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The next location prediction 
approaches 

• Personal-based prediction[1] 

 

 

• General-based prediction [2,3] 

 

 

Note: further consider General-based prediction  
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Semantic Trajectory Mining for 
Location Prediction 

 

• predicting the next location  

    of a user’s movement  

 

Input: 

• GPS user’s trajectories 
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Geographical and Semantic similarity 

• Example: T1 and T2 – geograficaly,  

    T2 and T3 – semantically 
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SemanPredict framework 

• Offline and Online Modules 

 

• Novel prediction strategy: Semantic and 
Geographic trajectory patterns 

 

• MIT reality dataset [4] 
– 106 mobile users 

– Over 500,000 hours 
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SemanPredict: offline module 

1. Data preprocessing 

 

2. Semantic mining 

 

3. Geographic mining  
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SemanPredict: offline module 

1. Data preprocessing: 

   GPS trajectories to stay locations sequence [1, 5] 

 

 

 

 

 

 

Output:  T1=<S0, S1, S2> ;  T2=<S0, S4, S3>; T3=<S0, S5, S4, S3>; … 
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2. Semantic mining: 

2.1.  Assign semantic labels to stay locations using 
gazetteer [6]; 

 

• Example: 

Input: T1=<S0, S1, S2> ;  T2=<S0, S4, S3>; T3=<S0, S5, S4, S3>; … 

 

Output: T1=<School, Park, Stadium> ;  T2=<School, Bank, 
Hospital>; T3=<School, Unknown, Bank, Hospital>; … 

 

 

 

 

 

 

 

SemanPredict: offline module 
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2. Semantic mining: 

• Example: result semantic labels  

 

 

 

 

 

 

SemanPredict: offline module 
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2. Semantic mining 

  2.2. Similar User Clustering 

• Complete linkage clustering 

 

Similarity measure:    Maximal Semantic Trajectory  
    Pattern Similarity [6] 

SemanPredict: offline module 

Semantic Trajectory Mining for Location Prediction 
11/41 



• Example: Longest Common Sequence(LCS) 

 

P = <School, Park, Stadium>,    Q = <School, Bank, Park, Shop> 

        

LCS(P, Q) =<School, Park> 

 

 

 

 

 

 

SemanPredict: offline module 
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3. Geographic mining 
Input:  

 - stay location sequence  

 - clusters from semantic mining 

 

3.1. Grouping Users’ Stay Location Sequences 

   (Prefix-Span [9])  

 
Output: clusters of stay location sequence based on 

        semantic clusters  

 

SemanPredict: offline module 
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• Recap 

Input: GPS user’s trajectories 

 

 

 

 

 

 

 

SemanPredict: offline module 
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SemanPredict: online module 
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• Input: the trajectory of the user’s recent moves 

SemanPredict: online module 
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• Matching score: 

 

 

 

 

 

Note: how well the ‘user behavior’ matches model 

SemanPredict: online module 
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• Identifying potential avenues for access 

 

 

 

 

 

 

 

• Determine bus, metro and railway systems  corridors 
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• Road network 

– Graph G = {V, E} 

– Nodes = road intersections 

 

• Track 

– GPS trace to series of nodes and edges of road network 

 

• Primary corridor 

– ‘Representative track of group of other tracks’ (Medoid) 

Summarizing Trajectories into k-Primary Corridors: A Summary of Results 

Basic concepts 
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Summarizing Trajectories into k-Primary Corridors: A Summary of Results 

• Example:   

  7-Primary Corridors 

 Road Network 
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• Given 

– Road Network: G = {V, E} 

– Collection of Tracks: T 

– Number k 

• Find 

– k-Primary Corridors 

• Constraints 

– Each primary corridor is track itself from set T 

– G  is a connected graph with nonnegative weights 

 

Summarizing Trajectories into k-Primary Corridors: A Summary of Results 

Problem statement 

22/41 



• Input: see Given 

1. Compute the track similarity matrix 

 

 

 

2. Modified k-Medoid clustering [7] 

 

Note: bottleneck is the track similarity matrix 
 computation 
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• Example: time comparison of steps in k-Primary  
         Corridor problem (100 nodes/tracks, k=5) 
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– Graph-Node Track Similarity (naïve approach) 

 

1. Consider all track pairs (ti,tj) 

2. For each pair of nodes in tracks (ti,tj) run Dijkstra 

 

 

Note: O(N2 . N2 . N . logN) 
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Approaches to compute  
the Track Similarity Matrix 
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• Example: track similarity matrix computation  
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• Example: track similarity matrix computation (cont.) 
  

Transform to graph  (for simplicity all weights equal 1) 
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• Example: track similarity matrix computation (cont.) 

 

  Calculate track similarity function 

 

 

 

     n, m – nodes of tracks ti, tj respectively 
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– Matrix-Element Track Similarity 
 

1. Consider all track pairs (i, j) 
 

2. Attach a virtual node to track i 
 

3. Run single Dijkstra from the virtual node to all the nodes 
in  track j 

 

4. Compute track similarity metric  
 

Note: O(N2 . N . logN) 
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• Example: track similarity matrix computation 
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• Example: track similarity matrix computation (cont.) 

   

  Calculate track similarity function 

 

 

 

  

 

 dist[m] – distance from node m in tracks tj to its 
closest node in track ti 
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1. GPS data collecting  

– Expensive:  

Specialized vehicle 

Keep up with changes in the road  

 

– Chip:  

Regular vehicle 

Detect road intersection 
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Problem definition 
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Input: GPS data of regular vehicles 

 

2. Infer the road network from GPS traces:  

– Graph G = {V, E} 

– Nodes = road intersections 

 

Goal: detect road intersections 
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Problem definition 
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Example: GPS data of regular vehicles 
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Detecting Road Intersections from GPS Traces 

Example: Local Shape Descriptor with 32 bins 

 

 

 

 

 

 

 

• Sliding over GPS data to detect intersection 
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Input: examples of GPS trace with intersections and 
 non-intersections 

 

1. Sliding by shape descriptor over examples 

 

2. Map the bins to the feature vector 

 

3. Learn classifier (Adaboost [8]) 

 

 

 

Detecting Road Intersections from GPS Traces 

Training phase 
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Detecting Road Intersections from GPS Traces 

Example: result on test dataset 
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Thank you for your attention! 
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