Trajectory analysis

Ivan Kukanov

Joensuu, 2014

Semantic Trajectory Mining for Location Prediction

Josh Jia-Ching Ying Tz-Chiao Weng Vincent S. Tseng Taiwan Wang-Chien Lee Wang-Chien Lee USA

Copyright © 2011 ACM

The next location prediction approaches

Personal-based prediction[1] Stadium
 School
 School
 Fark
 <li

Note: further consider General-based prediction

Semantic Trajectory Mining for Location Prediction

Location Prediction

Semantic Trajectory Mining for

 predicting the next location of a user's movement

Input:

• GPS user's trajectories

Geographical and Semantic similarity

Example: T₁ and T₂ – geograficaly,

 T_2 and T_3 – semantically

Semantic Trajectory Mining for Location Prediction

SemanPredict framework

- *Offline* and *Online* Modules
- Novel prediction strategy: Semantic and Geographic trajectory patterns
- MIT reality dataset [4]
 - 106 mobile users
 - Over 500,000 hours

1. Data preprocessing

2. Semantic mining

3. Geographic mining

1. Data preprocessing:

GPS trajectories to stay locations sequence [1, 5]

<u>Output:</u> $T_1 = \langle S_0, S_1, S_2 \rangle$; $T_2 = \langle S_0, S_4, S_3 \rangle$; $T_3 = \langle S_0, S_5, S_4, S_3 \rangle$; ...

Semantic Trajectory Mining for Location Prediction

2. Semantic mining:

2.1. Assign *semantic labels* to stay locations using gazetteer [6];

• Example:

<u>Input:</u> $T_1 = \langle S_0, S_1, S_2 \rangle$; $T_2 = \langle S_0, S_4, S_3 \rangle$; $T_3 = \langle S_0, S_5, S_4, S_3 \rangle$; ...

<u>Output:</u> T₁=<School, Park, Stadium> ; T₂=<School, Bank, Hospital>; T₃=<School, Unknown, Bank, Hospital>; ...

2. Semantic mining:

• Example: result *semantic labels*

2. Semantic mining

2.2. Similar User Clustering

• Complete linkage clustering

<u>Similarity measure:</u> Maximal Semantic Trajectory Pattern Similarity [6]

• Example: Longest Common Sequence(LCS)

P = <School, Park, Stadium>, Q = <School, Bank, Park, Shop>

LCS(P, Q) =<School, Park>

$$ratio(P) = \frac{1+1}{3} = \frac{2}{3}$$

$$ratio(Q) = \frac{1+1}{4} = \frac{1}{2}$$

$$dist(P,Q) = \frac{1}{2} \cdot \left(\frac{2}{3} + \frac{1}{2}\right) = \frac{7}{12}$$

Semantic Trajectory Mining for Location Prediction

3. Geographic mining

Input:

- stay location sequence
- clusters from semantic mining

3.1. Grouping Users' Stay Location Sequences (*Prefix-Span* [9])

Output: clusters of stay location sequence based on semantic clusters

• Recap

Input: GPS user's trajectories

Semantic Trajectory Mining for Location Prediction

Bank

Semantic Trajectory Mining for Location Prediction

Stadium

<u>Input</u>: the trajectory of the user's recent moves

Semantic Trajectory Mining for Location Prediction

• Matching score:

Score = $\beta \times GeographicScore + (1 - \beta) \times SemanticScore$, where $0 < \beta \le 1$

Note: how well the 'user behavior' matches model

Summarizing Trajectories into k-Primary Corridors: A Summary of Results

Michael R. Evans Dev Oliver Francis Harvey USA

Copyright © 2012 ACM

Why k-Primary Corridors?

• Identifying potential avenues for access

• Determine bus, metro and railway systems corridors

Basic concepts

Road network

- Graph $G = \{V, E\}$
- Nodes = road intersections

• Track

- GPS trace to series of nodes and edges of road network
- Primary corridor
 - 'Representative track of group of other tracks' (Medoid)

Road Network

Problem statement

• Given

- Road Network: G = {V, E}
- Collection of Tracks: T
- Number k

• Find

– k-Primary Corridors

Constraints

- Each primary corridor is track itself from set T
- G is a connected graph with **nonnegative weights**

Solution

- Input: see Given
 - 1. Compute the *track similarity matrix*

	Track 1	Track 2	Track 3
Track 1	0	1.16	3
Track 2	1.16	0	2
Track 3	3	2	0

2. Modified k-Medoid clustering [7]

Note: <u>bottleneck</u> is the track similarity matrix computation

 Example: time comparison of steps in k-Primary Corridor problem (100 nodes/tracks, k=5)

Steps of k -PC	Runtime	Percentage
Track Similarity Matrix	46.56 sec	94.1%
Partitioning / Clustering	2.96 sec	5.9%
Total	49.52 sec	100%

Approaches to compute the Track Similarity Matrix

- Graph-Node Track Similarity (naïve approach)

- 1. Consider all track pairs (t_i,t_i)
- 2. For each pair of nodes in tracks (t_i,t_i) run Dijkstra

Note: $O(N^2 \cdot N^2 \cdot N \cdot \log N)$

• Example: track similarity matrix computation

• Example: track similarity matrix computation (cont.)

Transform to graph (for simplicity all weights equal 1)

• Example: track similarity matrix computation (cont.)

Calculate track similarity function

$$s(t_i, t_j) = \frac{1}{|t_i|} \sum_{n \in t_i} \min_{m \in t_j} \left[ShortestPath(n, m) \right]$$

n, *m* – nodes of tracks t_i , t_j respectively

	Track 1	Track 2	Track 3
Track 1	0	1.16	3
Track 2	1.16	0	2
Track 3	3	2	0

Approaches to compute the Track Similarity Matrix

Matrix-Element Track Similarity

- 1. Consider all track pairs (i, j)
- 2. Attach a **virtual node** to track i
- 3. Run **single** Dijkstra from the virtual node to all the nodes in track j
- 4. Compute track similarity metric

Note: $O(N^2 \cdot N \cdot \log N)$

• Example: track similarity matrix computation

• Example: track similarity matrix computation (cont.)

Calculate track similarity function

$$s(t_i, t_j) = \frac{1}{|t_i|} \sum_{m \in t_j} dist[m]$$

dist[m] – distance from node m in tracks t_j to its closest node in track t_i

Detecting Road Intersections from GPS Traces

Alireza Fathi John Krumm Microsoft Research USA

2010

Problem definition

- 1. GPS data collecting
 - Expensive:
 - Specialized vehicle
 - Keep up with changes in the road

- Chip:
- **Regular vehicle**
- **Detect road intersection**

Problem definition

Input: GPS data of regular vehicles

- 2. Infer the road network from GPS traces:
 - Graph G = $\{V, E\}$
 - Nodes = road intersections

Goal: detect road intersections

Example: GPS data of regular vehicles

(a) all GPS data

(b) one intersection

Detecting Road Intersections from GPS Traces

Example: Local Shape Descriptor with 32 bins

• Sliding over GPS data to detect intersection

Training phase

Input: examples of GPS trace with intersections and non-intersections

- 1. Sliding by **shape descriptor** over examples
- 2. Map the **bins to the feature vector**
- 3. Learn classifier (Adaboost [8])

Example: result on test dataset

Detecting Road Intersections from GPS Traces

Thank you for your attention!

References

- 1. Yang Ye^{*}, Yu Zheng, Yukun Chen, Jianhua Feng, Xing Xie. Mining Individual Life Pattern Based on Location History. In proceedings of the International Conference on Mobile Data Management 2009 (MDM 2009). IEEE, 1-10.
- 2. E. H.-C. Lu and V. S. Tseng. Mining Cluster-Based Mobile Sequential Patterns in Location-Based Service Environments. MDM, 2009
- 3. A. Monreale, F. Pinelli, R. Trasarti, F. Giannotti. WhereNext: a location predictor on trajectory pattern mining. KDD 2009: 637-646
- 4. N. Eagle, A. Pentland, and D. Lazer. Inferring Social Network Structure using Mobile Phone Data. In proceedings of the National Academy of Sciences (PNAS),106(36), pp. 15274-15278, 2009
- 5. Y. Zheng, L. Zhang, and X. Xie. Recommending friends and locations based on individual location history. ACM Transaction on the Web, 2010.
- 6. J. J.-C. Ying, E. H.-C. Lu, W.-C. Lee, T.-C. Weng, V. S. Tseng. Mining User Similarity from Semantic Trajectories. In Proceedings of ACM SIGSPATIAL International Workshop on Location Based Social Networks (LBSN' 10), San Jose, California, USA, November 2, 2010.

References

- 7. L. Kaufman, P. Rousseeuw, et al. Finding groups in data: an introduction to cluster analysis, volume 39. Wiley Online Library, 1990.
- Viola, P. and M. Jones, Rapid Object Detection using a Boosted Cascade of Simple Features, in Computer Vision and Pattern Recognition (CVPR 2001). 2001.
 p. I-511- I-518.
- 9. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the 17th International Conference on Data Engineering (ICDE), 2001, 215-224