic algorithms
Instead of a single solution only, genetic algorithms (GA) maintain a set of solutions (population). The main structure of GA is shown in Fig. 3.1. The algorithm starts with a set of initial solutions. The solutions must be different from each other and, therefore, a random initialization is usually performed. In each iteration, the algorithm generates a set of new solutions by genetic operations:

· crossover (Fig. 3.1)
· mutation (Fig. 3.2)
Best solutions survive to the next iteration. New candidates are created in the crossover by combining two existing solutions (parents). Mutation makes small modification to the solution similarly as in the local search.
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Figure 3.1: Example of a simple crossover.
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Figure 3.2: Example of a simple mutation.
3.1. Selection

· Elitist

· Roulette wheel

	


	Select next pair(i, j):
REPEAT

IF (i+j) MOD 2 = 0

THEN i(max(1, i-1);  j(j+1;

ELSE  j(max(1, j-1);  i(i+1;

UNTIL i(j.

RETURN(i, j)

	Figure 3.3: The sequence in which the pair of solutions are chosen for crossover.
	Figure 3.4: Permutation algorithm for generating the next pair for crossover.


3.2. Crossover

The crossover method is the most important choice of the algorithm. A one-point crossover divides the parent chromosomes into two halves, and then take one half from one parent and the other half from another parent. There exist more complicated extensions of genetic operators: two-point and multi-point crossover. In two-point crossover, a string is divided into three parts, and the middle ones are exchanged. In two-point mutation, values of two positions are changed. 
Another simple approach is to use random crossover where the two parent solutions are crossed by taking (randomly chosen) half of the solution from one parent and the rest from the other parent. However, it is not obvious that the new solution is a valid solution for the given problem instance. For example, consider the TSP problem where we have the two parent solutions {p1, p2, ..., pN} and {q1, q2, ..., qN}. By taking randomly chosen nodes from the two parents the new solution might include the same node several times while missing other nodes.

A crossover for TSP can be implemented as follows. We select from the first parent a sub path of length N/2. We then find the missing nodes from the second parent solution and merge them to the sub path obtained from the first parent. In worst case, however, the nodes from the second parent does not form any sub paths and the complete path must be reconstructed by multiple merge operations.

Overall, it is very important but also difficult to implement good crossover algorithms. A common approach is therefore to apply any reasonable crossover operation and then improve the resulting solution by a few iterations of some known hill-climbing technique. This approach can also be used for the clustering problem by performing first a random crossover and the improving the solution by few iterations of the GLA. The best results, on the other hand, do require a good deterministic crossover method. Reasonably good results can also be obtained by using random crossover but then it might be a good idea to use just the traditional local search with well-defined neighborhood operation.

	GeneticAlgorithm:
Generate a set of initial solutions.

REPEAT

Generate new solutions by crossover.

Mutate the new solutions (optional).

Evaluate the candidate solutions.

Retain best candidates and delete the rest.

UNTIL stopping criterion met.

	Figure 3.5. Structure of genetic algorithm.


3.3. GA for clustering

	CrossSolutions(C1, P1, C2, P2) ( (Cnew, Pnew)
Cnew ( CombineCentroids(C1, C2)

Pnew ( CombinePartitions(P1, P2)

Cnew ( UpdateCentroids(Cnew, Pnew)

RemoveEmptyClusters(Cnew, Pnew)

PerformPNN(Cnew, Pnew)

CombineCentroids(C1, C2) ( Cnew
Cnew ( C1 ( C2
CombinePartitions(Cnew, P1, P2) ( Pnew
FOR i(1 TO N DO

IF 

 THEN 




ELSE




END-FOR


	UpdateCentroids(C1, C2) ( Cnew
FOR j(1 TO |Cnew| DO



 ( CalculateCentroid(Pnew, j )

PerformPNN(Cnew, Pnew)
FOR i(1 TO |Cnew| DO

qi ( FindNearestNeighbor(ci)

WHILE |Cnew|>M DO

a ( FindMinimumDistance(Q)

b ( qa
MergeClusters(ca, pa, cb, pb)

UpdatePointers(Q)

END-WHILE




Figure 3.?: Pseudo code of the GA-based clustering.
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Figure 3.?: Development of the GA with the iterations.
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	Natural genetics
	Genetic algorithm
	Chess position scoring

	phenotype
	parameter set, alternative solution, decoded structure
	set of parameters

	genotype
	structure, population
	population

	chromosome
	string
	individual, representative, player

	gene
	feature, character, detector
	parameter

	locus
	string position
	position

	allele
	feature value
	parameter’s value


	#
	PARAMETER
	RANGE
	RECOMMENDED VALUE

	0
	queen
	[800-1000]
	900

	1
	rook
	[440-540]
	500

	2
	bishop
	[300-370]
	340

	3
	knight
	[290-360]
	330

	4
	pawn
	[85-115]
	100

	
	
	
	

	5
	bishop pair (+)
	[0-40]
	not given

	6
	castling done (+)
	[0-40]
	not given

	7
	castling missed (-)
	[0-50]
	not given

	8
	rook on an open file (+)
	[0-30]
	not given

	9
	rook on a semi-open file (+)
	[0-30]
	not given

	10
	connected rooks (+)
	[0-20]
	not given

	11
	rook(s) on the 7th line (+)
	[0-30]
	not given

	12
	(supported) knight outpost (+)
	[0-40]
	not given

	13
	(supported) bishop outpost (+)
	[0-30]
	not given

	14
	knights’ mobility >5 (>6) (+)
	[0-30]
	not given

	
	
	
	

	15
	adjacent pawn (+)
	[0-5]
	not given

	16
	passed pawn (+)
	[0-40]
	not given

	17
	rook-supported passed pawn (+)
	[0-40]
	not given

	18
	centre (d4,d5,e4,e5) pawn (+)
	[0-30]
	not given

	19
	doubled pawn (-)
	[0-30]
	not given

	20
	backward (unsupported) pawn (-)
	[0-30]
	not given

	21
	blocked d2,d3,e2,e3 pawn (-)
	[0-15]
	not given

	22
	isolated pawn (-)
	[0-10]
	not given

	
	
	
	

	23
	bishop on the 1st line (-)
	[0-20]
	not given

	24
	knight on the 1st line (-)
	[0-30]
	not given

	25
	far pawn (+)
	[0-30]
	not given


Average:
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Weighted average:
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Selected crossover:
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Table ??: Example of individuals (two top rows) and their offspring (two bottom rows).

	861
	468
	310
	292
	112
	4
	34
	38
	1
	28
	15
	23
	27
	10
	17
	1
	31
	24
	26
	16
	15
	14
	8
	0
	26
	6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	888 
	527
	366
	299
	92
	27
	2
	3
	7
	29
	5
	22
	27
	18
	12
	3
	24
	31
	8
	17
	5
	11
	13
	2
	10
	8

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	867
	481
	322
	294
	108
	9
	27
	30
	6
	29
	7
	22
	27
	12
	16
	1
	29
	26
	22
	16
	13
	13
	9
	0
	23
	6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	882
	514
	354
	297
	96
	22
	9
	11
	2
	28
	13
	23
	27
	16
	13
	3
	26
	29
	12
	17
	7
	12
	12
	2
	13
	8


Implementation of roulette wheel selection:

population  RouleteWheelSelection(population POP)

{


float f[N-1],p[N-1],q[N-1];


float r;

int N = GetPopulationSize(POP)-1;

int F;

int i,j;

//Assign a fitness value f[i] to each individual of POP

for i=1 to N-1


f[i] = (POP[i].points)/MAX_POINTS;

//Calculate the total fitness of the population as the sum

//of all fitness values

F = 0;

for i=1 to N-1


F = F + f[i];

//Calculate selection probability for each individual

for i=1 to N-1


p[i] = f[i]/F;

//Calculate the cumulative probability q[i] for each 

//individual

for i=1 to N-1


for j=1 to i

      
q[i] = q[i] + p[j];

//Start roulette wheel

for i = 1 to N-1

{


//Generate random number r from the range [0..1]


r = random(0..1);


//Select the first individual if r < q[1],


//the j-th one if q[j-1] < r <= q[j]


j = 1;


while (r > q[j])



j++;



NEW_POP[i] = POP[j];


j = 0;

}

return NEW_POP;



} 

Tournament cross-table:
	ROUND 23
	
	
	
	
	
	
	
	
	
	points
	place

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	const
	
	

	1
	+
	0 0
	0 0
	0 1
	1 0.5
	0 0.5
	0 0
	0 1
	0 0.5
	1 0.5
	6
	ix

	2
	1 1
	+
	1 1
	1 0
	0.5 1
	0.5 1
	0 1
	0 0
	0 1
	1 1
	12
	ii

	3
	1 1
	0 0
	+
	0 1
	1 0.5
	1 0
	1 1
	1 1
	1 0.5
	1 0.5
	12.5
	i

	4
	0 1
	1 0
	0 1
	+
	0 1
	0 0
	0 0.5
	0 0.5
	0 0.5
	0 0
	5.5
	x

	5
	0.5 0
	0 0.5
	0.5 0
	0 1
	+
	1 1
	1 0
	1 0.5
	0 0
	1 1
	9
	v-vi

	6
	0.5 1
	0 0.5
	1 0
	1 1
	0 0
	+
	1 1
	0 0.5
	0.5 1
	1 0
	10
	iii-iv

	7
	1 1
	0 1
	0 0
	0.5 1
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Best values:
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4. Swarm intelligence (SI)
Colony of Ants or other social insects are:

· Social intelligence: simple individual behaviour but joint effect can be intelligence 

· Decentralized: no central control of the individuals of the colony

· Self-organized: individual adapts to environment and other members of colony

· Robust: task is completed even if some individuals fail

Main working principles of ants:

· Leaving pheromen tracks to paths between nest and food source

· Joint efforts to carry loads

Solving Travelling Salesman problem by ants:

· “Sending” ants from source to explore different randomly chosen routes

· Short links are chosen more often than long ones in the route

· After receiving candidate route, good tracks are marked by “pheromen”

· During next iterations: tracks with high pheromen are chosen more often.

Example:

1. Four randomly chosen routes with the length marked inside.

2. Let’s add pheromen in the following way: Subtract cost of the links in the best solution (-1) and increase the ones in the worst solution (-1)

3. Repeat the procedure by taking new set of random routes. But remember, smaller links are be taken with higher probability! Costs are in respect to the original graph.

4. Let’s add pheromen again. Resulting graph is shown in the last.

5. The most likely route will converge towards the optimum (although optimality cannot be guaranteed).

4.1. Traveling sales-ants for solving TSP
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Figure 4.1: First set of candidate solutions.
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Figure 4.2: Second set of candidate solutions.
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Appendix: Random swapping and GLA examples for clustering (enlarged)
Random swap for clustering
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Fine-tuning by the GLA
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Illustration of the GLA  - centroid step
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Illustration of the GLA - partition step
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