Genetic algorithms for large scale clustering problems

(published in The Computer Journal, 40 (9), 547-554, 1997)

Pasi Fränti1, Juha Kivijärvi2, Timo Kaukoranta2 and Olli Nevalainen2
	1 Department of Computer Science,

University of Joensuu, PB 111

FIN-80101 Joensuu, FINLAND

Email: franti@cs.joensuu.fi
	2 Turku Centre for Computer Science (TUCS)

Department of Computer Science

University of Turku

Lemminkäisenkatu 14 A

FIN-20520 Turku, FINLAND

Abstract

We consider the clustering problem in a case where the distances of elements are metric and both the number of attributes and the number of the clusters are large. Genetic algorithm approach gives in this environment high quality clusterings at the cost of long running time. Three new efficient crossover techniques are introduced. The hybridization of genetic algorithm and k-means algorithm is discussed.

Indexing terms: clustering problem, genetic algorithms, vector quantization, image compression, color image quantization.
1. Introduction

Clustering is a combinatorial problem where the aim is to partition a given set of data objects into a certain number of clusters [1, 2]. In this paper we concentrate on large scale data where the number of data objects (N), the number of constructed clusters (M), and the number of attributes (K) are relatively high. Standard clustering algorithms work well for very small data sets but often perform much worse when applied to large scale clustering problems. On the other hand, it is expected that a method that works well for large scale data would also work well for problems of smaller scale.

Clustering includes the following three subproblems: (1) the selection of the cost function, (2) the decision of the number of classes used in the clustering, and (3) the choice of the clustering algorithm. We consider only the last subproblem and assume that the number of classes (clusters) is fixed beforehand. In some application (such as vector quantization [3]) the question is merely about resource allocation, i.e. how many classes can be afforded. The data set itself may not contain clearly separate clusters but the aim is to partition the data into a given amount of clusters so that the cost function is minimized.

Many of the clustering algorithms can be generalized to the case where the number of classes must also be solved. For example, the clustering algorithm can be repeatedly applied for the data using all reasonable number of clusters. The clustering best fitting the data is then chosen according to any suitable criterion. The decision is typically made by the researcher of the application area but analytical methods have also been considered. For example, by minimizing the stochastic complexity [4] one can determine the clustering for which the entropy of the intracluster diversity and the clustering structure is minimal.

Due to the high number of data objects we use a metric distance function instead of a distance matrix to approximate the distances between the objects. The attributes of the objects are assumed to be numerical and of the same scale. The objects can thus be considered as points in a K‑dimensional Euclidean space. The aim of the clustering in the present work is to minimize the intracluster diversity (distortion).

Optimization methods are applicable to the clustering problem [5]. A common property of these methods is that they consider several possible solutions and generate a new solution (or a set of solutions) at each step on the basis of the current one.

In a genetic algorithm (GA) [6] we use a model of the natural selection in real life. The idea is the following. An initial population of solutions called individuals is (randomly) generated. The algorithm creates new generations of the population by genetic operations, such as reproduction, crossover and mutation. The next generation consists of the possible survivors (i.e. the best individuals of the previous generation) and of the new individuals obtained from the previous population by the genetic operations.

Genetic algorithms have been considered previously for the clustering problem in vector quantization by Delport and Koschorreck [7], and by Pan, McInnes and Jack [8]. Vector quantization was applied to DCT-transformed images in [7], and to speech coding in [8]. Scheunders [9] studied genetic algorithms for the scalar quantization of gray-scale images, Murthy and Chowdhury [10] for the general clustering problem. These studies concentrate on special applications [7, 8, 9], or the algorithms have been applied to very small scale data sets [10] only, and there is no guarantee that the methods work for large scale problems in different application domain. In addition, the parameters of the proposed methods should be studied in more detail.

In this paper we present a systematic study on genetic algorithms for the clustering problem. In the design of the algorithms, the key questions are:

 Representation of the solution.

 Selection method.

 Crossover method.

The efficiency of the GA is highly dependent on the coding of the individuals. In our case a natural representation of a solution is a pair (partitioning table, cluster centroids). The partitioning table describes for each data object the index of the cluster where it belongs. The cluster centroids are representative objects of the clusters and their attributes are found by averaging the corresponding attributes among the objects in the particular cluster.

Three methods for selecting individuals for crossover are considered: a probability-based method and two elitist variants. In the first one, a candidate solution is chosen to crossover with a probability that is a function of its distortion. In the latter two variants only the best solutions are accepted while the rest are dropped.

For the crossover phase, we discuss several problem oriented methods. These include two previously reported (random crossover [7, 10] and centroid distance [8, 9]) and three new techniques (pairwise crossover, largest partitions and pairwise nearest neighbor). It turns out that, due to the nature of the data, none of the studied methods is efficient when used alone but the resulting solutions must be improved by applying few steps of the conventional k-means clustering algorithm [11]. In this hybrid method, new solutions are first created by crossover and then fine-tuned by the k-means algorithm. In fact, all previously reported GA methods [7-10] include the use of k-means in a form or another.

The rest of the paper is organized as follows. In Section 2 we discuss the clustering problem, the applications and data sets of the problem area. Essential features of the GA-solution are outlined in Section 3. Results of the experiments are reported in Section 4. A comparison to other clustering algorithms is made. Finally, conclusions are drawn in Section 5.

2. Clustering problem and applications

Let us consider the following six data sets: Bridge, Bridge-2, Miss America, House, Lates mariae, and SS2, see Fig. 1. Due to our vector quantization and image compression background, the first four data sets originate from this context. We consider these data sets merely as test cases of the clustering problem.

In vector quantization, the aim is to map the input data objects (vectors) into a representative subset of the vectors, called codevectors. This subset is referred as a codebook and it can be constructed using any clustering algorithm. In data compression applications, reduction in storage space is achieved by storing the index of the nearest codevector instead of each original data vector. More details on the vector quantization and image compression applications can be found in 3, 12, 13.

Bridge consists of 44 spatial pixel blocks sampled from the gray-scale image (8 bits per pixel). Each pixel corresponds to a single attribute having a value in the range 0, 255. The data set is very sparse and no clear cluster boundaries can be found. Bridge-2 has the blocks of Bridge after a BTC-like quantization into two values according to the average pixel value of the block 14. The attributes of this data set are binary values (0/1) which makes it an important special case for the clustering. According to our experiments, most of the existing methods do not apply very well for this kind of data.

The third data set (Miss America) has been obtained by subtracting two subsequent image frames of the original video image sequence, and then constructing 44 spatial pixel blocks from the residuals. Only the first two frames have been used. The application of this kind of data is found in video image compression [15]. The data set is similar to the first set except that the data objects are presumably more clustered due to the motion compensation (subtraction of subsequent frames).

The fourth data set (House) consists of the RGB color tuples from the corresponding color image. This data could be applied for palette generation in color image quantization (16, 17. The data objects have only three attributes (red, green and blue color values) but there are a high number of samples (65536). The data space consists of a sparse collection of data objects spread into a wide area, but there are also some clearly isolated and more compact clusters.

The fifth data set (Lates mariae) records 215 data samples from pelagic fishes on Lake Tanganyika. The data originates from a research of biology, where the occurrence of 52 different DNA fragments were tested from each fish sample (using RAPD analysis) and a binary decision was obtained whether the fragment was present or absent. This data has applications in studies of genetic variations among the species [18]. From the clustering point of view the set is an example of data with binary attributes. Due to only a moderate number of samples (215), the data set is an easy case for the clustering, compared to the first four sets.

The sixth data set is the standard clustering test problem SS2 of [2], pp. 103-104. The data sets contain 89 postal zones in Bavaria (Germany) and their attributes are the number of self-employed people, civil servants, clerks and manual workers in these areas. The dimensions of this set are rather small in comparison to the other sets. However, it is a commonly used data set and serves here as an example of a typical small scale clustering problem.

The data sets and their properties are summarized in Table 1. In the experiments made here, we will fix the number of clusters to 256 for the image data sets, 8 for the DNA data set, and 7 for the SS2 data set.

	
	

	

	

	

	

	
	Bridge
(256256)
	Bridge-2

(256256)
	Miss America

(360288)
	House

(256256)
	Lates mariae (52215)

Figure 1. Sources for the first five data sets.

Table 1. Data sets and their statistics.

	
	Data set
	Attributes
	# Objects
	# Clusters

	
	Bridge
	16
	4096
	256

	
	Bridge-2
	16
	4096
	256

	
	Miss America
	16
	6480
	256

	
	House
	3
	65536
	256

	
	Lates mariae
	52
	215
	8

	
	SS2
	4
	89
	7

In the clustering problem we are given a set

 of K dimensional vectors

. A clustering

 of Q has the properties

a)

, for i=1,…,M
b)

, for

 and

c)

Each cluster Ci (i=1,…,M) has a representative element, called the centroid

,

. Here

 stands for the number of objects in

 and the summation is over the objects X which belong to the cluster

.
Assuming that the data objects are points of an Euclidean space, the distance between two objects

 and

 can be defined by:

(1)
where

 and

 stand for the k’th attribute of the objects. Let

 be a mapping which gives the closest centroid in solution (for a sample

. The distortion of the solution (for objects

 is

(2)
The problem is to determine a clustering

 for which

.

When we use (1) as the distance measure we assume that the attributes in the data set are numerical and have the same scale. This is the case for our first five data sets, but we note that it does not hold for the sixth set. In this case the attributes are scaled in order to have similar value ranges. Formula (2) measures the distortion of a solution by the mean square distance of the data objects and their cluster centroids. Again, this is only one of possible distortion measures.

3. Genetic algorithm

The general structure of GA is shown in Fig. 2. Each individual of the population stands for a clustering of the data. An individual is initially created by selecting M random data objects as cluster representatives and by mapping all the other data objects to their nearest representative, according to (1). In each iteration, a predefined number (SB) of best solutions will survive to the next generation. The rest of the population is replaced by new solutions generated in the crossover phase. We will discuss the different design alternatives of the algorithm in the following subsections.

	
	1. Generate S random solutions for the initial generation.

2. Iterate the following T times

2.1. Select the SB surviving solutions for the next generation.

2.2. Generate new solutions by crossover.

2.3. Generate mutations to the solutions.

3. Output the best solution of the final generation.

	
	Figure 2. A sketch for a genetic algorithm.

3.1 Representation of a solution

A solution to the clustering problem can be expressed by the pair (partitioning table, cluster centroids). These two depend on each other so that if one of them has been given, the optimal choice of the other one can be uniquely constructed. This is formalized in the following two optimality conditions [3]:

 Nearest neighbor condition: For a given set of cluster centroids, any data object can be optimally classified by assigning it to the cluster whose centroid is closest to the data object in respect to the distance function.

 Centroid condition: For a given partition, the optimal cluster representative, that is the one minimizing the distortion, is the centroid of the cluster members.

It is therefore sufficient to determine only the partitioning or the cluster centroids to define a solution. This implies two alternative approaches to the clustering problem:

 Centroid-based (CB)

 Partitioning-based (PB)

In the centroid-based variant, the sets of centroids are the individuals of the population, and they are the objects of genetic operations. Each solution is represented by an M‑length array of K‑dimensional vectors (see Fig. 3). The elementary unit is therefore a single centroid. This is a natural way to describe the problem in the context of vector quantization. In this context the set of centroids stands for a codebook of the application and the partitions are of secondary importance. The partitioning table, however, is needed when evaluating the distortion values of the solutions and it is calculated using the nearest neighbor condition.

In the partitioning-based variant the partitionings are the individuals of the population. Each partitioning is expressed as an array of N integers from the range 1..M defining cluster membership of each data object. The elementary unit (gene) is a single membership value. The centroids are calculated using the centroid condition. The partitioning-based variant is commonly used in the traditional clustering algorithms because the aim is to cluster the data with no regard to the representatives of the clusters.

Two methods reported in the literature apply the centroid-based approach [8, 9] and the other two methods apply the partitioning-based approach [7, 10]. From the genetic algorithm’s point of view, the difference between the two variants lies in the realization of the crossover and mutation phases. The problem of the partitioning-based representation is that the clusters become non-convex (in the sense that objects from different parts of the data space may belong to the same cluster) if a simple random crossover method is applied, as proposed in [7, 10]. The convexity of the solutions can be restored by applying the k‑means algorithm (see Section 3.5), but then the resulting cluster centroids tend to move towards to the centroid of the data set. This moves the solutions systematically to the same direction, which slows down the search. It is therefore more effective to operate with the cluster centroids than with the partitioning table. Furthermore, all practical experiments have indicated that the PB-variant is inferior to the CB-variant. We will therefore limit our discussion to the CB-variant in the rest of the paper.

Figure 3. Illustration of a solution.

3.2 Selection methods

Selection method defines the way a new generation is constructed from the current one. It consists of the following three parts:

 Determining the SB survivors.

 Selecting the crossing set of SC solutions.

 Selecting the pairs for crossover from the crossing set.

We study the following selection methods:

 Roulette wheel selection

 Elitist selection method 1

 Elitist selection method 2

The first method is a probability based variant. In this variant, only the best solution survives (SB=1) and the crossing set consists of all the solutions (SC=S). For the crossover, S-1 random pairs are chosen by the roulette wheel selection. The weighting function 7 for solution (is

(3)
and the probability that the ith solution is selected to crossover is

(4)
where (j,

 are the solutions of the current population.

In the first elitist variant SB best individuals survive. They also compose the crossover set, i.e. SC=SB. All the solutions in the crossover set are crossed with each other so that the crossover phase produces SC(SC-1)/2 new solutions. The population size is thus S = SC(SC+1)/2. Here we use SC=9 resulting in the population size of S=45.

In the second elitist variant only the best solution survives (SB=1). Except for the number of the survivors, the algorithm is the same as the first variant; the SC best solutions are crossed with each other giving a population size of S = 1 + SC(SC-1)/2. Here we use SC=10 which gives a population size of S=46. Note that we can select the desired population size by dropping out a proper number of solutions.

3.3 Crossover algorithms

The object of the crossover operation is to create a new (and hopefully better) solution from the two selected parent solutions (denoted here by A and B). In the CB-variants the cluster centroids are the elementary units of the individuals. The crossover can thus be considered as the process of selecting M cluster centroids from the two parent solutions. Next we recall two existing crossover methods (random crossover, centroid distance) and introduce three new methods (pairwise crossover, largest partitions, pairwise nearest neighbor).

Random crossover:
Random multipoint crossover is performed by picking M/2 randomly chosen cluster centroids from each of the two parents in turn. Duplicate centroids are rejected and replaced by repeated picks. This is an extremely simple and quite efficient method, because there is (in the unsorted case) no correlation between neighboring genes to be taken advantage of. The method works in a similar way to the random single point crossover methods of the PB-based variants [7, 10] but it avoids the non-convexity problem of the PB approach.

Centroid distance [8, 9]:
If the clusters are sorted by some criterion, single point crossover may be advantageous. In [8], the clusters were sorted according to their distances from the centroid of the entire data set. In a sense, the clusters are divided into two subsets. The first subset (central clusters) consists of the clusters that are close to the centroid of the data set, and the second subset (remote clusters) consists of the clusters that are far from the data set centroid. A new solution is created by taking the central clusters from solution A and the remote clusters from solution B. Note that only the cluster centroids are taken, the data objects are partitioned using the nearest neighbor condition. The changeover point can be anything between 1 and M; we use the halfpoint (M/2) in our implementation. A simplified version of the same idea was considered in [9] for scalar quantization of images (K=1).

Pairwise crossover:
It is desired that the new individual should inherit different genes from the two parents. The sorting of the clusters by the centroid distance is an attempt of this kind but the idea can be developed even further. The clusters between the two solutions can be paired by searching the “nearest” cluster (in the solution B) for every cluster in the solution A. Crossover is then performed by taking one cluster centroid (by random choice) from each pair of clusters. In this way we try to avoid selecting similar cluster centroids from both parent solutions. The pairing is done in a greedy manner by taking for each cluster in A the nearest available cluster in B. A cluster that has been paired cannot be chosen again, thus the last cluster in A is paired with the only one left in B. This algorithm does not give the optimal pairing (2‑assignment) but it is a reasonably good heuristic for the crossover purpose.

Largest partitions:
In the largest partitions algorithm the M cluster centroids are picked by a greedy heuristic based on the assumption that the larger clusters are more important than the smaller ones. This is a reasonable heuristic rule since our aim is to minimize the intracluster diversity. The cluster centroids should thus be assigned to a large concentration of data objects.

Each cluster in the solutions A and B is assigned with a number, cluster size, indicating how many data objects belong to it. In each phase, we pick the centroid of the largest cluster. Assume that cluster i was chosen from A. The cluster centroid Ci is removed from A to avoid its reselection. For the same reason we update the cluster sizes of B by removing the effect of those data objects in B that were assigned to the chosen cluster i in A.

Pairwise nearest neighbor:
An alternative strategy is to consider the crossover phase as a special case of the clustering problem. In fact, if we combine the cluster centroids A and B, their union can be treated as a data set of 2M data objects. Now our aim is to generate M clusters from this data set. This can be done by any existing clustering algorithm. Here we consider the use of pairwise nearest neighbor (PNN) [19]. It is a variant of the so-called agglomerative nesting algorithm and was originally proposed for vector quantization.

The PNN algorithm starts by initializing a clustering of size 2M where each data object is considered as its own cluster. Two clusters are combined at each step of the algorithm. The clusters to be combined are the ones that increase the value of the distortion function least. This step is iterated M times, after which the number of the clusters has decreased to M.

3.4 Mutations

Each cluster centroid is replaced by a randomly chosen data object with a probability p. This operation is performed before the partitioning phase. We fix this probability to p = 0.01, which has given good results in our experiments.

3.5 Fine-tuning by the k-means algorithm

One can try to improve the algorithm by applying a few steps of the k-means algorithm for each new solution [3, 11]. The crossover operation first generates a rough estimate of the solution which is then fine-tuned by the k-means algorithm. This modification allows faster convergence of the solution than pure genetic algorithm.

Our implementation of the k-means algorithm is the following. The initial solution is iteratively modified by applying the two optimality conditions (of Section 3.1) in turn. In the first stage the centroids are fixed and the clusters are recalculated using the nearest neighbor condition. In the second stage the clusters are fixed and new centroids are calculated. The optimality conditions guarantee that the new solution is always at least as good as the original one.

4. Test results

The performance of the genetic algorithm is illustrated in Fig. 4 as a function of the number of generations for Bridge and Bridge-2. The inclusion of the k-means algorithm is essential; even the worst candidate in each generation is better than any of the candidates without k‑means. The drawback of the hybridization is that the running time considerably grows as the number of k-means steps increases. Fortunately, it is not necessary to perform the k‑means algorithm to its convergence but only a couple of steps (two in the present work) suffice. The results are similar for the other data sets not shown in Fig. 4.

The performance of the different crossover methods is illustrated in Fig. 5 as a function of the number of generations. The pairwise crossover and the PNN method outperform the centroid distance and random crossover methods. Of the tested methods the PNN algorithm is the best choice. It gives the best clustering with the fewest number of iterations. Only for binary data, the pairwise crossover method obtains slightly better results in the long run.

The performance of the different selection and crossover methods is summarized in Table 2. The selection method seems to have a smaller effect on the overall performance. In most cases the elitist variants are better than the roulette wheel selection. However, for the best crossover method (PNN algorithm) the roulette wheel selection is a slightly better choice.

The above observations demonstrate two important properties of genetic algorithms for large scale clustering problems. A successful implementation of GA should direct the search efficiently but it should also retain enough genetic variation in the population. The first property is clearly more important because all ideas based on it (inclusion of k‑means, PNN crossover, elitist selection) gave good results. Their combination, however, reduces the genetic variation so that the algorithm converges too quickly. Thus, the best results were reached only for the binary data sets. In the best variant, we therefore use the roulette wheel selection to compensate the loss of the genetic variation.

Among the other parameters, the amount of mutations had only a small effect on the performance. Another interesting but less important question is whether extra computing resources should be used to increase the generation size or the number of iteration rounds. Additional tests have shown that the number of iteration rounds has a slight edge over the generation size but the difference is small and the quality of the best clustering depends mainly on the total number of candidate solutions tested.

The best variant of GA is next compared to other existing clustering algorithms. Simulated annealing algorithm (SA) is implemented here as proposed in 20. The method is basically the same as the k-means algorithm but random noise is added to the cluster centroids after each step. A logarithmic temperature schedule decreases the temperature by 1 % after each iteration step.

The results for k-means, PNN, SA and GA are summarized in Table 3. We observe that GA clearly outperforms the other algorithms used in comparison. SA can match the GA results only for the two smallest test sets, and if the method is repeated several times, as shown in Table 4. The statistics show also that GA is relatively independent on the initialization whereas the results of k‑means have much higher variation. According to the Student's t-test (independent samples with no assumptions on the equality of the variances) the difference between the GA results and the k-means/SA results are significant (with risk of wrong decision p<0.05) except for SA and GA results for Bridge.
It was proposed in 10 that the initial population would be constructed as the output of S independent runs of the k-means algorithm. However, this approach had in our tests no benefits compared to the present approach where k‑means is applied in each generation. Only moderate improvement is achieved if k-means was applied to the initial population only. Furthermore, if k-means iterations are already integrated in each iteration, random initialization can be used as well. For a more detailed discussion of various hybridizations of GA and k-means, see 21.
The drawback of GA is its high running time. For Bridge the running times (min:sec) of the algorithms (k‑means, SA, PNN, GA) were 0:38, 13:03, 67:00 and 880:00 respectively. Higher quality clusterings are thus obtained at the cost of larger running time.

	
	

	

Figure 4. Quality of the best (solid lines) and worst candidate solutions (broken lines) as a function of generation number for Bridge (left) and for Bridge-2 (right). The elitist selection method 1 was applied with the random crossover technique. Two steps of the k-means algorithm were applied.
	
	

	

Figure 5. Convergence of the various crossover algorithms for Bridge (left) and for Bridge-2 (right). The elitist selection method 1 was used, and two steps of the k-means algorithm were applied.
Table 2. Performance comparison of the selection and crossover techniques. GA results are averaged from five test runs. The distortion values for Bridge are due to (2). For Bridge‑2 the table shows the average number of distorted attributes per data object (varying from 0 to K). Population size is 45 for elitist method 1, and 46 for method 2.

	
	Bridge
	Random

crossover
	Centroid

distance
	Pairwise

crossover
	Largest

partitions
	PNN

algorithm

	
	Roulette wheel
	174.77
	172.09
	168.36
	178.45
	162.09

	
	Elitist method 1
	173.46
	168.73
	164.34
	172.44
	162.91

	
	Elitist method 2
	173.38
	168.21
	164.28
	171.93
	162.90

	
	Bridge-2
	Random

crossover
	Centroid

distance
	Pairwise

crossover
	Largest

partitions
	PNN

algorithm

	
	Roulette wheel
	1.40
	1.34
	1.34
	1.30
	1.28

	
	Elitist method 1
	1.34
	1.30
	1.27
	1.30
	1.28

	
	Elitist method 2
	1.35
	1.30
	1.26
	1.29
	1.27

Table 3. Performance comparison of various algorithms. In GA, the roulette wheel selection method and the PNN crossover with two steps of the k‑means algorithm were applied. The k-means and SA results are averages from 100 test runs; GA results from 5 test runs.

	
	
	k-means
	PNN
	SA
	GA

	
	Bridge
	179.68
	169.15
	162.45
	162.09

	
	Miss America
	5.96
	5.52
	5.26
	5.18

	
	House
	7.81
	6.36
	6.03
	5.92

	
	Bridge-2
	1.48
	1.33
	1.52
	1.28

	
	Lates mariae
	5.28
	5.41
	5.19
	4.56

	
	SS2
	1.14
	0.34
	0.32
	0.31

Table 4. Statistics (min, max, and standard deviation) of the test runs, see Table 3 for parameter settings.

	
	min - max st. dev.
	k-means
	SA
	GA

	
	Bridge
	176.85 - 183.93

1.442
	162.08 - 163.29

0.275
	161.75 - 162.39

0.305

	
	Miss America
	5.80 - 6.11

0.056
	5.24 - 5.29

0.013
	5.17 - 5.18

0.005

	
	House
	7.38 - 8.32

0.196
	5.97 - 6.08

0.023
	5.91 - 5.93

0.009

	
	Bridge-2
	1.45 - 1.52

0.015
	1.43 - 1.50

0.014
	1.28 - 1.29

0.002

	
	Lates mariae
	4.56 - 6.67

0.457
	4.56 - 5.28

0.166
	4.56 - 4.56

0.000

	
	SS2
	0.40 - 2.29

0.899
	0.31 - 0.35

0.009
	0.31 - 0.31

0.000

5. Conclusions

GA solutions for large scale clustering problems were studied. The implementation of a GA-based clustering algorithm is quite simple and straightforward. However, problem specific modifications were needed because of the nature of the data. New candidate solutions are created in the crossover but they are too arbitrary to give a reasonable solution to the problem. Thus, the candidate solutions must be fine-tuned by a small number of steps of the k-means algorithm.

The main parameters of GA for the clustering problems studied here are the inclusion of k-means steps, and the crossover technique. The mutation probability and the choice of selection method seem to be of minor importance. The centroid-based representation for the solution was applied. The results were promising for this configuration of GA. The results of GA (when measured by the intracluster diversity) were better than those of k‑means and PNN. For non-binary data sets SA gave competitive results to GA with less computing efforts, but for binary data sets GA is still superior. The major drawback of GA is the high running time, which may in some cases prohibit the use of the algorithm.

Acknowledgements

The work of Pasi Fränti was supported by a grant from the Academy of Finland.
References

	[1]
	L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley Sons, New York, 1990.

	[2]
	H. Späth, Cluster Analysis Algorithms for Data Reduction and Classification of Objects, Ellis Horwood Limited, West Sussex, UK, 1980.

	[3]
	A. Gersho and R.M. Gray, Vector Quantization and Signal Compression. Kluwer Academic Publishers, Boston, 1992.

	[4]
	M. Gyllenberg, T. Koski and M. Verlaan, Classification of binary vectors by stochastic complexity. Journal of Multivariate Analysis, 63 (1), 47-72, October 1997.

	[5]
	K.S. Al-Sultan and M.M. Khan, Computational experience on four algorithms for the hard clustering problem. Pattern Recognition Letters, 17, 295-308, 1996.

	[6]
	D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, 1989.

	[7]
	V. Delport and M. Koschorreck, Genetic algorithm for codebook design in vector quantization. Electronics Letters, 31, 84-85, January 1995.

	[8]
	J.S. Pan, F.R. McInnes and M.A. Jack, VQ codebook design using genetic algorithms. Electronics Letters, 31, 1418-1419, August 1995.

	[9]
	P. Scheunders, A genetic Lloyd-Max quantization algorithm. Pattern Recognition Letters, 17, 547-556, 1996.

	[10]
	C.A. Murthy and N. Chowdhury, In search of optimal clusters using genetic algorithms. Pattern Recognition Letters, 17, 825-832, 1996.

	[11]
	J.B. McQueen, Some methods of classification and analysis of multivariate observations, Proc. 5th Berkeley Symp. Mathemat. Statist. Probability 1, 281-296. Univ. of California, Berkeley, USA, 1967.

	[12]
	N.M. Nasrabadi and R.A. King, Image coding using vector quantization: a review. IEEE Transactions on Communications, 36, 957‑971, 1988.

	[13]
	C.F. Barnes, S.A. Rizvi and N.M. Nasrabadi, Advances in residual vector quantization: a review. IEEE Transactions on Image Processing, 5, 226-262, February 1996.

	[14]
	P. Fränti, T. Kaukoranta and O. Nevalainen, On the design of a hierarchical BTC‑VQ compression system, Signal Processing: Image Communication, 8, 551‑562, 1996.

	[15]
	J.E. Fowler Jr., M.R. Carbonara and S.C. Ahalt, Image coding using differential vector quantization. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 3 (5), pp. 350-367, October 1993.

	[16]
	M.T. Orchard, C.A. Bouman, Color quantization of images. IEEE Transactions on Signal Processing, 39, 2677-2690, December 1991.

	[17]
	X. Wu, YIQ Vector quantization in a new color palette architecture. IEEE Transactions on Image Processing, 5, 321-329, February 1996.

	[18]
	L. Kuusipalo, Diversification of endemic Nile perch Lates Mariae (Centropomidae, Pisces) populations in Lake Tanganyika, East Africa, studied with RAPD-PCR. Proc. Symposium on Lake Tanganyika Research, 60‑61, Kuopio, Finland, 1995.

	[19]
	W.H. Equitz, A new vector quantization clustering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 1568-1575, October 1989.

	[20]
	K. Zeger and A. Gersho, Stochastic relaxation algorithm for improved vector quantiser design. Electronics Letters, 25 (14), 896-898, July 1989.

	[21]
	P. Fränti, J. Kivijärvi, T. Kaukoranta and O. Nevalainen, Genetic algorithms for codebook generation in vector quantization, Proc. 3rd Nordic Workshop on Genetic Algorithms, 207-222, Helsinki, Finland, August 1997.

15

_932993234.unknown

_932993678.unknown

_932994268.unknown

_932994561.unknown

_932994959.unknown

_932995049.unknown

_932994622.unknown

_932994337.unknown

_932994267.unknown

_932994266.unknown

_932993471.unknown

_932993591.unknown

_932993283.unknown

_932992169.unknown

_932992712.unknown

_932992981.unknown

_932993004.unknown

_932992819.unknown

_932992391.unknown

_932992522.unknown

_932992221.unknown

_932992165.unknown

_932992167

_932992168.unknown

_932992166.unknown

_923403257

_932968231.xls
Sheet: Sheet1

Sheet: Sheet2

Sheet: Sheet3

Sheet: Sheet4

Sheet: Sheet5

Sheet: Sheet6

Sheet: Sheet7

Sheet: Sheet8

Sheet: Sheet9

Sheet: Sheet10

Sheet: Sheet11

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

Convergence of various crossover methods

(M=100, G=2)

ELITIST-1

ELITIST-1

Roulette wheel

Roulette wheel

Roulette wheel

Bridge

Bridge2

Missa

Bridge

Bridge2

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

0.0

252.495163

252.592026

251.448242

252.992142

252.45607

0.0

1.533447

1.523926

1.527588

1.524902

1.517334

0.0

8.303038

8.322637

8.249537

8.325376

8.301968

0.0

252.246323

246.930511

253.494385

251.726151

251.354568

0.0

1.525391

1.525146

1.534912

1.51001

1.0

187.713516

188.248825

187.505585

188.199951

182.166565

1.0

1.450439

1.442383

1.440674

1.424316

1.486816

1.0

6.341763

6.33559

6.276611

6.519242

6.079659

1.0

188.706085

187.986633

187.653

188.635635

183.705627

1.0

1.464111

1.449219

1.453125

1.476318

2.0

180.929108

179.544617

180.076202

179.719757

171.146179

2.0

1.439453

1.415771

1.42041

1.383789

1.394775

2.0

6.025482

5.968239

5.970303

6.238426

5.627951

2.0

182.376266

181.400803

181.131927

181.687759

171.773895

2.0

1.443604

1.424561

1.420166

1.408203

3.0

179.501984

177.672852

175.407135

178.069839

167.762283

3.0

1.41626

1.402344

1.39917

1.361816

1.354736

3.0

5.924817

5.909163

5.858758

6.186748

5.448563

3.0

179.275177

179.751816

177.11554

179.88176

168.423157

3.0

1.439209

1.412598

1.410889

1.371826

4.0

177.779785

176.185394

173.846741

177.053329

166.405136

4.0

1.41626

1.392334

1.384521

1.352783

1.329834

4.0

5.862211

5.811092

5.766454

6.186748

5.372367

4.0

178.716782

177.244278

174.853516

178.822342

166.225281

4.0

1.432617

1.403809

1.4021

1.353271

5.0

177.241577

175.51445

172.435837

176.046753

165.211548

5.0

1.403809

1.380615

1.370605

1.343018

1.313477

5.0

5.777411

5.770505

5.711998

6.186748

5.316927

5.0

178.716782

177.106873

174.846344

178.05455

165.236038

5.0

1.425293

1.394043

1.4021

1.342529

6.0

176.099289

174.745758

171.328171

175.719055

164.695984

6.0

1.387695

1.369385

1.355469

1.334717

1.299561

6.0

5.727894

5.727344

5.652103

6.186748

5.268113

6.0

176.869568

175.914001

173.834793

177.956116

164.215637

6.0

1.423584

1.388916

1.378662

1.335449

7.0

175.531693

174.369644

171.016602

175.261658

164.234818

7.0

1.387695

1.365479

1.344238

1.332275

1.297119

7.0

5.700801

5.687307

5.644165

6.186748

5.245091

7.0

176.869568

175.914001

172.968124

177.956116

163.910843

7.0

1.42334

1.388916

1.378662

1.328125

8.0

175.385727

174.172516

170.083649

174.495743

164.007828

8.0

1.387695

1.362061

1.344238

1.325684

1.292725

8.0

5.681453

5.687307

5.606366

6.186748

5.239198

8.0

176.869568

175.758698

172.413666

177.956116

163.503677

8.0

1.414551

1.388916

1.378662

1.325684

9.0

175.254837

173.483826

169.876358

174.233826

163.736176

9.0

1.387695

1.35791

1.330322

1.323242

1.289551

9.0

5.616233

5.641975

5.595264

6.186748

5.227411

9.0

176.869568

175.758698

172.069382

177.956116

163.251221

9.0

1.4104

1.381592

1.378662

1.315674

10.0

175.254837

173.069138

169.126465

174.233826

163.678894

10.0

1.381104

1.355713

1.324219

1.321533

1.287109

10.0

5.616233

5.641975

5.58315

6.186748

5.215008

10.0

176.869568

175.253723

171.640137

177.956116

163.135941

10.0

1.4104

1.379395

1.378662

1.315674

11.0

174.587036

172.550674

168.659653

174.233826

163.615265

11.0

1.381104

1.351074

1.317871

1.320068

1.286377

11.0

5.616233

5.637481

5.546914

6.186748

5.201977

11.0

176.869568

175.253723

171.440582

177.956116

162.968201

11.0

1.4104

1.379395

1.376221

1.315674

12.0

174.587036

172.550674

168.62442

174.066803

163.615265

12.0

1.379639

1.350586

1.313721

1.317627

1.285889

12.0

5.603877

5.637481

5.530334

6.186748

5.196451

12.0

176.700882

174.935349

171.312332

177.956116

162.742157

12.0

1.4104

1.378174

1.376221

1.315674

13.0

174.587036

172.392548

168.337753

173.933701

163.615265

13.0

1.376221

1.348145

1.313232

1.313477

1.2854

13.0

5.593576

5.596595

5.502228

6.186748

5.179851

13.0

176.700882

174.935349

171.217606

177.956116

162.728287

13.0

1.405029

1.378174

1.376221

1.307373

14.0

174.441681

172.048645

167.891006

173.819153

163.608444

14.0

1.373779

1.344971

1.306396

1.313477

1.2854

14.0

5.584954

5.596595

5.465008

6.186748

5.179851

14.0

176.700882

174.935349

170.563431

177.956116

162.728287

14.0

1.405029

1.378174

1.375732

1.307373

15.0

174.441681

171.541779

167.317001

173.665451

163.608444

15.0

1.373779

1.344971

1.306396

1.312012

1.2854

15.0

5.584954

5.580768

5.465008

6.186748

5.179851

15.0

176.700882

174.935349

170.563431

177.956116

162.555832

15.0

1.405029

1.374268

1.370605

1.307373

16.0

174.441681

171.439499

167.22435

173.505508

163.608444

16.0

1.371094

1.342285

1.305664

1.309082

1.2854

16.0

5.584954

5.561748

5.465008

6.186748

5.179851

16.0

176.700882

174.935349

170.332474

177.956116

162.555832

16.0

1.405029

1.370361

1.362305

1.304932

17.0

174.441681

171.272171

167.22435

173.46463

163.608444

17.0

1.366455

1.341064

1.300781

1.309082

1.28418

17.0

5.574093

5.561748

5.457735

6.186748

5.179138

17.0

176.459335

174.16803

170.332474

177.956116

162.450806

17.0

1.405029

1.370361

1.362305

1.304932

18.0

174.441681

171.000412

167.22435

173.46463

163.604996

18.0

1.366455

1.337646

1.299316

1.307861

1.283447

18.0

5.526003

5.549296

5.453617

6.186748

5.179138

18.0

176.432114

174.16803

170.332474

177.956116

162.450806

18.0

1.405029

1.370361

1.362305

1.303467

19.0

174.441681

171.000412

166.766403

173.46463

163.604996

19.0

1.366455

1.337646

1.299316

1.307129

1.283447

19.0

5.526003

5.549296

5.453617

6.186748

5.179138

19.0

176.432114

174.16803

170.332474

177.956116

162.450806

19.0

1.405029

1.370361

1.355957

1.30249

20.0

174.441681

170.645554

166.766403

173.46463

163.604996

20.0

1.366455

1.335449

1.296143

1.306396

1.283447

20.0

5.526003

5.539062

5.453617

6.186748

5.174769

20.0

176.432114

173.785156

170.082108

177.956116

162.450806

20.0

1.405029

1.364014

1.355957

1.30249

21.0

174.441681

170.348816

166.766403

172.977539

163.604996

21.0

1.361572

1.334717

1.293701

1.305908

1.283447

21.0

5.526003

5.539062

5.447782

6.186748

5.174769

21.0

176.34462

173.492737

170.082108

177.956116

162.450806

21.0

1.405029

1.364014

1.355957

1.301758

22.0

174.441681

170.212265

166.766403

172.977539

163.604996

22.0

1.361572

1.333984

1.291016

1.305664

1.282227

22.0

5.526003

5.539062

5.43966

6.186748

5.174769

22.0

176.129623

173.492737

169.84343

177.956116

162.450806

22.0

1.405029

1.364014

1.355957

1.301758

23.0

174.441681

170.102219

166.70343

172.977539

163.604996

23.0

1.358398

1.331055

1.291016

1.304443

1.280762

23.0

5.526003

5.50789

5.43966

6.186748

5.174769

23.0

176.129623

173.492737

169.695847

177.956116

162.450806

1.363037

1.355957

1.30127

24.0

174.441681

170.02676400000001

166.411026

172.977539

163.604996

24.0

1.356445

1.330566

1.287598

1.303467

1.278809

24.0

5.526003

5.50789

5.42447

6.186748

5.173495

24.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.361328

1.355957

1.300293

25.0

174.441681

169.956345

166.335266

172.977539

163.604996

25.0

1.356445

1.329834

1.287598

1.30249

1.278809

25.0

5.526003

5.50789

5.42011

6.186748

5.173495

25.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.361328

1.355957

1.298096

26.0

173.909317

169.803864

166.113708

172.977539

163.604996

26.0

1.356445

1.328125

1.285889

1.302246

1.278564

26.0

5.501948

5.50789

5.42011

6.186748

5.17174

26.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.361328

1.351318

1.298096

27.0

173.909317

169.650803

165.842682

172.977539

163.604996

27.0

1.355469

1.324951

1.282959

1.302246

1.277832

27.0

5.501948

5.50789

5.41901

6.186748

5.17174

27.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.355469

1.351318

1.294922

28.0

173.909317

169.377151

165.842682

172.977539

163.604996

28.0

1.355469

1.323975

1.281006

1.302246

1.277588

28.0

5.501948

5.50789

5.418316

6.186748

5.170708

28.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.355469

1.351318

1.294922

29.0

173.909317

169.359924

165.583969

172.854156

163.585815

29.0

1.355469

1.323975

1.281006

1.302246

1.276855

29.0

5.501948

5.50789

5.418316

6.186748

5.169367

29.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.355469

1.34668

1.294922

30.0

173.754288

169.24202

165.47522

172.854156

163.585815

30.0

1.355469

1.321045

1.279785

1.302246

1.276855

30.0

5.501948

5.506636

5.418316

6.186748

5.169367

30.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.353271

1.34668

1.294434

31.0

173.754288

168.850952

165.4505

172.854156

163.585815

31.0

1.355469

1.318359

1.279785

1.302246

1.275879

31.0

5.501948

5.506636

5.408999

6.186748

5.169367

31.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.352295

1.34668

1.294434

32.0

173.754288

168.797165

165.350571

172.854156

163.585815

32.0

1.355469

1.317627

1.279053

1.302002

1.275635

32.0

5.501948

5.506636

5.407677

6.186748

5.169367

32.0

176.129623

173.492737

169.233475

177.956116

162.142059

1.352295

1.344971

1.29126

33.0

173.202118

168.597046

165.253433

172.854156

163.585815

33.0

1.355469

1.314941

1.278564

1.301758

1.275391

33.0

5.501948

5.506636

5.398679

6.186748

5.169367

33.0

176.129623

172.430649

169.233475

177.956116

162.142059

1.348389

1.344971

1.29126

34.0

173.202118

168.563171

165.130219

172.854156

163.585815

34.0

1.355225

1.314941

1.27832

1.301025

1.275146

34.0

5.501948

5.501755

5.398679

6.186748

5.169367

34.0

176.129623

172.430649

169.233475

177.956116

162.142059

1.348389

1.344971

1.29126

35.0

173.202118

168.395096

164.911209

172.713623

163.585815

35.0

1.355225

1.313965

1.2771

1.301025

1.275146

35.0

5.488522

5.501755

5.397531

6.186748

5.169367

35.0

176.129623

172.430649

169.193985

177.956116

162.142059

1.348389

1.344971

1.290283

36.0

173.202118

168.224152

164.911209

172.713623

163.585815

36.0

1.351074

1.312012

1.274658

1.299561

1.274902

36.0

5.488522

5.501215

5.379948

6.186748

5.169367

36.0

176.129623

172.430649

169.193985

177.956116

162.142059

1.348389

1.344971

1.290039

37.0

173.202118

168.139404

164.826096

172.713623

163.585815

37.0

1.351074

1.312012

1.274658

1.299072

1.274902

37.0

5.488522

5.501215

5.379948

6.186748

5.169367

37.0

175.62825

172.430649

169.193985

177.956116

162.142059

1.348389

1.344971

1.289551

38.0

173.202118

168.139404

164.624603

172.694382

163.585815

38.0

1.351074

1.311035

1.274658

1.298096

1.274658

38.0

5.488522

5.501215

5.379948

6.186748

5.169367

38.0

175.62825

172.430649

168.506699

177.956116

162.142059

1.348389

1.344971

1.286865

39.0

173.202118

168.061554

164.624603

172.352737

163.467422

39.0

1.351074

1.30835

1.272949

1.298096

1.272949

39.0

5.488522

5.487191

5.379948

6.186748

5.169367

39.0

175.62825

171.964325

168.506699

177.956116

162.142059

1.348389

1.344971

1.285889

40.0

173.202118

167.928146

164.624603

172.352737

163.467422

40.0

1.351074

1.30835

1.271973

1.297607

1.272949

40.0

5.488522

5.487191

5.379302

6.14863

5.168383

40.0

175.18718

171.964325

168.506699

177.956116

162.142059

1.348389

1.344971

1.283691

41.0

173.202118

167.734711

164.624603

172.352737

163.467422

41.0

1.347656

1.307861

1.271973

1.297607

1.272949

41.0

5.488522

5.487191

5.379302

6.14863

5.168383

41.0

175.18718

171.964325

168.506699

177.956116

162.101227

1.348389

1.344482

1.282227

42.0

173.202118

167.734711

164.624603

172.352737

163.467422

42.0

1.347656

1.303955

1.269775

1.297119

1.271973

42.0

5.488522

5.487191

5.379302

6.14863

5.168383

42.0

175.18718

171.964325

168.506699

177.956116

162.101227

1.346436

1.344482

1.282227

43.0

173.202118

167.506256

164.582611

172.352737

163.467422

43.0

1.347656

1.303223

1.268799

1.297119

1.270996

43.0

5.488522

5.487191

5.379302

6.14863

5.168383

43.0

175.18718

171.964325

168.506699

177.956116

162.101227

1.346436

1.344482

1.282227

44.0

173.202118

167.506256

164.518951

172.352737

163.467422

44.0

1.347656

1.303223

1.268311

1.296631

1.270996

44.0

5.488522

5.487191

5.376794

6.14863

5.168383

44.0

175.18718

171.964325

168.346207

177.956116

162.054916

1.346436

1.344482

1.282227

45.0

173.202118

167.506256

164.518951

172.167542

163.467422

45.0

1.347656

1.303223

1.266113

1.296143

1.270996

45.0

5.488522

5.487191

5.361188

6.14863

5.168383

45.0

175.18718

171.964325

168.346207

177.956116

162.054916

1.346436

1.344482

1.282227

46.0

173.202118

167.352097

164.518951

172.167542

163.467422

46.0

1.347412

1.301758

1.266113

1.29541

1.270996

46.0

5.488522

5.487191

5.361188

6.14863

5.168383

46.0

175.18718

171.964325

168.346207

177.956116

161.982422

1.346436

1.344482

1.282227

47.0

173.202118

167.221558

164.452667

172.167542

163.467422

47.0

1.347412

1.301758

1.266113

1.295166

1.270996

47.0

5.488522

5.487191

5.351244

6.14863

5.168383

47.0

175.18718

171.525803

168.346207

177.956116

161.981308

1.346436

1.344482

1.28125

48.0

173.202118

167.221558

164.397034

172.167542

163.467422

48.0

1.347412

1.301758

1.265869

1.295166

1.270508

48.0

5.488522

5.484404

5.351244

6.14863

5.168383

48.0

175.18718

171.525803

168.346207

177.956116

161.955597

1.346436

1.344482

1.281006

49.0

173.202118

167.221558

164.397034

172.167542

163.467422

49.0

1.347168

1.30127

1.265869

1.294922

1.270508

49.0

5.488522

5.477334

5.351244

6.14863

5.168383

49.0

175.18718

171.492493

168.346207

177.956116

161.948151

1.346436

1.344482

1.280518

50.0

173.202118

167.221558

164.397034

172.167542

163.467422

50.0

1.347168

1.30127

1.265869

1.294922

1.270508

50.0

5.488522

5.477334

5.351244

6.14863

5.168383

50.0

175.18718

171.492493

168.346207

177.956116

161.948151

1.346436

1.344482

1.280518

_932972028.xls
Sheet: Sheet1

Sheet: Sheet2

Sheet: Sheet3

Sheet: Sheet4

Sheet: Sheet5

Sheet: Sheet6

Sheet: Sheet7

Sheet: Sheet8

Sheet: Sheet9

Sheet: Sheet10

Sheet: Sheet11

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

BRIDGE

BRIDGE2

with GLA

without

with GLA

without

best

worst

best

worst

best

worst

best

worst

0.0

252.088486

276.753876

253.370621

270.477676

1.512939

1.601807

1.521973

1.614502

1.0

250.126236

264.593903

188.45636

258.178192

1.452881

1.541504

1.521973

1.622314

2.0

247.121994

265.332886

182.150574

190.256653

1.424316

1.485596

1.521973

1.632324

3.0

245.275848

256.577316

178.796478

185.037277

1.418457

1.468506

1.521973

1.620605

4.0

243.050507

257.030655

177.123413

183.278076

1.399658

1.455322

1.521973

1.61377

5.0

241.283371

252.965088

176.150558

181.817154

1.399658

1.45874

1.521973

1.605469

6.0

239.797791

250.366409

175.764877

181.070572

1.399658

1.449707

1.521729

1.599854

7.0

238.895935

250.329346

175.171234

180.544891

1.393799

1.443848

1.521729

1.596191

8.0

238.895935

246.878494

174.991333

181.058395

1.393799

1.443115

1.52124

1.626221

9.0

237.636719

246.699921

174.991333

180.276093

1.390625

1.428467

1.52124

1.597412

10.0

237.636719

247.19046

174.991333

180.988403

1.387939

1.439453

1.515137

1.58667

11.0

237.636719

246.364426

174.927017

179.052444

1.379639

1.435547

1.514648

1.585938

12.0

237.22464

244.923096

174.527008

179.475372

1.375244

1.441406

1.508545

1.605957

13.0

234.93576

247.113998

174.527008

179.976242

1.375244

1.41748

1.50708

1.585938

14.0

233.567291

244.257278

174.527008

178.702927

1.374268

1.433594

1.496094

1.601318

15.0

233.567291

244.582809

174.527008

179.445312

1.369385

1.453125

1.489258

1.579102

16.0

233.567291

243.106247

174.527008

178.250748

1.358398

1.4104

1.483398

1.569092

17.0

232.435837

242.694656

174.527008

179.378067

1.358398

1.412109

1.483398

1.574219

18.0

232.435837

241.653488

174.449081

179.837082

1.358398

1.410889

1.483398

1.55249

19.0

232.435837

242.119003

174.431152

178.647186

1.358398

1.411377

1.483398

1.547607

20.0

232.242279

239.892029

174.431152

178.944809

1.358398

1.402832

1.483398

1.559326

21.0

232.242279

239.138489

174.431152

178.806931

1.358398

1.407471

1.483398

1.558838

22.0

232.242279

240.188873

174.431152

178.328369

1.358398

1.4021

1.483398

1.548096

23.0

232.060959

241.106934

174.431152

179.235794

1.358398

1.403809

1.483398

1.54834

24.0

231.683731

238.494553

174.070969

178.91571

1.358398

1.410156

1.482422

1.538086

25.0

231.683731

239.240738

173.931076

178.620163

1.357178

1.406982

1.476562

1.545654

26.0

231.683731

237.998779

173.931076

178.786514

1.352783

1.411377

1.467285

1.550537

27.0

231.683731

240.547836

173.931076

179.612686

1.352783

1.396729

1.467285

1.524658

28.0

230.639709

240.754471

173.931076

178.382477

1.352783

1.406006

1.467285

1.531494

29.0

230.639709

241.527054

173.931076

179.025391

1.352783

1.409668

1.467285

1.531738

30.0

230.477692

240.051346

173.931076

178.525742

1.352783

1.413574

1.461914

1.524658

31.0

229.942276

238.978806

173.931076

177.920593

1.352783

1.405029

1.461914

1.518311

32.0

229.942276

239.115677

173.931076

178.88797

1.352783

1.398438

1.460449

1.518799

33.0

229.714172

234.821381

173.870743

178.648483

1.352783

1.415283

1.460449

1.516602

34.0

229.662445

235.134308

173.870743

179.284378

1.352783

1.412842

1.460449

1.529785

35.0

229.0961

237.765274

173.870743

179.720932

1.352783

1.409424

1.460449

1.520996

36.0

229.0961

235.574631

172.668823

178.166687

1.352783

1.398926

1.460449

1.528076

37.0

229.0961

237.202484

172.668823

178.590012

1.352783

1.40332

1.460449

1.525391

38.0

227.892776

237.010757

172.668823

180.158539

1.352783

1.397461

1.456299

1.507812

39.0

227.892776

235.55394

172.668823

178.870728

1.348389

1.433594

1.456299

1.516846

40.0

227.892776

236.89949

172.668823

179.045364

1.348389

1.398682

1.455566

1.517822

41.0

227.892776

235.876404

172.668823

178.486435

1.348389

1.394775

1.454346

1.525879

42.0

227.892776

234.594498

172.668823

178.802841

1.348389

1.39917

1.454346

1.506104

43.0

227.892776

235.738846

172.668823

179.040634

1.346436

1.39624

1.454346

1.515869

44.0

227.752487

233.5634

172.668823

180.024063

1.346436

1.396484

1.453857

1.500244

45.0

227.752487

234.495316

172.668823

178.250961

1.346436

1.41333

1.449219

1.505859

46.0

227.752487

233.903961

172.668823

178.43631

1.346436

1.401367

1.449219

1.502686

47.0

227.752487

235.203506

172.668823

178.755249

1.346436

1.388428

1.449219

1.499756

48.0

227.752487

235.130264

172.668823

177.693787

1.346436

1.39209

1.449219

1.503418

49.0

227.752487

235.130264

172.668823

177.693787

1.346436

1.388672

1.448242

1.490967

50.0

227.752487

235.130264

172.668823

177.693787

1.346436

1.388672

1.448242

1.490967

_932917287.xls
Sheet: Sheet1

Sheet: Sheet2

Sheet: Sheet3

Sheet: Sheet4

Sheet: Sheet5

Sheet: Sheet6

Sheet: Sheet7

Sheet: Sheet8

Sheet: Sheet9

Sheet: Sheet10

Sheet: Sheet11

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

with GLA

without

best

worst

best

worst

0.0

252.088486

276.753876

253.370621

270.477676

1.0

250.126236

264.593903

188.45636

258.178192

0.0

2.0

247.121994

265.332886

182.150574

190.256653

0.0

3.0

245.275848

256.577316

178.796478

185.037277

0.0

4.0

243.050507

257.030655

177.123413

183.278076

0.0

5.0

241.283371

252.965088

176.150558

181.817154

0.0

6.0

239.797791

250.366409

175.764877

181.070572

0.0

7.0

238.895935

250.329346

175.171234

180.544891

0.0

8.0

238.895935

246.878494

174.991333

181.058395

0.0

9.0

237.636719

246.699921

174.991333

180.276093

0.0

10.0

237.636719

247.19046

174.991333

180.988403

0.0

11.0

237.636719

246.364426

174.927017

179.052444

0.0

12.0

237.22464

244.923096

174.527008

179.475372

0.0

13.0

234.93576

247.113998

174.527008

179.976242

0.0

14.0

233.567291

244.257278

174.527008

178.702927

0.0

15.0

233.567291

244.582809

174.527008

179.445312

0.0

16.0

233.567291

243.106247

174.527008

178.250748

0.0

17.0

232.435837

242.694656

174.527008

179.378067

0.0

18.0

232.435837

241.653488

174.449081

179.837082

0.0

19.0

232.435837

242.119003

174.431152

178.647186

0.0

20.0

232.242279

239.892029

174.431152

178.944809

0.0

21.0

232.242279

239.138489

174.431152

178.806931

0.0

22.0

232.242279

240.188873

174.431152

178.328369

0.0

23.0

232.060959

241.106934

174.431152

179.235794

0.0

24.0

231.683731

238.494553

174.070969

178.91571

0.0

25.0

231.683731

239.240738

173.931076

178.620163

0.0

26.0

231.683731

237.998779

173.931076

178.786514

0.0

27.0

231.683731

240.547836

173.931076

179.612686

0.0

28.0

230.639709

240.754471

173.931076

178.382477

0.0

29.0

230.639709

241.527054

173.931076

179.025391

0.0

30.0

230.477692

240.051346

173.931076

178.525742

0.0

31.0

229.942276

238.978806

173.931076

177.920593

0.0

32.0

229.942276

239.115677

173.931076

178.88797

6.0

33.0

229.714172

234.821381

173.870743

178.648483

0.0

34.0

229.662445

235.134308

173.870743

179.284378

0.0

35.0

229.0961

237.765274

173.870743

179.720932

0.0

36.0

229.0961

235.574631

172.668823

178.166687

0.0

37.0

229.0961

237.202484

172.668823

178.590012

0.0

38.0

227.892776

237.010757

172.668823

180.158539

0.0

39.0

227.892776

235.55394

172.668823

178.870728

0.0

40.0

227.892776

236.89949

172.668823

179.045364

0.0

41.0

227.892776

235.876404

172.668823

178.486435

0.0

42.0

227.892776

234.594498

172.668823

178.802841

0.0

43.0

227.892776

235.738846

172.668823

179.040634

0.0

44.0

227.752487

233.5634

172.668823

180.024063

0.0

45.0

227.752487

234.495316

172.668823

178.250961

0.0

46.0

227.752487

233.903961

172.668823

178.43631

0.0

47.0

227.752487

235.203506

172.668823

178.755249

0.0

48.0

227.752487

235.130264

172.668823

177.693787

0.0

49.0

227.752487

235.130264

172.668823

177.693787

0.0

50.0

227.752487

235.130264

172.668823

177.693787

8.0

0.0

5.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

3.0

0.0

0.0

0.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

0.0

4.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

5.0

0.0

0.0

0.0

4.0

0.0

0.0

0.0

4.0

0.0

0.0

6.0

0.0

0.0

4.0

0.0

8.0

0.0

8.0

0.0

6.0

0.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

3.0

0.0

5.0

0.0

7.0

0.0

2.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

0.0

6.0

0.0

6.0

0.0

0.0

0.0

0.0

3.0

0.0

6.0

0.0

0.0

0.0

6.0

0.0

0.0

0.0

0.0

0.0

0.0

6.0

7.0

0.0

0.0

0.0

6.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

0.0

6.0

0.0

0.0

6.0

0.0

0.0

5.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.0

0.0

0.0

0.0

0.0

5.0

0.0

0.0

4.0

0.0

5.0

0.0

5.0

0.0

0.0

0.0

6.0

0.0

0.0

0.0

10.0

0.0

0.0

6.0

3.0

0.0

0.0

0.0

0.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

4.0

0.0

0.0

3.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

7.0

0.0

0.0

7.0

0.0

10.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5.0

7.0

0.0

0.0

5.0

0.0

0.0

5.0

0.0

8.0

0.0

11.0

0.0

0.0

7.0

7.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

0.0

0.0

0.0

5.0

0.0

0.0

3.0

0.0

5.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

1.0

0.0

3.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.0

0.0

6.0

0.0

6.0

0.0

0.0

0.0

0.0

0.0

8.0

0.0

0.0

0.0

6.0

0.0

4.0

0.0

0.0

0.0

0.0

0.0

9.0

0.0

4.0

0.0

4.0

0.0

0.0

0.0

0.0

6.0

0.0

0.0

0.0

7.0

0.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

0.0

5.0

0.0

0.0

0.0

5.0

0.0

4.0

0.0

0.0

0.0

0.0

7.0

0.0

8.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8.0

0.0

0.0

3.0

0.0

0.0

5.0

0.0

7.0

0.0

0.0

0.0

0.0

0.0

0.0

8.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5.0

0.0

0.0

0.0

0.0

8.0

0.0

5.0

8.0

0.0

6.0

0.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

_932966612.xls
Sheet: Sheet1

Sheet: Sheet2

Sheet: Sheet3

Sheet: Sheet4

Sheet: Sheet5

Sheet: Sheet6

Sheet: Sheet7

Sheet: Sheet8

Sheet: Sheet9

Sheet: Sheet10

Sheet: Sheet11

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

Convergence of various crossover methods

(M=100, G=2)

ELITIST-1

ELITIST-1

Roulette wheel

Roulette wheel

Roulette wheel

Bridge

Bridge2

Missa

Bridge

Bridge2

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

C1

C2

C4

C3

C6

0.0

252.495163

252.592026

251.448242

252.992142

252.45607

0.0

1.533447

1.523926

1.527588

1.524902

1.517334

0.0

8.303038

8.322637

8.249537

8.325376

8.301968

0.0

252.246323

246.930511

253.494385

251.726151

251.354568

0.0

1.525391

1.525146

1.534912

1.51001

1.0

187.713516

188.248825

187.505585

188.199951

182.166565

1.0

1.450439

1.442383

1.440674

1.424316

1.486816

1.0

6.341763

6.33559

6.276611

6.519242

6.079659

1.0

188.706085

187.986633

187.653

188.635635

183.705627

1.0

1.464111

1.449219

1.453125

1.476318

2.0

180.929108

179.544617

180.076202

179.719757

171.146179

2.0

1.439453

1.415771

1.42041

1.383789

1.394775

2.0

6.025482

5.968239

5.970303

6.238426

5.627951

2.0

182.376266

181.400803

181.131927

181.687759

171.773895

2.0

1.443604

1.424561

1.420166

1.408203

3.0

179.501984

177.672852

175.407135

178.069839

167.762283

3.0

1.41626

1.402344

1.39917

1.361816

1.354736

3.0

5.924817

5.909163

5.858758

6.186748

5.448563

3.0

179.275177

179.751816

177.11554

179.88176

168.423157

3.0

1.439209

1.412598

1.410889

1.371826

4.0

177.779785

176.185394

173.846741

177.053329

166.405136

4.0

1.41626

1.392334

1.384521

1.352783

1.329834

4.0

5.862211

5.811092

5.766454

6.186748

5.372367

4.0

178.716782

177.244278

174.853516

178.822342

166.225281

4.0

1.432617

1.403809

1.4021

1.353271

5.0

177.241577

175.51445

172.435837

176.046753

165.211548

5.0

1.403809

1.380615

1.370605

1.343018

1.313477

5.0

5.777411

5.770505

5.711998

6.186748

5.316927

5.0

178.716782

177.106873

174.846344

178.05455

165.236038

5.0

1.425293

1.394043

1.4021

1.342529

6.0

176.099289

174.745758

171.328171

175.719055

164.695984

6.0

1.387695

1.369385

1.355469

1.334717

1.299561

6.0

5.727894

5.727344

5.652103

6.186748

5.268113

6.0

176.869568

175.914001

173.834793

177.956116

164.215637

6.0

1.423584

1.388916

1.378662

1.335449

7.0

175.531693

174.369644

171.016602

175.261658

164.234818

7.0

1.387695

1.365479

1.344238

1.332275

1.297119

7.0

5.700801

5.687307

5.644165

6.186748

5.245091

7.0

176.869568

175.914001

172.968124

177.956116

163.910843

7.0

1.42334

1.388916

1.378662

1.328125

8.0

175.385727

174.172516

170.083649

174.495743

164.007828

8.0

1.387695

1.362061

1.344238

1.325684

1.292725

8.0

5.681453

5.687307

5.606366

6.186748

5.239198

8.0

176.869568

175.758698

172.413666

177.956116

163.503677

8.0

1.414551

1.388916

1.378662

1.325684

9.0

175.254837

173.483826

169.876358

174.233826

163.736176

9.0

1.387695

1.35791

1.330322

1.323242

1.289551

9.0

5.616233

5.641975

5.595264

6.186748

5.227411

9.0

176.869568

175.758698

172.069382

177.956116

163.251221

9.0

1.4104

1.381592

1.378662

1.315674

10.0

175.254837

173.069138

169.126465

174.233826

163.678894

10.0

1.381104

1.355713

1.324219

1.321533

1.287109

10.0

5.616233

5.641975

5.58315

6.186748

5.215008

10.0

176.869568

175.253723

171.640137

177.956116

163.135941

10.0

1.4104

1.379395

1.378662

1.315674

11.0

174.587036

172.550674

168.659653

174.233826

163.615265

11.0

1.381104

1.351074

1.317871

1.320068

1.286377

11.0

5.616233

5.637481

5.546914

6.186748

5.201977

11.0

176.869568

175.253723

171.440582

177.956116

162.968201

11.0

1.4104

1.379395

1.376221

1.315674

12.0

174.587036

172.550674

168.62442

174.066803

163.615265

12.0

1.379639

1.350586

1.313721

1.317627

1.285889

12.0

5.603877

5.637481

5.530334

6.186748

5.196451

12.0

176.700882

174.935349

171.312332

177.956116

162.742157

12.0

1.4104

1.378174

1.376221

1.315674

13.0

174.587036

172.392548

168.337753

173.933701

163.615265

13.0

1.376221

1.348145

1.313232

1.313477

1.2854

13.0

5.593576

5.596595

5.502228

6.186748

5.179851

13.0

176.700882

174.935349

171.217606

177.956116

162.728287

13.0

1.405029

1.378174

1.376221

1.307373

14.0

174.441681

172.048645

167.891006

173.819153

163.608444

14.0

1.373779

1.344971

1.306396

1.313477

1.2854

14.0

5.584954

5.596595

5.465008

6.186748

5.179851

14.0

176.700882

174.935349

170.563431

177.956116

162.728287

14.0

1.405029

1.378174

1.375732

1.307373

15.0

174.441681

171.541779

167.317001

173.665451

163.608444

15.0

1.373779

1.344971

1.306396

1.312012

1.2854

15.0

5.584954

5.580768

5.465008

6.186748

5.179851

15.0

176.700882

174.935349

170.563431

177.956116

162.555832

15.0

1.405029

1.374268

1.370605

1.307373

16.0

174.441681

171.439499

167.22435

173.505508

163.608444

16.0

1.371094

1.342285

1.305664

1.309082

1.2854

16.0

5.584954

5.561748

5.465008

6.186748

5.179851

16.0

176.700882

174.935349

170.332474

177.956116

162.555832

16.0

1.405029

1.370361

1.362305

1.304932

17.0

174.441681

171.272171

167.22435

173.46463

163.608444

17.0

1.366455

1.341064

1.300781

1.309082

1.28418

17.0

5.574093

5.561748

5.457735

6.186748

5.179138

17.0

176.459335

174.16803

170.332474

177.956116

162.450806

17.0

1.405029

1.370361

1.362305

1.304932

18.0

174.441681

171.000412

167.22435

173.46463

163.604996

18.0

1.366455

1.337646

1.299316

1.307861

1.283447

18.0

5.526003

5.549296

5.453617

6.186748

5.179138

18.0

176.432114

174.16803

170.332474

177.956116

162.450806

18.0

1.405029

1.370361

1.362305

1.303467

19.0

174.441681

171.000412

166.766403

173.46463

163.604996

19.0

1.366455

1.337646

1.299316

1.307129

1.283447

19.0

5.526003

5.549296

5.453617

6.186748

5.179138

19.0

176.432114

174.16803

170.332474

177.956116

162.450806

19.0

1.405029

1.370361

1.355957

1.30249

20.0

174.441681

170.645554

166.766403

173.46463

163.604996

20.0

1.366455

1.335449

1.296143

1.306396

1.283447

20.0

5.526003

5.539062

5.453617

6.186748

5.174769

20.0

176.432114

173.785156

170.082108

177.956116

162.450806

20.0

1.405029

1.364014

1.355957

1.30249

21.0

174.441681

170.348816

166.766403

172.977539

163.604996

21.0

1.361572

1.334717

1.293701

1.305908

1.283447

21.0

5.526003

5.539062

5.447782

6.186748

5.174769

21.0

176.34462

173.492737

170.082108

177.956116

162.450806

21.0

1.405029

1.364014

1.355957

1.301758

22.0

174.441681

170.212265

166.766403

172.977539

163.604996

22.0

1.361572

1.333984

1.291016

1.305664

1.282227

22.0

5.526003

5.539062

5.43966

6.186748

5.174769

22.0

176.129623

173.492737

169.84343

177.956116

162.450806

22.0

1.405029

1.364014

1.355957

1.301758

23.0

174.441681

170.102219

166.70343

172.977539

163.604996

23.0

1.358398

1.331055

1.291016

1.304443

1.280762

23.0

5.526003

5.50789

5.43966

6.186748

5.174769

23.0

176.129623

173.492737

169.695847

177.956116

162.450806

1.363037

1.355957

1.30127

24.0

174.441681

170.02676400000001

166.411026

172.977539

163.604996

24.0

1.356445

1.330566

1.287598

1.303467

1.278809

24.0

5.526003

5.50789

5.42447

6.186748

5.173495

24.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.361328

1.355957

1.300293

25.0

174.441681

169.956345

166.335266

172.977539

163.604996

25.0

1.356445

1.329834

1.287598

1.30249

1.278809

25.0

5.526003

5.50789

5.42011

6.186748

5.173495

25.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.361328

1.355957

1.298096

26.0

173.909317

169.803864

166.113708

172.977539

163.604996

26.0

1.356445

1.328125

1.285889

1.302246

1.278564

26.0

5.501948

5.50789

5.42011

6.186748

5.17174

26.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.361328

1.351318

1.298096

27.0

173.909317

169.650803

165.842682

172.977539

163.604996

27.0

1.355469

1.324951

1.282959

1.302246

1.277832

27.0

5.501948

5.50789

5.41901

6.186748

5.17174

27.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.355469

1.351318

1.294922

28.0

173.909317

169.377151

165.842682

172.977539

163.604996

28.0

1.355469

1.323975

1.281006

1.302246

1.277588

28.0

5.501948

5.50789

5.418316

6.186748

5.170708

28.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.355469

1.351318

1.294922

29.0

173.909317

169.359924

165.583969

172.854156

163.585815

29.0

1.355469

1.323975

1.281006

1.302246

1.276855

29.0

5.501948

5.50789

5.418316

6.186748

5.169367

29.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.355469

1.34668

1.294922

30.0

173.754288

169.24202

165.47522

172.854156

163.585815

30.0

1.355469

1.321045

1.279785

1.302246

1.276855

30.0

5.501948

5.506636

5.418316

6.186748

5.169367

30.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.353271

1.34668

1.294434

31.0

173.754288

168.850952

165.4505

172.854156

163.585815

31.0

1.355469

1.318359

1.279785

1.302246

1.275879

31.0

5.501948

5.506636

5.408999

6.186748

5.169367

31.0

176.129623

173.492737

169.233475

177.956116

162.230835

1.352295

1.34668

1.294434

32.0

173.754288

168.797165

165.350571

172.854156

163.585815

32.0

1.355469

1.317627

1.279053

1.302002

1.275635

32.0

5.501948

5.506636

5.407677

6.186748

5.169367

32.0

176.129623

173.492737

169.233475

177.956116

162.142059

1.352295

1.344971

1.29126

33.0

173.202118

168.597046

165.253433

172.854156

163.585815

33.0

1.355469

1.314941

1.278564

1.301758

1.275391

33.0

5.501948

5.506636

5.398679

6.186748

5.169367

33.0

176.129623

172.430649

169.233475

177.956116

162.142059

1.348389

1.344971

1.29126

34.0

173.202118

168.563171

165.130219

172.854156

163.585815

34.0

1.355225

1.314941

1.27832

1.301025

1.275146

34.0

5.501948

5.501755

5.398679

6.186748

5.169367

34.0

176.129623

172.430649

169.233475

177.956116

162.142059

1.348389

1.344971

1.29126

35.0

173.202118

168.395096

164.911209

172.713623

163.585815

35.0

1.355225

1.313965

1.2771

1.301025

1.275146

35.0

5.488522

5.501755

5.397531

6.186748

5.169367

35.0

176.129623

172.430649

169.193985

177.956116

162.142059

1.348389

1.344971

1.290283

36.0

173.202118

168.224152

164.911209

172.713623

163.585815

36.0

1.351074

1.312012

1.274658

1.299561

1.274902

36.0

5.488522

5.501215

5.379948

6.186748

5.169367

36.0

176.129623

172.430649

169.193985

177.956116

162.142059

1.348389

1.344971

1.290039

37.0

173.202118

168.139404

164.826096

172.713623

163.585815

37.0

1.351074

1.312012

1.274658

1.299072

1.274902

37.0

5.488522

5.501215

5.379948

6.186748

5.169367

37.0

175.62825

172.430649

169.193985

177.956116

162.142059

1.348389

1.344971

1.289551

38.0

173.202118

168.139404

164.624603

172.694382

163.585815

38.0

1.351074

1.311035

1.274658

1.298096

1.274658

38.0

5.488522

5.501215

5.379948

6.186748

5.169367

38.0

175.62825

172.430649

168.506699

177.956116

162.142059

1.348389

1.344971

1.286865

39.0

173.202118

168.061554

164.624603

172.352737

163.467422

39.0

1.351074

1.30835

1.272949

1.298096

1.272949

39.0

5.488522

5.487191

5.379948

6.186748

5.169367

39.0

175.62825

171.964325

168.506699

177.956116

162.142059

1.348389

1.344971

1.285889

40.0

173.202118

167.928146

164.624603

172.352737

163.467422

40.0

1.351074

1.30835

1.271973

1.297607

1.272949

40.0

5.488522

5.487191

5.379302

6.14863

5.168383

40.0

175.18718

171.964325

168.506699

177.956116

162.142059

1.348389

1.344971

1.283691

41.0

173.202118

167.734711

164.624603

172.352737

163.467422

41.0

1.347656

1.307861

1.271973

1.297607

1.272949

41.0

5.488522

5.487191

5.379302

6.14863

5.168383

41.0

175.18718

171.964325

168.506699

177.956116

162.101227

1.348389

1.344482

1.282227

42.0

173.202118

167.734711

164.624603

172.352737

163.467422

42.0

1.347656

1.303955

1.269775

1.297119

1.271973

42.0

5.488522

5.487191

5.379302

6.14863

5.168383

42.0

175.18718

171.964325

168.506699

177.956116

162.101227

1.346436

1.344482

1.282227

43.0

173.202118

167.506256

164.582611

172.352737

163.467422

43.0

1.347656

1.303223

1.268799

1.297119

1.270996

43.0

5.488522

5.487191

5.379302

6.14863

5.168383

43.0

175.18718

171.964325

168.506699

177.956116

162.101227

1.346436

1.344482

1.282227

44.0

173.202118

167.506256

164.518951

172.352737

163.467422

44.0

1.347656

1.303223

1.268311

1.296631

1.270996

44.0

5.488522

5.487191

5.376794

6.14863

5.168383

44.0

175.18718

171.964325

168.346207

177.956116

162.054916

1.346436

1.344482

1.282227

45.0

173.202118

167.506256

164.518951

172.167542

163.467422

45.0

1.347656

1.303223

1.266113

1.296143

1.270996

45.0

5.488522

5.487191

5.361188

6.14863

5.168383

45.0

175.18718

171.964325

168.346207

177.956116

162.054916

1.346436

1.344482

1.282227

46.0

173.202118

167.352097

164.518951

172.167542

163.467422

46.0

1.347412

1.301758

1.266113

1.29541

1.270996

46.0

5.488522

5.487191

5.361188

6.14863

5.168383

46.0

175.18718

171.964325

168.346207

177.956116

161.982422

1.346436

1.344482

1.282227

47.0

173.202118

167.221558

164.452667

172.167542

163.467422

47.0

1.347412

1.301758

1.266113

1.295166

1.270996

47.0

5.488522

5.487191

5.351244

6.14863

5.168383

47.0

175.18718

171.525803

168.346207

177.956116

161.981308

1.346436

1.344482

1.28125

48.0

173.202118

167.221558

164.397034

172.167542

163.467422

48.0

1.347412

1.301758

1.265869

1.295166

1.270508

48.0

5.488522

5.484404

5.351244

6.14863

5.168383

48.0

175.18718

171.525803

168.346207

177.956116

161.955597

1.346436

1.344482

1.281006

49.0

173.202118

167.221558

164.397034

172.167542

163.467422

49.0

1.347168

1.30127

1.265869

1.294922

1.270508

49.0

5.488522

5.477334

5.351244

6.14863

5.168383

49.0

175.18718

171.492493

168.346207

177.956116

161.948151

1.346436

1.344482

1.280518

50.0

173.202118

167.221558

164.397034

172.167542

163.467422

50.0

1.347168

1.30127

1.265869

1.294922

1.270508

50.0

5.488522

5.477334

5.351244

6.14863

5.168383

50.0

175.18718

171.492493

168.346207

177.956116

161.948151

1.346436

1.344482

1.280518

_921573676.unknown

