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Structure of the presentation

• Information visualization.

• Methods of dimensionality reduction

• Assessing the quality of visualizations

• New methods



Information visualization

The use of computer-supported, interactive, visual representations of

abstract data to amplify cognition

Card 1999



why visualize

INPUT SPACE OUTPUT SPACE
Point Var 1 Var 2 Var 3 Var 4

1 5.1 3.5 1.4 2.3

2 5.4 3.7 1.5 0.2

3 5.4 3.4 1.7 0.2

4 4.8 3.1 1.6 0.2

5 5.0 3.5 1.3 0.3

6 7.0 3.2 4.7 1.4

7 5.0 2.0 3.5 1.0

8 5.9 3.2 4.8 1.8

9 5.5 2.4 3.8 1.1

10 5.5 2.6 4.4 1.2

11 6.3 3.3 6.0 2.5

12 6.5 3.2 5.1 2.0

13 6.9 3.2 5.7 2.3

14 7.4 2.8 6.1 1.9

15 6.7 3.1 5.6 2.4
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Classical methods for multivariate
visualization
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Dimensionality reduction methods

• Traditional approaches

– Linear

– Nonlinear distance preserving mappings

• Manifold learning methods

• Other methods

S-shaped manifold Sphere Clusters
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Traditional approaches: Linear

• Projection pursuit

• Principal component analysis (PCA)/

linear Multidimensional Scaling

• The Grand Tour



Principal Component Analysis (PCA) /
linear Multidimensional Scaling (MDS)

• The goal of PCA is to find linear components having maximal

variance.

• Projection of the original data to the PCA subspace equals the

configuration of points found by linear MDS (Classical scaling) that

is calculated from the Euclidean distance matrix of the data.



PCA projections of the toy data sets

S-shaped manifold Sphere Clusters
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Traditional approaches: Distance Preserving
Mappings

• Traditional Multidimensional Scaling (MDS)

• Isomap

• Curvilinear Component Analysis (CCA)



Traditional MDS

• There are several different variants of Multidimensional Scaling

(MDS)

• The goal: to find a configuration of points that preserves the

pairwise distance matrix of the data.

• The simplest nonlinear Multidimensional Scaling method is metric

MDS. Its cost function, raw stress, is

E =
∑

ij

(d(xi,xj) − d(yi,yj))
2, (1)

• Other variants include Sammon’s mapping and nonlinear MDS.



Metric MDS projections of the toy data sets

S-shaped manifold Sphere Clusters
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Isomap

• Originally presented as a manifold learning method

• Form the k-nearest-neighbor graph. Each edge has a weight that is

the Euclidean distance between the points it connects.

• Calculate the shortest path distances between points on the graph.

• Find the configuration of points by using linear MDS on the shortest

path distance matrix.



Isomap projections of the toy data sets

S-shaped manifold Sphere Clusters
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Curvilinear Component Analysis (CCA)

• Concentrates on preserving only the distances between points that

are proximate in the output space instead of all pairwise distances.

• The cost function

E =
1

2

∑

i

∑

j 6=i

(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), σ) , (2)

• The width of the area of influence around each data point σ is

slowly reduced to zero during the optimization.



CCA projections of the toy data sets

S-shaped manifold Sphere Clusters
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Manifold Learning

The goal is to find and unfold the nonlinear manifold assumed to lie in

the high dimensional data space

• Locally Linear Embedding (LLE)

• Laplacian Eigenmap

• Charting

• Maximum Variance Unfolding (MVU)



Locally Linear Embedding (LLE)

• The geometry of the data can be captured by calculating the linear

coefficients that reconstruct each data point from its k nearest

neighbors.

• The optimal reconstruction weights are found by minimizing:

E(W) =
∑

i

|xi −
∑

j

Wijxj |
2. (3)

• For visualization the configuration of points is found by minimizing

E(Y) =
∑

i

|yi −
∑

j

Wijyj |
2 , (4)



LLE projections of the toy data sets

S-shaped manifold Sphere Clusters
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Other Approaches

• The Self-Organizing Map (SOM)

• Stochastic Neighbor Embedding



Stochastic Neighbor Embedding (SNE)

• SNE tries to preserve the probability of points being a neighbors

• The probability pij of the point i being a neighbor of point j in the input

space

pij =
exp (−d(xi,xj)/σ

(i)
i )

P

k 6=i
exp (−d(xi,xk)/σ

(i)
i )

, (5)

• The probability of the point i being a neighbor of point j in the output

space

qij =
exp (−‖yi − yj‖

2/σ
(o)
i )

P

k 6=i
exp (−‖yi − yk‖2/σ

(o)
i )

. (6)

• The cost function

E =
X

i

X

j

pij log
pij

qij

. (7)



SNE projections of the toy data sets

S-shaped manifold Sphere Clusters

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10 −8 −6 −4 −2 0 2 4 6 8 10

−8

−6

−4

−2

0

2

4

6



Assessing the quality of visualizations

• The final truth can only be found by usability studies

• Quality measures can be used to verify that the relevant features in

the data are represented accurately

• Commonly used methods to asses the quality of visualizations

– Qualitative assessment by looking at the visualization

– Distance preservation measures

– Classification rate



A new visualization task:
Visual Neighbor Retrieval

The task of the user is to identify the neighbors of a data point by

looking at the visualization.

The task of the visualization system is to produce a single image that

allows the neighbors of data points to be selected as well as possible

without prior knowledge of which data points neighbors are studied.



Precision and Recall

• precision and recall are used to measures the quality of information

retrieval systems

•

precision =
NTP

k
= 1 −

NFP

k
, (8)

where NTP is the number of the true positives, NFP is the number

of the false positives and k is the number of the retrieved items.

•

recall =
NTP

r
= 1 −

NMISS

r
, (9)

where NMISS is the number of the misses, the relevant objects not

retrieved, and r is the total number of the relevant objects.



Precision and Recall in a visualization

• The precision and recall are calculated separately for each data

points neighborhood

• r=number of nearest neighbors in the data sets

• k=number of neighbors studied in the visualization

• The precision and recall measures are averaged to get the overall

measure for the visualization.



Trustworthiness of a visualization

Mtrust(k) = 1 − A(k)
N∑

i=1

∑

j∈Uk(i)

(r(i, j) − k), (10)

• A(k) scales the measure to be between zero and one:

• Uk(i) is the set of points that are in the neighborhood of the data

point i in the output space but not in the input space.

• The errors are quantified by ranks (r(i, j)) instead of just counted

as in precision



Continuity of a visualization

Mcont(k) = 1 − A(k)
N∑

i=1

∑

j∈Vk(i)

(r̂(i, j) − k) . (11)

• A(k) scales the measure to be between zero and one:

• Vk(i) is the set of points that are in the neighborhood of the data

point i in the input space but not in the output space.

• The errors are quantified by ranks (r̂(i, j)) instead of just counted

as in recall



Comparison of visualization methods; S-data
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New methods aimed for the visual neighbor
retrieval task

• Neighbor Retrieval Visualizer (NeRV)

• Local MDS



Neighbor Retrieval Visualizer (NeRV)

• It can be shown that SNE optimizes a kind of smoothed recall

measure.

• Typically optimizing recall leads to low precision

• By reversing the Kullback-Liebler divergence in the cost function of

SNE we get a method that optimizes smoothed precision

• NeRV cost function

ENeRV = λEi[DKL(pi, qi)] + (1 − λ)Ei[DKL(qi, pi)]

= λ
∑

i

∑

j 6=i

pij log
pij

qij

+ (1 − λ)
∑

i

∑

j 6=i

qij log
qij

pij

, (12)

• λ ∈ [0 . . . 1] selects the trade off between precision and recall



Example: NeRV projections of a sphere
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Local MDS

• CCA concentrates on preserving distances between close-by points in

the visualization. This results in good trustworthiness.

• by adding a term to the cost function that concentrates on

preserving distances between close-by points in the original space

the formation of discontinuities in the mapping is discouraged.

• The cost function is

E =
1

2

∑

i

∑

j 6=i

[(1 − λ)(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), σi)

+λ(d(xi,xj) − d(yi,yj))
2F (d(xi,xj), σi)] .

• F (d(•i, •j), σi) is the area of influence around the data point i



Example: local MDS projections of a sphere
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Further information

http://www.cis.hut.fi/projects/mi


