Lecture Notes:

Introduction to Combinatoric Optimization Techniques

Department of Computer Science, University of Joensuu

Pasi Fränti

30.3.2004

Abstract: This Lecture Notes gives supporting material for the graduate level course Design and Analysis of Algorithms. The document introduces to local search, tabu search, genetic algorithms and swarm intelligence. Examples are given for three sample problems: Knapsack problem, traveling salesman problem (TSP) and clustering.

1. Introduction
Many combinatoric optimization problems are known to be NP-complete and therefore no polynomial time algorithm are known to solve them exactly. An alternative approach for exact algorithms is to use heuristic algorithms for finding solution that is not optimal but “good enough”. Unlike in approximate algorithms, heuristic methods do not give any upper limits of how far a given solutions is to the optimal solution. On the other hand, the methods try to “squeeze” the best possible results without and solid proof of how close to optimum they can get.

The goal of combinatoric optimization problems is to find a given valid combination of the problem instance so that given optimization function f is either minimized (minimization problem) or maximized (maximization problem). We study next different approaches applicable for combinatorial optimization problems. These can roughly be classified to the following three groups:

· Local search

· Stochastic variations of local search

· Genetic algorithms

A common property of these optimization methods is that they start with any given initial solution (or a set of solutions), which is iteratively improved by making small modifications at each step of the algorithm.

2. Local search
The structure of a local search algorithm is shown in Fig. 2.1. It starts with an initial solution, which is iteratively improved using neighborhood search and selection. In each iteration a set of candidate solutions is generated by making small modifications to the existing solution. The best candidate is then chosen as the new solution. The use of several candidates directs the search towards the highest improvement in the optimization function value. The search is iterated a fixed number of iterations, or until a stopping criterion is met.

In a local search algorithm, the following design problems must be considered:

· Representation of a solution

· Neighborhood function

· Search strategy

The representation of a solution is an important choice in the algorithm. It determines the data structures which are to be modified. The neighborhood function defines the way the new solutions are generated. An application of the neighborhood function is referred as a move in the neighborhood search. The neighborhood size can be very large and only a small subset of all possible neighbors are generated. The search strategy determines the way the next solution is chosen among the candidates. The most obvious approach is to select the solution minimizing the objective function.

Hill-climbing is a special case of local search where the new solutions are generated so that they are always better than or equal to the previous solution. In other words, the algorithm makes only “uphill moves”. Problem-specific knowledge is usually applied to design the neighborhood function. It is also possible that there is no “neighborhood” but the move is a deterministic modification of the current solution that is known to improve the solution. Hill-climbing always finds the nearest local maximum (or minimum) and cannot improve anymore after that.

	LocalSearch:
Generate initial solution.

REPEAT

Generate a set of new solutions.

Evaluate the new solutions.

Select the best solution.

UNTIL stopping criterion met.

	Figure 2.1. Structure of the local search.

2.1. Components of the local search

Representation of solution: A solution could be coded and processed as a bit string without any semantic interpretation of the problem in question. A new solution would then be generated by turning a number of randomly chosen bits in the solution. However, this is not a very efficient way to improve the solution and it is possible that certain bit strings do not represent a valid solution. It is therefore sensible to use a problem specific representation and operate directly on the data structures in the problem domain.

Neighborhood function: The neighborhood function generates new candidate solutions by making modifications to the current solution. The amount of modifications must be small enough not to destroy the original solution completely, but also large enough so that the search may pass local minima. Some level of randomness can be included in the neighborhood function but it is unlikely that random modifications alone improve the solution. A good neighborhood function is balanced between random and deterministic modifications.

Search strategy: The most obvious search strategy is the steepest descent method. It evaluates all the candidate solutions in the neighborhood and selects the one minimizing the objective function. With a large number of candidates the search is more selective as it seeks for the maximum improvement. An alternative approach is the first-improvement method, which accepts any candidate solution if it improves the objective function value. This is effectively the same as the steepest descent approach with the neighborhood size 1.

2.2. Stochastic variations of local search

The best-improvement strategy and especially hill-climbing techniques seek to the nearest local optimum. The algorithm can therefore get stuck to the first local minimum, which may be far from the global optimum. There are several alternative search strategies for avoiding this:

· Simulated annealing

· Stochastic relaxation

· Tabu search

Simulated annealing (SA) and stochastic relaxation (SR) are both probabilistic approaches accepts solutions that do not improve the objective function value. In other words, randomness is added to the evaluation function or to the selection process. The motivation is to allow suboptimal moves during the search and, in this way, make the search pass local minima.

In simulated annealing, the new candidate solution is accepted by a probability that depends on the goodness of the solution, and on the amount of randomness (referred as “temperature”. The higher the temperature is the more likely it is that a worse solution will be chosen. The temperature gradually decreases during the search and eventually, when the temperature is set to zero, the search reduces back to normal local search. In stochastic relaxation, the randomness is implemented by adding noise to the evaluation of the objective function. The amount of noise gradually decreases at the same way as in simulated annealing.

Tabu search (TS) is a variant of the traditional local search, which uses suboptimal moves but in a deterministic manner. It uses a tabu list of previous solutions (or moves) and, in this way, prevents the search from returning to solutions that have been visited recently. This forces the search into new directions instead of stucking in a local minimum.

2.3. Knapsack problem

Consider the knapsack problem with a set of weights {wi} and knapsack size S. The task is to find such combination of the elements to maximize but not exceeding the knapsack size. For exmaple, consider the example with weights wi= (2,3,5,7,11), and knapsack size = 15. The solution can be represented by bit string (x1x1,…xn), where xi ({0,1}. For example, the solution with elements 2,3 and 7 is represented as 11010.

Neighborhood for a solution x can be defined as the set of solutions which differ from x by one bit, see Fig. 2.2. The change of a bit from 1(0, however, never improves the solution. By using changes from 0(1 is not sufficient alone, as this would only add new elements, which would implement a greedy algorithm. Therefore, a larger neighborhood is needed by adding also bit change operation. The following operations are used:

· Element addition (0(1)

· Element change (0(1 and 1(0)

	
[image: image1.wmf]01010

10010

11110

11000

11011

11010

12

10

9

5

17

23

	
[image: image2.wmf]11010

12

01110

15

01011

21

10110

14

11110

17

11011

23

10101

18

11100

10

11001

16

	Figure 2.2. Neighbor solutions for x=(11010) by single bit changes.
	Figure 2.3. Neighbor solutions for x=(11010) by element addition and change operations.

	Step 1:

[image: image3.wmf]10001

13

11000

5

10100

7

01001

14

00101

16

10010

9

00101

18

	Step 2:

[image: image4.wmf]01001

14

11000

5

01100

8

10001

13

00101

16

01010

10

00011

18

	Step 3:

[image: image5.wmf]01010

10

01011

21

11010

12

01110

15

	Figure 2.4. Tabu search starting from solution x=(10001). The chosen solution in each step is emphasized by shadowing.

2.4. Traveling salesman problem

Given a graph (V, E) with a set of N nodes (vi) and a set of edges (ei,j) connecting two nodes vi and vi. A traveling salesman tour is a path that visits all the nodes in the graph and returns to the starting node. In other words, the path is a set of N-1 edges so that they form a Hamilton cycle. The objective of traveling salesman problem (TSP) is to find a path that is a Hamilton cycle with minimum length of the path. The solution of TSP instance is represented by a permutation of the nodes {p1, p2, ..., pN}. The solution is a valid if there exists an edge between all subsequent nodes in the permutation, and if p1=pN. The length of non-existing edges can be defined to be infinite.

A local search algorithm for traveling salesman problem (TSP) is outlined in Fig. 2.5. The initial solution is generated by selecting a random permutation of the nodes. The algorithm is iterated for a fixed number of iterations. At each step, a new candidate solution is generated using as follows. We select any (randomly chosen) node along the path denoted by its index i. Consider the triple ...(pi-1 (pi (pi+1 (... along the path where pi is the chosen node. The neighborhood function is now defined as all possible re-organization of any chosen part of the path. For the selected node, there are six possibilities combinations:

...(pi-1 (pi (pi+1 (...

...(pi-1 (pi+1 (pi (...

...(pi (pi-1 (pi+1 (...

...(pi (pi+1 (pi-1 (...

...(pi+1 (pi (pi-1 (...

...(pi+1 (pi-1 (pi (...

The goodness of a given solution is defined as the length of the path. The local re-organization of the path affects only the length of the four edges in and around the triple. We can therefore evaluate the goodness of these candidates by summing up the lengths of these four edges only. We evaluate the goodness of the six combination and select the one with minimum length. This is rather simple to implement although it does not guarantee that the optimal solution for the full path can be found in this way. The algorithm can be applied to improve any given solution.

	LocalSearchTSP(G:graph): solution;
S ({1,2,...,N}.

FOR i:=1 TO N DO

Swap(S[i], S[random(1,N)]).

REPEAT

i (Random(2..N-1).

{S1,S2,...,S6 } (PermutateTriple(i-1 i, I+1).

S (SelectBest(S1,S2,...,S6).

UNTIL no improvement.

	Figure 2.5. Local search algorithm for TSP.

The algorithm is demonstrated next for the graph shown in Fig. 2.6. Assume that the initial solution is the path A-B-C-D-E-F-G-H-A. Note that the solution do not need to be a valid solution if we define that the length of a non-existent edge is ((or any predefined large constant). Let us assume that the triple F-G-H is chosen. This part of the path can be re-organized by the following six ways:

E (F (G (H (A

4 + (+ 2 + (
= 2((+ 6

E (F (H (G (A

4 + 3 + 2 + 2

= 11

(minimum !!!

E (G (F (H (A

(+ (+ 3 + (
= 3((+ 3

E (G (H (F (A

(+ 2 + 3 + (
= 2((+ 5

E (H (G (F (A

3 + 2 + (+ (
= 2((+ 5

E (H (F (G (A

3 + 3 + (+ 2
= 1((+ 6

[image: image6.wmf]A

B

C

D

E

F

G

H

2

2

2

4

4

3

3

2

2

3

4

3

5

Figure 2.6. Sample instance for TSP.

2.5. Clustering

Given a set of N data objects (xi), clustering aims at partition the data set into M clusters such that similar objects are grouped together and objects with different features belong to different groups. Partition (P) defines the clustering by giving for each data object the cluster index (pi) of the group where it is assigned to. The groups (C) are described by their representative data objects (xi), which are typically the centroids (center points) of the cluster. The aim of clustering is to find P and C so that they minimize given evaluation function f(C,P). Typically f is the average squared distance between data objects from their cluster centroid.

Hill-climbing algorithm:

K-means is a well known hill-climbing technique for the clustering problem in Fig. 2.7. The algorithm is also known as Generalized Lloyd algorithm (GLA) or Linde-Buzo-Gray (LBG), in the context of vector quantization. The algorithm starts with an initial solution, which is iteratively improved until a local minimum is reached. In the first step, the data objects are partitioned into a set of M clusters by mapping each object to the nearest cluster centroid of the previous iteration. In the second step, the cluster centroids are recalculated corresponding to the new partition. The quality of the new solution is always better than or equal to the previous one. The algorithm is iterated as long as improvement is achieved.

	KmeansClustering(X,P0,C0): returns (C,P)
REPEAT

FOR i:=1 TO N DO

P[i] (FindNearestCentroid(X,C).

FOR i:=1 TO M DO

C[i] (CalculateCentroid(X,P).

UNTIL no improvement.

Figure 2.7. Hill-climbing algorithm for the clustering problem.

Randomized local search:
Local search algorithm for the clustering is outlined in Fig. 2.8. The initial solution is generated by taking M randomly chosen data objects as the cluster representatives. Partition is then generated by mapping each data object to its nearest cluster centroid. This initialization distributes the clusters evenly all over the data space except to the unoccupied areas. Practically any valid solution would be good enough because the algorithm is insensitive to the initialization.

The first-improvement strategy is applied by generating only one candidate at each iteration. The candidate is accepted if it improves the current solution. The algorithm is iterated for a fixed number of iterations. At each step, a new candidate solution is generated using the following operations. The clustering structure of the current solution is first modified using so-called random swap technique, in which a randomly chosen cluster is made obsolete and a new one is created. This is performed by replacing the chosen cluster representative by a randomly chosen data object. The partition of the new solution is then adjusted in respect to the modified set of cluster representatives.

The random swap modifies the clustering structure by changing one cluster per iteration. However, even a single swap may be too big change and a local optimizer is therefore used in order to enhance the new solution. In clustering, few iterations of k-means is applied. This would direct the search more efficiently by resulting in better intermediate solutions but it would also slow down the algorithm. The quality of the new solution is finally evaluated and compared to the previous solution. The new solution is accepted only if it is better than the previous solution (before random swap).

	ClusteringbyLocalSearch(X): returns (C,P)
FOR i:=1 TO M DO

r (Random(1,M).
C[i] (X[r].

P (PartitionDataSet(X,C).
REPEAT

Cnew (C.

i (Random(1,M).

r (Random(1,N).

C[i] (X[r].

Pnew (PartitionDataSet(X,C).

P,C (KmeansClustering(X,P,C).

IF f(Pnew,Cnew) < f(P,C) THEN

P (Pnew.

C (Cnew.

UNTIL no improvement.

Figure 2.8. Local search algorithm for the clustering problem.
	Initial solution obtained by GLA:
	Random swap operation:

	[image: image7.png]

	[image: image8.png]

	Repartition after random swap:
	After K-means iterations:

	[image: image9.png]

	[image: image10.png]

Figure 2.9. Illustration of the local search algorithm.

3. Genetic algorithms
Instead of a single solution only, genetic algorithms (GA) maintain a set of solutions (population). The main structure of GA is shown in Fig. 3.1. The algorithm starts with a set of initial solutions. The solutions must be different from each other and, therefore, a random initialization is usually performed. In each iteration, the algorithm generates a set of new solutions by genetic operations:

· crossover (Fig. 3.1)
· mutation (Fig. 3.2)
Best solutions survive to the next iteration. New candidates are created in the crossover by combining two existing solutions (parents). Mutation makes small modification to the solution similarly as in the local search.

[image: image11.png]o1]e]]o]

[e]'To

o1]e]]o]

port

—

operator

port

1o

[T

Figure 3.1: Example of a simple crossover.

[image: image12.png]v [e[1Toe r[aT1]0] \:|> [1TiToTe a0}

Trutation Trutation
port "y point

Figure 3.2: Example of a simple mutation.
3.1. Selection

· Elitist

· Roulette wheel

	

	Select next pair(i, j):
REPEAT

IF (i+j) MOD 2 = 0

THEN i(max(1, i-1); j(j+1;

ELSE j(max(1, j-1); i(i+1;

UNTIL i(j.

RETURN(i, j)

	Figure 3.3: The sequence in which the pair of solutions are chosen for crossover.
	Figure 3.4: Permutation algorithm for generating the next pair for crossover.

3.2. Crossover

The crossover method is the most important choice of the algorithm. A one-point crossover divides the parent chromosomes into two halves, and then take one half from one parent and the other half from another parent. There exist more complicated extensions of genetic operators: two-point and multi-point crossover. In two-point crossover, a string is divided into three parts, and the middle ones are exchanged. In two-point mutation, values of two positions are changed.
Another simple approach is to use random crossover where the two parent solutions are crossed by taking (randomly chosen) half of the solution from one parent and the rest from the other parent. However, it is not obvious that the new solution is a valid solution for the given problem instance. For example, consider the TSP problem where we have the two parent solutions {p1, p2, ..., pN} and {q1, q2, ..., qN}. By taking randomly chosen nodes from the two parents the new solution might include the same node several times while missing other nodes.

A crossover for TSP can be implemented as follows. We select from the first parent a sub path of length N/2. We then find the missing nodes from the second parent solution and merge them to the sub path obtained from the first parent. In worst case, however, the nodes from the second parent does not form any sub paths and the complete path must be reconstructed by multiple merge operations.

Overall, it is very important but also difficult to implement good crossover algorithms. A common approach is therefore to apply any reasonable crossover operation and then improve the resulting solution by a few iterations of some known hill-climbing technique. This approach can also be used for the clustering problem by performing first a random crossover and the improving the solution by few iterations of the GLA. The best results, on the other hand, do require a good deterministic crossover method. Reasonably good results can also be obtained by using random crossover but then it might be a good idea to use just the traditional local search with well-defined neighborhood operation.

	GeneticAlgorithm:
Generate a set of initial solutions.

REPEAT

Generate new solutions by crossover.

Mutate the new solutions (optional).

Evaluate the candidate solutions.

Retain best candidates and delete the rest.

UNTIL stopping criterion met.

	Figure 3.5. Structure of genetic algorithm.

3.3. GA for clustering

	CrossSolutions(C1, P1, C2, P2) ((Cnew, Pnew)
Cnew (CombineCentroids(C1, C2)

Pnew (CombinePartitions(P1, P2)

Cnew (UpdateCentroids(Cnew, Pnew)

RemoveEmptyClusters(Cnew, Pnew)

PerformPNN(Cnew, Pnew)

CombineCentroids(C1, C2) (Cnew
Cnew (C1 (C2
CombinePartitions(Cnew, P1, P2) (Pnew
FOR i(1 TO N DO

IF

 THEN

ELSE

END-FOR

	UpdateCentroids(C1, C2) (Cnew
FOR j(1 TO |Cnew| DO

 (CalculateCentroid(Pnew, j)

PerformPNN(Cnew, Pnew)
FOR i(1 TO |Cnew| DO

qi (FindNearestNeighbor(ci)

WHILE |Cnew|>M DO

a (FindMinimumDistance(Q)

b (qa
MergeClusters(ca, pa, cb, pb)

UpdatePointers(Q)

END-WHILE

Figure 3.?: Pseudo code of the GA-based clustering.

[image: image13.wmf]160

165

170

175

180

0

10

20

30

40

50

Number of iterations

Distortion

Bridge

Mutations + GLA

PNN crossover + GLA

Random crossover + GLA

PNN crossover

Figure 3.?: Development of the GA with the iterations.

[image: image14.png]o] sl
1 21
o] > ,—b—‘—m—‘
2 26
Ne3[Bed < i3] Eﬂ_’_‘—Nﬂ—‘
3 7 10 21 2
Neb Nf6 fﬂﬁ NfﬁT BeS NE# a6 Nf6 s (-3 as Nf6 ef 26 26 as
3 BRE 1] [12] [13] [16] [15] [0 2] [25 2 0] ot
0 -6 0 0 -1 -6 16 0 -7 9 9 0

6 15

[image: image15.png]rook on an

apen fil
castling done,
King on the
edge is more
unharmed
supported
knight oupost | A A
E A — knight's mability
(count lines)
castling missed, B %
King is ahways in A A
danger & %&\

	Natural genetics
	Genetic algorithm
	Chess position scoring

	phenotype
	parameter set, alternative solution, decoded structure
	set of parameters

	genotype
	structure, population
	population

	chromosome
	string
	individual, representative, player

	gene
	feature, character, detector
	parameter

	locus
	string position
	position

	allele
	feature value
	parameter’s value

	#
	PARAMETER
	RANGE
	RECOMMENDED VALUE

	0
	queen
	[800-1000]
	900

	1
	rook
	[440-540]
	500

	2
	bishop
	[300-370]
	340

	3
	knight
	[290-360]
	330

	4
	pawn
	[85-115]
	100

	
	
	
	

	5
	bishop pair (+)
	[0-40]
	not given

	6
	castling done (+)
	[0-40]
	not given

	7
	castling missed (-)
	[0-50]
	not given

	8
	rook on an open file (+)
	[0-30]
	not given

	9
	rook on a semi-open file (+)
	[0-30]
	not given

	10
	connected rooks (+)
	[0-20]
	not given

	11
	rook(s) on the 7th line (+)
	[0-30]
	not given

	12
	(supported) knight outpost (+)
	[0-40]
	not given

	13
	(supported) bishop outpost (+)
	[0-30]
	not given

	14
	knights’ mobility >5 (>6) (+)
	[0-30]
	not given

	
	
	
	

	15
	adjacent pawn (+)
	[0-5]
	not given

	16
	passed pawn (+)
	[0-40]
	not given

	17
	rook-supported passed pawn (+)
	[0-40]
	not given

	18
	centre (d4,d5,e4,e5) pawn (+)
	[0-30]
	not given

	19
	doubled pawn (-)
	[0-30]
	not given

	20
	backward (unsupported) pawn (-)
	[0-30]
	not given

	21
	blocked d2,d3,e2,e3 pawn (-)
	[0-15]
	not given

	22
	isolated pawn (-)
	[0-10]
	not given

	
	
	
	

	23
	bishop on the 1st line (-)
	[0-20]
	not given

	24
	knight on the 1st line (-)
	[0-30]
	not given

	25
	far pawn (+)
	[0-30]
	not given

Average:

[image: image16.wmf]2

2

1

c

c

x

x

+

Weighted average:

[image: image17.wmf](

)

(

)

2

1

2

2

1

1

1

1

x

a

x

a

y

x

a

x

a

y

×

+

×

-

=

×

-

+

×

=

Selected crossover:

	
[image: image18.wmf]:

1

y

	
[image: image19.wmf](

)

2

1

1

x

a

x

a

×

-

+

×

	
[image: image20.wmf](

)

2

1

1

x

a

x

a

×

+

×

-

	
[image: image21.wmf](

)

2

1

1

x

a

x

a

×

-

+

×

	
[image: image22.wmf]:

2

y

	
[image: image23.wmf](

)

2

1

1

x

a

x

a

×

+

×

-

	
[image: image24.wmf](

)

2

1

1

x

a

x

a

×

-

+

×

	
[image: image25.wmf](

)

2

1

1

x

a

x

a

×

+

×

-

Table ??: Example of individuals (two top rows) and their offspring (two bottom rows).

	861
	468
	310
	292
	112
	4
	34
	38
	1
	28
	15
	23
	27
	10
	17
	1
	31
	24
	26
	16
	15
	14
	8
	0
	26
	6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	888
	527
	366
	299
	92
	27
	2
	3
	7
	29
	5
	22
	27
	18
	12
	3
	24
	31
	8
	17
	5
	11
	13
	2
	10
	8

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	867
	481
	322
	294
	108
	9
	27
	30
	6
	29
	7
	22
	27
	12
	16
	1
	29
	26
	22
	16
	13
	13
	9
	0
	23
	6

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	882
	514
	354
	297
	96
	22
	9
	11
	2
	28
	13
	23
	27
	16
	13
	3
	26
	29
	12
	17
	7
	12
	12
	2
	13
	8

Implementation of roulette wheel selection:

population RouleteWheelSelection(population POP)

{

float f[N-1],p[N-1],q[N-1];

float r;

int N = GetPopulationSize(POP)-1;

int F;

int i,j;

//Assign a fitness value f[i] to each individual of POP

for i=1 to N-1

f[i] = (POP[i].points)/MAX_POINTS;

//Calculate the total fitness of the population as the sum

//of all fitness values

F = 0;

for i=1 to N-1

F = F + f[i];

//Calculate selection probability for each individual

for i=1 to N-1

p[i] = f[i]/F;

//Calculate the cumulative probability q[i] for each

//individual

for i=1 to N-1

for j=1 to i

q[i] = q[i] + p[j];

//Start roulette wheel

for i = 1 to N-1

{

//Generate random number r from the range [0..1]

r = random(0..1);

//Select the first individual if r < q[1],

//the j-th one if q[j-1] < r <= q[j]

j = 1;

while (r > q[j])

j++;

NEW_POP[i] = POP[j];

j = 0;

}

return NEW_POP;

}

Tournament cross-table:
	ROUND 23
	
	
	
	
	
	
	
	
	
	points
	place

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	const
	
	

	1
	+
	0 0
	0 0
	0 1
	1 0.5
	0 0.5
	0 0
	0 1
	0 0.5
	1 0.5
	6
	ix

	2
	1 1
	+
	1 1
	1 0
	0.5 1
	0.5 1
	0 1
	0 0
	0 1
	1 1
	12
	ii

	3
	1 1
	0 0
	+
	0 1
	1 0.5
	1 0
	1 1
	1 1
	1 0.5
	1 0.5
	12.5
	i

	4
	0 1
	1 0
	0 1
	+
	0 1
	0 0
	0 0.5
	0 0.5
	0 0.5
	0 0
	5.5
	x

	5
	0.5 0
	0 0.5
	0.5 0
	0 1
	+
	1 1
	1 0
	1 0.5
	0 0
	1 1
	9
	v-vi

	6
	0.5 1
	0 0.5
	1 0
	1 1
	0 0
	+
	1 1
	0 0.5
	0.5 1
	1 0
	10
	iii-iv

	7
	1 1
	0 1
	0 0
	0.5 1
	1 0
	0 0
	+
	0 0
	0 1
	1 1
	8.5
	vii

	8
	0 1
	1 1
	0 0
	0.5 1
	0.5 0
	0.5 1
	1 1
	+
	0 1
	0 0.5
	10
	iii-iv

	9
	0.5 1
	0 1
	0.5 0
	0.5 1
	1 1
	0 0.5
	0 1
	0 1
	+
	0 0
	9
	v-vi

	const
	0.5 0
	0 0
	0.5 0
	1 1
	0 0
	1 0
	0 0
	0.5 1
	1 1
	+
	7.5
	viii

Average values:

[image: image26.wmf]290

300

310

320

330

340

350

360

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

generation

average generation value

Bishop

Knight

Best values:
[image: image27.wmf]290

300

310

320

330

340

350

360

370

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

generation

value of the best non-reference player

Bishop

Knight

4. Swarm intelligence (SI)
Colony of Ants or other social insects are:

· Social intelligence: simple individual behaviour but joint effect can be intelligence

· Decentralized: no central control of the individuals of the colony

· Self-organized: individual adapts to environment and other members of colony

· Robust: task is completed even if some individuals fail

Main working principles of ants:

· Leaving pheromen tracks to paths between nest and food source

· Joint efforts to carry loads

Solving Travelling Salesman problem by ants:

· “Sending” ants from source to explore different randomly chosen routes

· Short links are chosen more often than long ones in the route

· After receiving candidate route, good tracks are marked by “pheromen”

· During next iterations: tracks with high pheromen are chosen more often.

Example:

1. Four randomly chosen routes with the length marked inside.

2. Let’s add pheromen in the following way: Subtract cost of the links in the best solution (-1) and increase the ones in the worst solution (-1)

3. Repeat the procedure by taking new set of random routes. But remember, smaller links are be taken with higher probability! Costs are in respect to the original graph.

4. Let’s add pheromen again. Resulting graph is shown in the last.

5. The most likely route will converge towards the optimum (although optimality cannot be guaranteed).

4.1. Traveling sales-ants for solving TSP

[image: image28.wmf]A

F

C

D

H

B

G

E

A

F

C

D

H

B

G

E

A

F

C

D

H

B

G

E

A

F

C

D

H

B

G

E

21

23

24

26

A

F

C

D

H

B

G

E

0

-1

+1

0

-1

+1

0

0

0

-1

+1

+1

-1

A

F

C

D

H

B

G

E

2

2

2

2

2

3

4

5

3

3

4

4

3

Input graph:

Additions made:

Figure 4.1: First set of candidate solutions.

[image: image29.wmf]A

F

C

D

H

B

G

E

0

0

+1

0

-1

+1

0

0

0

-1

0

+1

-1

A

F

C

D

H

B

G

E

2

1

3

2

1

4

4

5

3

2

5

5

2

A

F

C

D

H

B

G

E

A

F

C

D

H

B

G

E

21

22

A

F

C

D

H

B

G

E

23

A

F

C

D

H

B

G

E

22

Modified graph:

New additions:

Figure 4.2: Second set of candidate solutions.

Literature
1. E. Aarts and K. Lenstra (editors), Local Search in Combinatorial Optimization. John Wiley & sons., Chichester 1997.

2. E.J. Anderson, "Mechanisms for local search", European Journal of Operational Research, 88 (1), 139-151, January 1996.

3. R. Dubes and A. Jain, Algorithms that Cluster Data, Prentice-Hall, Englewood Cliffs, NJ, 1987.

4. B.S. Everitt, Cluster Analysis (3rd edition), Edward Arnold / Halsted Press, London, 1992.

5. P. Fränti, "Genetic algorithm with deterministic crossover for vector quantization", Pattern Recognition Letters, 21 (1), 61-68, January 2000.
6. P. Fränti and J. Kivijärvi, "Randomized local search algorithm for the clustering problem", Pattern Analysis and Applications, 3 (4), 358-369, 2000.
7. P. Fränti, J. Kivijärvi, T. Kaukoranta and O. Nevalainen, "Genetic algorithms for large scale clustering problems", The Computer Journal, 40 (9), 547-554, 1997.
8. C. Reeves, Modern Heuristic Techniques for Combinatorical Optimization Problems, McGraw - Hill, 1995.

Appendix: Random swapping and GLA examples for clustering (enlarged)
Random swap for clustering
[image: image30.png]

[image: image31.png]

Fine-tuning by the GLA
[image: image32.png]

[image: image33.png]

Illustration of the GLA - centroid step
[image: image34.png]

[image: image35.png]

Illustration of the GLA - partition step
[image: image36.png]s

Y

by, 20

vy o

e

[image: image37.png]

PAGE
15

_1129640839.unknown

_1140536635

_1141591231

_1141826332.xls
Kaavio5

		336.2222222222		326.7777777778

		339.7777777778		315.3333333333

		345.8888888889		315.2222222222

		347.2222222222		314

		341.7777777778		308.5555555556

		346		308.3333333333

		346.3333333333		308.4444444444

		350.3333333333		310.8888888889

		347.6666666667		309.2222222222

		347		309.1111111111

		341.3333333333		307.7777777778

		340.3333333333		306.5555555556

		339.4444444444		307.7777777778

		333.5555555556		305.5555555556

		334.8888888889		305.6666666667

		335.4444444444		307.1111111111

		332.1111111111		305.3333333333

		332.8888888889		305.4444444444

		331.6666666667		305.1111111111

		329.6666666667		304.6666666667

		329.2222222222		304.6666666667

		326.7777777778		304.1111111111

		327		304.2222222222

		326.6666666667		305.2222222222

		327.1111111111		305.3333333333

		327.2222222222		306.2222222222

		327.1111111111		307

		327.2222222222		306

		327.1111111111		306.2222222222

		327.1111111111		306

		327.1111111111		306.1111111111

		327.1111111111		306.8888888889

		327.2222222222		306.6666666667

		327.1111111111		306.2222222222

		327.2222222222		306.2222222222

		327.2222222222		306.2222222222

		327.1111111111		306.3333333333

		326.7777777778		306

		326.5555555556		305.8888888889

		326.5555555556		305.7777777778

Bishop

Knight

generation

average generation value

Taul1

		Gen1

		346		344		359		308		340		366		317		310		336		336.2222222222

		356		333		321		338		344		299		302		292		356		326.7777777778				average

		Gen2																						bishop		knight

		344		346		344		366		362		316		310		311		359		339.7777777778				336.2222222222		326.7777777778

		333		356		337		299		306		301		292		293		321		315.3333333333				339.7777777778		315.3333333333

		Gen3																		0				345.8888888889		315.2222222222

		316		316		361		344		360		344		362		366		344		345.8888888889				347.2222222222		314

		301		301		311		333		316		336		306		299		334		315.2222222222				341.7777777778		308.5555555556

		Gen4																		0				346		308.3333333333

		346		359		360		362		360		344		316		362		316		347.2222222222				346.3333333333		308.4444444444

		333		314		316		306		316		333		301		306		301		314				350.3333333333		310.8888888889

		Gen5																		0				347.6666666667		309.2222222222

		362		360		360		360		316		316		316		360		326		341.7777777778				347		309.1111111111

		308		314		316		316		301		301		301		316		304		308.5555555556				341.3333333333		307.7777777778

		Gen6																		0				340.3333333333		306.5555555556

		360		360		316		316		362		362		357		319		362		346				339.4444444444		307.7777777778

		316		316		301		301		308		308		315		302		308		308.3333333333				333.5555555556		305.5555555556

		Gen7																		0				334.8888888889		305.6666666667

		319		360		360		362		362		360		316		356		322		346.3333333333				335.4444444444		307.1111111111

		302		316		316		308		308		316		301		307		302		308.4444444444				332.1111111111		305.3333333333

		Gen8																		0				332.8888888889		305.4444444444

		360		360		362		360		319		356		360		351		325		350.3333333333				331.6666666667		305.1111111111

		314		316		310		316		302		307		316		313		304		310.8888888889				329.6666666667		304.6666666667

		Gen9																		0				329.2222222222		304.6666666667

		327		360		360		326		360		360		321		355		360		347.6666666667				326.7777777778		304.1111111111

		304		310		314		304		316		316		302		307		310		309.2222222222				327		304.2222222222

		Gen10																		0				326.6666666667		305.2222222222

		355		360		321		341		326		360		345		358		357		347				327.1111111111		305.3333333333

		307		316		302		309		304		316		311		309		308		309.1111111111				327.2222222222		306.2222222222

		Gen11																		0				327.1111111111		307

		341		360		325		355		326		357		360		326		322		341.3333333333				327.2222222222		306

		309		316		304		307		304		308		316		304		302		307.7777777778				327.1111111111		306.2222222222

		Gen12																		0				327.1111111111		306

		325		342		339		322		360		357		355		330		333		340.3333333333				327.1111111111		306.1111111111

		304		306		305		302		316		308		307		305		306		306.5555555556				327.1111111111		306.8888888889

		Gen13																		0				327.2222222222		306.6666666667

		339		339		343		350		343		325		350		333		333		339.4444444444				327.1111111111		306.2222222222

		305		305		312		310		312		304		310		306		306		307.7777777778				327.2222222222		306.2222222222

		Gen14																		0				327.2222222222		306.2222222222

		333		342		347		325		325		339		327		331		333		333.5555555556				327.1111111111		306.3333333333

		306		307		308		304		304		305		305		305		306		305.5555555556				326.7777777778		306

		Gen15																		0				326.5555555556		305.8888888889

		339		345		327		325		325		333		343		331		346		334.8888888889				326.5555555556		305.7777777778

		305		308		304		304		304		306		307		305		308		305.6666666667

		Gen16																		0

		327		346		345		325		325		327		344		345		335		335.4444444444

		304		308		318		304		304		304		308		308		306		307.1111111111

		Gen17																		0

		335		340		344		325		327		329		331		333		325		332.1111111111

		306		307		308		304		304		305		305		305		304		305.3333333333

		Gen18																		0

		329		325		330		325		344		328		331		344		340		332.8888888889

		304		304		305		304		308		304		305		308		307		305.4444444444

		Gen19																		0

		326		344		329		329		344		329		326		330		328		331.6666666667

		304		308		305		304		308		304		304		305		304		305.1111111111

		Gen20																		0

		329		344		326		330		329		329		326		326		328		329.6666666667

		304		308		304		305		305		304		304		304		304		304.6666666667

		Gen21																		0

		329		326		326		326		330		330		344		326		326		329.2222222222

		304		304		304		304		305		305		308		304		304		304.6666666667

		Gen22																		0

		329		326		326		327		326		326		326		326		329		326.7777777778

		304		304		304		304		304		304		304		304		305		304.1111111111

		Gen23																		0

		326		327		327		326		329		326		329		326		327		327

		304		304		304		304		305		304		305		304		304		304.2222222222

		Gen24																		0

		327		327		329		326		326		326		326		326		327		326.6666666667

		304		314		305		304		304		304		304		304		304		305.2222222222

		Gen25																		0

		326		327		327		329		327		328		326		328		326		327.1111111111

		304		304		314		305		304		304		304		305		304		305.3333333333

		Gen26																		0

		326		328		327		327		327		328		327		327		328		327.2222222222

		307		304		304		304		304		304		311		314		304		306.2222222222

		Gen27																		0

		327		327		327		327		327		328		327		327		327		327.1111111111

		304		308		309		307		304		309		309		304		309		307

		Gen28																		0

		327		327		327		328		327		327		327		327		328		327.2222222222

		304		308		304		309		307		304		306		308		304		306

		Gen29																		0

		327		327		328		327		327		327		327		327		327		327.1111111111

		304		306		309		304		306		308		304		307		308		306.2222222222

		Gen30																		0

		327		327		327		327		327		327		328		327		327		327.1111111111

		306		304		307		304		308		304		309		308		304		306

		Gen31																		0

		327		328		327		327		327		327		327		327		327		327.1111111111

		304		309		306		308		308		304		307		305		304		306.1111111111

		Gen32																		0

		327		327		328		327		327		327		327		327		327		327.1111111111

		307		305		308		308		304		305		308		309		308		306.8888888889

		Gen33																		0

		327		328		327		327		327		327		328		327		327		327.2222222222

		308		307		305		309		304		307		308		306		306		306.6666666667

		Gen34																		0

		327		327		328		327		327		327		327		327		327		327.1111111111

		307		306		307		305		305		308		308		306		304		306.2222222222

		Gen35																		0

		328		327		327		327		327		327		328		327		327		327.2222222222

		307		308		306		307		304		305		307		306		306		306.2222222222

		Gen36																		0

		327		328		328		327		327		327		327		327		327		327.2222222222

		306		307		307		308		305		306		306		306		305		306.2222222222

		Gen37																		0

		327		328		327		327		327		327		327		327		327		327.1111111111

		306		306		308		307		306		305		307		306		306		306.3333333333

		Gen38																		0

		327		327		325		327		327		327		327		327		327		326.7777777778

		305		306		306		306		306		305		307		306		307		306

		Gen39																		0

		327		326		326		327		327		327		325		327		327		326.5555555556

		305		306		306		307		306		306		306		306		305		305.8888888889

		Gen40																		0

		327		327		327		327		327		327		325		326		326		326.5555555556

		306		306		306		306		305		305		306		306		306		305.7777777778

Taul1

		

Bishop

Knight

generation

average generation value

Taul2

		

Taul3

		

_1142089577.bin

_1142089624.bin

_1141591341

_1140544847

_1129967619.unknown

_1140375558.unknown

_1140375569.unknown

_1140375597.unknown

_1140375505.unknown

_1129967693.unknown

_1129640884.unknown

_1081072588.bin

_1081082114.bin

_1081082307.bin

_1081073858.bin

_988540227.unknown

_1081072028.bin

_988540225.unknown

_988540226.unknown

_976433104.vsd

_988540199.unknown

