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Outline

e Far Out — Predicting long-term human mobility
* Long-term prediction, GPS, Continuous and Cellular Pattern

* Personal continuous route pattern mining
* Data mining, Route pattern, GPS, Privacy

* Unique in the Crowd — Privacy bounds of human mobility
* Privacy, Anonym mobility dataset, 1.5M users, GSM



Far Out

* Where are you going to be 285 days from now at 2PM?
* A model of long-term human mobility
* Visualizing the patterns in a meaningful way

* “Need a haircut? In 4 days, you will be within 100 meters of a salon
that will have a S5 special at that time.”

by Adam Sadilek & John Krumm @ Microsoft Research, 2012



Data

Clock § Friday 12/12/2008 4:10 AM

Hour of Day 17 [¥] Weekday

HTM Level [}

¢ G PS [" Migph_sﬂr_

* Seattle W=,

* 307 people
* 396 vehicles
e 7-1247 days

* Avg 46 days
* Total 32000 days

* Triangular cells
e Side 400m
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Model

* Fourier analysis to find periodicity
* PCA to extract strong patterns and eliminate insignificant features
* Continuous representation:
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Fourier analysis, find periodicity of data

e Discrete Fourier Transformation f [Wikipedia]
* Find periodicity

* Complex representation

* Latitude + ilongitude P ) P
| 1 | |

* O(NlogN) with FFT | \ I,' \ |
Y Y 'Lﬁ-fwwﬂ-ﬂ,-'l



Principal Component Analysis

* Dimensionality reduction

* Find linearly uncorrelated,
“principal” components

 Numerically stable algorithm by Singular
Value Decomposition (SVD) O(mn?)

* Decomposition of M [m X n] matrix
M=USV

U — |[m X m] complex unitary matrix
S — |m X n] rectangular diagonal matrix
V — [n X n] COmpIEX unitary matriX 3 IO ................................ ...................................................................... ,,,,,,,




Ten most typical eigendays, continuous case
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Six most typical eigendays, ce
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Models of prediction

Extract w observed feature vector from t time of prediction
E.g. Ist Monday? Is t holiday?

Models

* Mean Day Baseline Model

* Projected Eigenday Model

* Segregated Eigendays Model
Improve by

* Adapting to pattern drift



Mean Day Baseline Model

* Average Lat and Lon values for each hour and each day type
24 X 7 X 2 = 336 hour type in this case

* Results the mean of all days matching w



Projected Eigenday Model (PCA)

* Project w onto features subspace of eigendays’ space
* Projection provides w weights of eigenvectors

* Results the w weighted average of eigendays
* It is a least-squares fitting problem



Segregated Eigendays Model (PCA)

 Separate library of eigendays for each day type (e.g. Monday-Holiday)

* Applied weights are proportional to the variance of eigenday on
training data



Adapting to pattern drift

* Linear decay to training data

* Applied to mean and variance calculation that are used to normalize
data

e Reduces error by 27%



Number of eigendays

43 - Mean Baseline
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Experiment & Results

100¢
g - % ﬁr/”—+}~\
TS
g 60 1 ~oT
&) 9
< |
o 401 —e— Projected Eigendays, adjusted for drift
% - ® - Most Frequent Baseline, adjusted for drift
Z 20} Random Baseline

0 Cars Pocket Loggers Shuttles Paratransit

n=301 nN=62 n=97 n=243
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Training Data, weeks

Prediction error

Cumulative error, km Cumulative error, km Error, km

20 40 60 80 20 40 60 8 20 40 60 80
Prediction, week Prediction, week Prediction, week
Mean Baseline PCA, cumulative PCA, separate
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Personal continuous route pattern mining

* Record personal routes by GPS devices and smartphones

* Trajectory preprocessing on mobile device

 Spatially meaningless data sent to server to preserve privacy
* Route Pattern mining on the server

————— > +—————
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: Load in Data filtering and :
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Route preprocessing

e Adaptive sampling interval to reduce processed data amount
Decrease or increase interval based on estimated speed

* Trip filtering to remove measurement errors
5 filters

e Spatio-Temporal Sequence into Regional-Temporal sequence



Trip filtering

* Duplication filter
Drop latter measurement point within A4,,,, distance of previous

e Speed filter

Drop latter point if the speed calculated by previous point is unreasonable

e Acceleration filter

Compare speed to the previous segment and drop point if over threshold
 Total-distance filter

A trip is dropped if all the data points are within a A;4;,distance of its centroid

* Angle filter

Drop the middle point if three consecutive points in a short time form a sharp angle,
Smooth the trip
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Result of filtering

350
* Not tested separately 300 B Total
g Filtered
Fixed order 250
* Not independent
200

Number of positions (x10°)

150 F
100 F
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0 I I [
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1 10 11

Participant ID
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Regional-Temporal Sequence

* Spatio-Temporal Sequence (STS) {...,(x,, y;, t.),-..}
 Create square grid

» Assign trajectory points to cells (CTS)
 Compute cell density of cells

* Merge successive cells of similar density into
Regions (RTS)

* Maximal region size 2..5 cells
«{..(R;,T}

) Tgut), ... } is transferred
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Regions

Number of ROIs
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- B max reg size=1
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max _reg size=>

L

1 2 4 5 6 7 9 10 11
Participant ID
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Ways of pattern mining on RTS

* Find frequent patterns in set of RTSs

* A, threshold parameter of gap between regions

A:me=0, only continuous subsequences are handled, same problem as longest
common substring

A.:me=°°, @any gap is accepted between regions, same as PrefixSpan algorithm

* Extended PrefixSpan algorithm to take A, . into consideration

time



Substring

S ={...,S;, ..} set of K character strings,
Lsilzz YHJ}E71i:=-AI

* Amin_sup P@rameter of support (5)

* Find all common substrings that it is
supported by at least A strings from S

 DP solution O(][ n;)
* Generalized suffix tree solution O(K X N)

min_sup

"ABAB", "BABA" and "ABBA"



PrefixSpan

* Given two sequences a = (a4, a,, ...,a,) and B = (by, by, ..., by )

e a is subsequence of B, a € B,
if31<j; <j,<-:<j, <msuchthat Via;< b;,

* Find all subsequences of S set of sequences supported by at least A
sequences

* Pseudo-polynomial time complexity

Example: B =<a(abc)(ac)d(cf)>
a,=<aa(ac)d(c)> S B a,=<df(cf)> € B
a,=<(ac)(ac)d(cf)> < B a.=<(cf)d> &
a,=<ac> C f3 a.=<(abc)dcf> & B

min_sup
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Proportion (%)

Personal pattern frequency estimation

100

80

60

40

20

O Once or more a day O Once or more a week
B Once or more a month W Less than once a month

Proportion (%)

1 2 4 5 6 7 9 10 11
Participant ID

What’s your traveling frequency on the route?

100 [
80 I II
60 |
iy e
20 F
T

O P=75% O 50%<P<75%
B 25%<P<50% M P<25%

7 9 10 11
Participant 1D

What’s the proportion of the route pattern to your
. . . . 28 of 37
regular trip, containing the route, in length?



Unigue in the crowd

* Four spatio-temporal point is enough to uniquely identify 95% of
people

* Electronic Frontier Foundation published about inferring potentially
sensitive information out of mobility trace

* 33% of App Store applications access geo-location

e Medical DB combined with voters list to extract health record of
governor of Massachusetts

by Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen,
Vincent D. Blondel @ MIT, Harvard, ..., 2013



Anonymized dataset

* No personal info (nhame, address,
phone number, email)

* Rough spatial records based on GSM
cells and hourly temporal resolution

* 1.5M individuals, all subscribers of a
nameless European operator

* 1.5 years of data

e Not continuous
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Unigueness, €

6pm-7pm

* D a simply anonymized dataset

* |, a psize set of spatio-temporal 72m-=8am
points

. S(Ip) subset of D matching l 12pm-1pm

e £ uniqueness, the probability of gam-10am
|S(Ip)| = 1 by choosing the 8am-9am
points of I ) uniformly
distributed among the range of
spatio-temporal points of D
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Unigueness, €

Uniqueness of traces
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Scaling properties

e Decrease spatial and temporal resolution

Merge cells and increase the observation time
window

CETERVET

* h — proportion of time window to original 1

hour
* v—number of merged cells
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Uniqueness of traces

e Easier to attack if dataset is coarse on one dimension but fine on
the other than mid-grained on both dimensions

Spatial resolution [v]
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Uniqueness as a function of

resolution

e Power function fits data
e e =q— (vh)P

* Bis linear function of number of points
* If the resolution halves the uniqueness decreases

by constant factor 27°F

* Privacy is increasingly hard to gain by lowering the

resolution
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Lessons

* Privacy is increasingly hard to achieve
* Re-identification is possible even in sparse, large scale, coarse dataset

* Knowing the bounds of individual privacy is important for future
policies and information technologies



Questions

Thank you for the attention!
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