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Nearest neighbor problems

Notation: k = number of neighbors, not clusters (k-means).
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Introduction

In clustering, KNN graph:
● Has been used in agglomerative clustering[1].
● Has potential to speed up k-means (open question).

[1] P. Fränti, O. Virmajoki and V. Hautamäki, "Fast agglomerative clustering using a k-
nearest neighbor graph", IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 
(11), 1875-1881, November 2006. 



  

Brute force search

K Nearest neighbor search:

● Brute force O(N) method calculates distances from query point q to all 
points.

● Faster (exact) log(N) methods exist, but only for low dimensional data

kNN graph construction:

● Brute force O(N2) method calculates between all pairs of points.

● Faster (exact) N*log(N) methods exist, but only for low dimensional 
data



  

Nearest neighbor search in low 
dimensions: kd-tree

D=2 dimensional dataset with
N=14 points (black circles)

1)Take first dimension
2) Divide points into two halves 

according to median
3) Continue step 2 recursively for 

next dimension

Number of recursions: log(N)
log(N=14) = 3.8
Tree contruction: O(N*log(N))

K-nearest neighbor search using 
tree: O(log(N))

K-nn graph: O(N*log(N)) 



  

Nearest neighbor search using kd-
tree

R

If nearest neighbor ball is within 
bounding rectangle
AND
Have checked all points within that 
rectangle
=>
Results are exact



  

What makes higher dimensions difficult? 
(Why kd-trees fail)



  

Recursive subdivision in high 
dimensions

For large D, leaf nodes are reached 
before handling all dimensions.

● Number of recursions to construct 
tree:  log(N)

● What if D > log(N) ? →

● Only a log(N)/D portion of  data is 
used to construct the tree.

● D=1000, N=1,000,000. log(N) = 20

● log(N)/D = 2%.

4 steps to construct:



  

Recursive subdivision in high 
dimensions

Fast methods are possible for 
large enough data sets

● For  log(N)/D >= 1, data set size of 
N=2D needed.

● D=20 ⇒ N=1,048,576 

● D=1000 ⇒ N = 21000 = 10301

4 steps to construct:



  

Searching the bounding rectangle

● Works because rectangle 
is usually not much larger 
than the circle

● Best case: square with 
side length 2R

● 2D: If 10 points inside 
circle, how many 
expected to be inside 
rectangle?

● 3D?

R
2R

K=9 nearest neighbor sphere/cube:



  

Estimating number of expected 
points using volume

Assume R=0.5.

Size of rectangle:  V=(2R)2=1
Size of cube:  V=(2R)3=1
Size of D-dimensional hypercube: V=(2R)D=1

Volume of 2D rectangle: V=πR2 

Volume of 3D sphere:  

Volume of D-dimensional  Hypersphere:

Volumes of the sphere and cube correspond to the number of 
expected points in that area, assuming points are uniformly 
distributed.

4
3

πR3

V=RD π(D /2)

Γ(D /2+1)

R
2R

K=9 nearest neighbor sphere/cube:



  

Volume of unit diameter 
hypersphere vs. hypercube

D Volume(Sphere)/
Volume(Cube)

Expected N(points) 
in hypercube

2 79% 13

3 52% 19

5 16% 62

10 0.25% 5000

100 1.9e-68 % 5.3e+68

For D=2, if ten points within sphere, 10/0.79 = 13 points expected to be within 
rectangle

 D→inf ⇒ Volume(Hypersphere)/Volume(Hypercube) → 0

R
2R

K=9 nearest neighbor sphere/cube:



  

KNN graph for high dimensional 
data

● For high dimensional data (D>20, Euclidean 
space), no known exact method exists, faster 
than brute force O(N2).

● Approximate methods exist that produce > 90% 
accurate graph in just 1% time of the brute 
force method. 



  

Existing methods

Existing methods: KGRAPH[1], NNDES[2], Lanczos[3], LSH[4], LargeViz[5] 

[2] Wei Dong. KGraph[software]. Available from http://www.kgraph.org/. 2014. 

[3] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for generic similarity 
measures,” in Proceedings of the 20th international conference on World wide web, p. 577–586, ACM, 
2011.

[4] J. Chen, H.-r. Fang, and Y. Saad, “Fast approximate k NN graph construction for high dimensional data 
via recursive Lanczos bisection,” The Journal of Machine Learning Research, vol. 10, p. 1989–2012, 2009.

[5] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, “Fast kNN Graph Construction with Locality Sensitive 
Hashing,” in Machine Learning and Knowledge Discovery in Databases, p. 660–674, Springer, 2013.

[6] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-NN graph construction for visual 
descriptors,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, p. 1106–
1113, IEEE, 2012.



  

Existing methods

Algorithm Graph 
initialization

Graph refinement General

KGRAPH Random 
graph

Neighborhood 
propagation

Yes

NNDES Random 
graph

Neighborhood 
propagation

Yes

Lanczos Divide & 
Conquer

Neighborhood 
propagation

No

LSH Hashing Neighborhood 
propagation

No

LargeViz Divide & 
Conquer

Neighborhood 
propagation

No



  

Z-order neighborhood 
propagation(ZNP) 

Two parts: (1) graph initialization (2) graph refinement.

Outline of algorithm:

1) Construct initial graph using one dimensional ordering 
called Z-order

2) Improve graph by using Neighborhood propagation.

(paper under review)



  

Z-values

G. M. Morton, A computer oriented geodetic data base and a new technique in file 
sequencing. International Business Machines Company, 1966.



  

2D grid ordered by Z-values

Point 27 

Point 0

Point 39

Quad tree



  

Points ordered by Z-values: Z-order



  

Sliding window search,
k=2-nn graph, window size W=3 



  

Constructing different Z-orders

● Shift whole point set X by adding a random 
vector v to all points. X' = X+vrand

● Rotate point set. 
● 2D rotation: v'=Rv
● D > 3: Random permutation of dimensions 

(Change the order of dimensions)



  



  

Different z-order by 
(1) random shifting of point set 

(2) rotation



  

Different z-order by 
(1) random shifting of point set 

(2) rotation



  

Reduce dimensionality, preserve 
neighbor connections

For high D, bit interleaving in results in very large integers. Therefore, if 
D > 32, reduce dimensionality to Dz=32 before z-value calculation.

● Divide each vector into subvectors with roughly equal sizes

● Map each subvector to one dimension by summing the elements

● Sums of subvectors form final vector

M=[
110 000
001100
000 011 ] M '

=shuffleColumns (M )=[
000110
10000 1
011000 ] v=[

5
4
7
0
3
2

]
M '

v=[
3
7
11 ]

Example, from D=6 to D
z
=3:



  

Neighborhood propagation

Used to improve graph. Different variants used in many methods[2-6]. Most 
extensively investigated in [3].

Pseudocode of algorithm:

Do

    For each point x  X:∈

        For each pair (y,z) in neighbors of x:

            // (Introduce neighbors:)

            Add edge (y,z) to G if it improves the graph 

        end

    End

While G improved

[3] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for generic similarity 
measures,” in Proceedings of the 20th international conference on World wide web, p. 577–586, ACM, 
2011.



  

Neighborhood propagation (k=2)



  

Select point's    neighbors 



  

Introduce neighbors



  

Keep edges that improve graph



  

Result



  

Benchmarks: kNN graph 
construction (1/2)

Image features
D = 128
N = 1,000,000

ZNP: Z-order search
ZNP+: Z-order search with 
neighborhood propagation



  

Benchmarks: kNN graph 
construction (2/2)

Audio features
D = 192
N = 54,387

ZNP: Z-order search
ZNP+: Z-order search with 
neighborhood propagation



  

KNN graph to speed up k-means



  

One iteration of k-means



  

One iteration of k-means



  

One iteration of k-means



  

One iteration of k-means



  

KNN graph to speed up k-means

● K-means assignment step complexity: O(N*C)

● When using kNN graph, complexity of assignment is reduced to 
O(N*k)

● Graph construction with brute force: O(C^2)

● Total complexity with kNN graph: O(N*k +C^2)

Is O(N*k +C^2) faster than O(N*C)?
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