

Fast nearest neighbor searches in high
dimensions

Sami Sieranoja

Nearest neighbor problems

Notation: k = number of neighbors, not clusters (k-means).

Contents

● (exact) Nearest neighbor search in low
dimensions

● What makes higher dimensions (D>20) difficult
● (approximate) High dimensional k nearest

neighbor graph construction

Introduction

In clustering, KNN graph:
● Has been used in agglomerative clustering[1].
● Has potential to speed up k-means (open question).

[1] P. Fränti, O. Virmajoki and V. Hautamäki, "Fast agglomerative clustering using a k-
nearest neighbor graph", IEEE Trans. on Pattern Analysis and Machine Intelligence, 28
(11), 1875-1881, November 2006.

Brute force search

K Nearest neighbor search:

● Brute force O(N) method calculates distances from query point q to all
points.

● Faster (exact) log(N) methods exist, but only for low dimensional data

kNN graph construction:

● Brute force O(N2) method calculates between all pairs of points.

● Faster (exact) N*log(N) methods exist, but only for low dimensional
data

Nearest neighbor search in low
dimensions: kd-tree

D=2 dimensional dataset with
N=14 points (black circles)

1)Take first dimension
2) Divide points into two halves

according to median
3) Continue step 2 recursively for

next dimension

Number of recursions: log(N)
log(N=14) = 3.8
Tree contruction: O(N*log(N))

K-nearest neighbor search using
tree: O(log(N))

K-nn graph: O(N*log(N))

Nearest neighbor search using kd-
tree

R

If nearest neighbor ball is within
bounding rectangle
AND
Have checked all points within that
rectangle
=>
Results are exact

What makes higher dimensions difficult?
(Why kd-trees fail)

Recursive subdivision in high
dimensions

For large D, leaf nodes are reached
before handling all dimensions.

● Number of recursions to construct
tree: log(N)

● What if D > log(N) ? →

● Only a log(N)/D portion of data is
used to construct the tree.

● D=1000, N=1,000,000. log(N) = 20

● log(N)/D = 2%.

4 steps to construct:

Recursive subdivision in high
dimensions

Fast methods are possible for
large enough data sets

● For log(N)/D >= 1, data set size of
N=2D needed.

● D=20 ⇒ N=1,048,576

● D=1000 ⇒ N = 21000 = 10301

4 steps to construct:

Searching the bounding rectangle

● Works because rectangle
is usually not much larger
than the circle

● Best case: square with
side length 2R

● 2D: If 10 points inside
circle, how many
expected to be inside
rectangle?

● 3D?

R
2R

K=9 nearest neighbor sphere/cube:

Estimating number of expected
points using volume

Assume R=0.5.

Size of rectangle: V=(2R)2=1
Size of cube: V=(2R)3=1
Size of D-dimensional hypercube: V=(2R)D=1

Volume of 2D rectangle: V=πR2

Volume of 3D sphere:

Volume of D-dimensional Hypersphere:

Volumes of the sphere and cube correspond to the number of
expected points in that area, assuming points are uniformly
distributed.

4
3

πR3

V=RD π(D /2)

Γ(D /2+1)

R
2R

K=9 nearest neighbor sphere/cube:

Volume of unit diameter
hypersphere vs. hypercube

D Volume(Sphere)/
Volume(Cube)

Expected N(points)
in hypercube

2 79% 13

3 52% 19

5 16% 62

10 0.25% 5000

100 1.9e-68 % 5.3e+68

For D=2, if ten points within sphere, 10/0.79 = 13 points expected to be within
rectangle

 D→inf ⇒ Volume(Hypersphere)/Volume(Hypercube) → 0

R
2R

K=9 nearest neighbor sphere/cube:

KNN graph for high dimensional
data

● For high dimensional data (D>20, Euclidean
space), no known exact method exists, faster
than brute force O(N2).

● Approximate methods exist that produce > 90%
accurate graph in just 1% time of the brute
force method.

Existing methods

Existing methods: KGRAPH[1], NNDES[2], Lanczos[3], LSH[4], LargeViz[5]

[2] Wei Dong. KGraph[software]. Available from http://www.kgraph.org/. 2014.

[3] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for generic similarity
measures,” in Proceedings of the 20th international conference on World wide web, p. 577–586, ACM,
2011.

[4] J. Chen, H.-r. Fang, and Y. Saad, “Fast approximate k NN graph construction for high dimensional data
via recursive Lanczos bisection,” The Journal of Machine Learning Research, vol. 10, p. 1989–2012, 2009.

[5] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, “Fast kNN Graph Construction with Locality Sensitive
Hashing,” in Machine Learning and Knowledge Discovery in Databases, p. 660–674, Springer, 2013.

[6] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-NN graph construction for visual
descriptors,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, p. 1106–
1113, IEEE, 2012.

Existing methods

Algorithm Graph
initialization

Graph refinement General

KGRAPH Random
graph

Neighborhood
propagation

Yes

NNDES Random
graph

Neighborhood
propagation

Yes

Lanczos Divide &
Conquer

Neighborhood
propagation

No

LSH Hashing Neighborhood
propagation

No

LargeViz Divide &
Conquer

Neighborhood
propagation

No

Z-order neighborhood
propagation(ZNP)

Two parts: (1) graph initialization (2) graph refinement.

Outline of algorithm:

1) Construct initial graph using one dimensional ordering
called Z-order

2) Improve graph by using Neighborhood propagation.

(paper under review)

Z-values

G. M. Morton, A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company, 1966.

2D grid ordered by Z-values

Point 27

Point 0

Point 39

Quad tree

Points ordered by Z-values: Z-order

Sliding window search,
k=2-nn graph, window size W=3

Constructing different Z-orders

● Shift whole point set X by adding a random
vector v to all points. X' = X+vrand

● Rotate point set.
● 2D rotation: v'=Rv
● D > 3: Random permutation of dimensions

(Change the order of dimensions)

Different z-order by
(1) random shifting of point set

(2) rotation

Different z-order by
(1) random shifting of point set

(2) rotation

Reduce dimensionality, preserve
neighbor connections

For high D, bit interleaving in results in very large integers. Therefore, if
D > 32, reduce dimensionality to Dz=32 before z-value calculation.

● Divide each vector into subvectors with roughly equal sizes

● Map each subvector to one dimension by summing the elements

● Sums of subvectors form final vector

M=[
110 000
001100
000 011] M '

=shuffleColumns (M)=[
000110
10000 1
011000] v=[

5
4
7
0
3
2

]
M '

v=[
3
7
11]

Example, from D=6 to D
z
=3:

Neighborhood propagation

Used to improve graph. Different variants used in many methods[2-6]. Most
extensively investigated in [3].

Pseudocode of algorithm:

Do

 For each point x X:∈

 For each pair (y,z) in neighbors of x:

 // (Introduce neighbors:)

 Add edge (y,z) to G if it improves the graph

 end

 End

While G improved

[3] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for generic similarity
measures,” in Proceedings of the 20th international conference on World wide web, p. 577–586, ACM,
2011.

Neighborhood propagation (k=2)

Select point's neighbors

Introduce neighbors

Keep edges that improve graph

Result

Benchmarks: kNN graph
construction (1/2)

Image features
D = 128
N = 1,000,000

ZNP: Z-order search
ZNP+: Z-order search with
neighborhood propagation

Benchmarks: kNN graph
construction (2/2)

Audio features
D = 192
N = 54,387

ZNP: Z-order search
ZNP+: Z-order search with
neighborhood propagation

KNN graph to speed up k-means

One iteration of k-means

One iteration of k-means

One iteration of k-means

One iteration of k-means

KNN graph to speed up k-means

● K-means assignment step complexity: O(N*C)

● When using kNN graph, complexity of assignment is reduced to
O(N*k)

● Graph construction with brute force: O(C^2)

● Total complexity with kNN graph: O(N*k +C^2)

Is O(N*k +C^2) faster than O(N*C)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

