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Outline

• Far Out – Predicting long-term human mobility
• Long-term prediction, GPS, Continuous and Cellular Pattern

• Personal continuous route pattern mining
• Data mining, Route pattern, GPS, Privacy

• Unique in the Crowd – Privacy bounds of human mobility
• Privacy, Anonym mobility dataset, 1.5M users, GSM
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Far Out

• Where are you going to be 285 days from now at 2PM?

• A model of long-term human mobility 

• Visualizing the patterns in a meaningful way

• “Need a haircut? In 4 days, you will be within 100 meters of a salon 
that will have a $5 special at that time.”

by Adam Sadilek & John Krumm @ Microsoft Research, 2012
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Data

• GPS
• Seattle

• 307 people

• 396 vehicles

• 7-1247 days
• Avg 46 days

• Total 32000 days

• Triangular cells
• Side 400m
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Model

• Fourier analysis to find periodicity

• PCA to extract strong patterns and eliminate insignificant features

• Continuous representation:

• Cellular representation:
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Fourier analysis, find periodicity of data

• Discrete Fourier Transformation

• Find periodicity

• Complex representation
• Latitude + i longitude

• O(NlogN) with FFT

[Wikipedia]
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Principal Component Analysis

• Dimensionality reduction

• Find linearly uncorrelated,
“principal” components

• Numerically stable algorithm by Singular 
Value Decomposition (SVD) O(mn2)

• Decomposition of M [𝑚 × 𝑛]matrix
𝑀 = 𝑈 𝑆 𝑉

𝑈 − 𝑚 ×𝑚 complex unitary matrix

𝑆 − 𝑚 × 𝑛 rectangular diagonal matrix

𝑉 − 𝑛 × 𝑛 complex unitary matrix
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Ten most typical eigendays, continuous case

8 of 37



Six most typical eigendays, cellular case
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Models of prediction

Extract ω observed feature vector from t time of prediction
E.g. Is t Monday? Is t holiday? 

Models

• Mean Day Baseline Model

• Projected Eigenday Model

• Segregated Eigendays Model

Improve by

• Adapting to pattern drift
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Mean Day Baseline Model

• Average Lat and Lon values for each hour and each day type
24 × 7 × 2 = 336 hour type in this case

• Results the mean of all days matching ω

11 of 37



Projected Eigenday Model (PCA)

• Project ω onto features subspace of eigendays’ space
• Projection provides w weights of eigenvectors

• Results the w weighted average of eigendays

• It is a least-squares fitting problem 
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Segregated Eigendays Model (PCA)

• Separate library of eigendays for each day type (e.g. Monday-Holiday)

• Applied weights are proportional to the variance of eigenday on 
training data
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Adapting to pattern drift

• Linear decay to training data

• Applied to mean and variance calculation that are used to normalize 
data

• Reduces error by 27%
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Number of eigendays
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Experiment & Results
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Prediction error
Cumulative error, kmCumulative error, km Error, km

Prediction, week
Mean Baseline

Prediction, week
PCA, cumulative

Prediction, week
PCA, separate
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Personal continuous route pattern mining

• Record personal routes by GPS devices and smartphones

• Trajectory preprocessing on mobile device

• Spatially meaningless data sent to server to preserve privacy

• Route Pattern mining on the server

by Qian YE, 
Ling CHEN,
Gen-cai CHEN
@  Zhejiang University
Hangzhou, 2008
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Route preprocessing

• Adaptive sampling interval to reduce processed data amount
Decrease or increase interval based on estimated speed

• Trip filtering to remove measurement errors
5 filters

• Spatio-Temporal Sequence into Regional-Temporal sequence
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Trip filtering

• Duplication filter
Drop latter measurement point within λ𝑑𝑢𝑝 distance of previous

• Speed filter
Drop latter point if the speed calculated by previous point is unreasonable

• Acceleration filter
Compare speed to the previous segment and drop point if over threshold

• Total-distance filter
A trip is dropped if all the data points are within a λ𝑡𝑑𝑖𝑠distance of its centroid

• Angle filter
Drop the middle point if three consecutive points in a short time form a sharp angle, 
Smooth the trip  
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Result of filtering

• Not tested separately

• Fixed order

• Not independent
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Regional-Temporal Sequence

• Spatio-Temporal Sequence (STS) {…,(xi, yi, ti),…}

• Create square grid

• Assign trajectory points to cells (CTS)

• Compute cell density of cells

• Merge successive cells of similar density into 
Regions (RTS)

• Maximal region size 2..5 cells

• {… , 𝑅𝑖 , 𝑇𝑖𝑛
𝑖 , 𝑇𝑜𝑢𝑡

𝑖 , … } is transferred
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Regions
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Ways of pattern mining on RTS

• Find frequent patterns in set of RTSs

• λtime threshold parameter of gap between regions
λtime=0, only continuous subsequences are handled, same problem as longest 
common substring

λtime=∞, any gap is accepted between regions, same as PrefixSpan algorithm

• Extended PrefixSpan algorithm to take λtime into consideration
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Substring

• 𝑆 = {… , 𝑆𝑖 , … } set of K character strings, 
𝑆𝑖 = 𝑛𝑖 ,  𝑛𝑖 = 𝑁

• λmin_sup parameter of support (5)

• Find all common substrings that it is 
supported by at least λmin_sup strings from S

• DP solution 𝑂  𝑛𝑖
• Generalized suffix tree solution 𝑂 𝐾 × 𝑁

"ABAB", "BABA" and "ABBA"
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PrefixSpan

• Given two sequences 𝛼 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝛽 = (𝑏1, 𝑏2, … , 𝑏𝑚 )

• α is subsequence of β, α ⊆ β, 
if ∃ 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛 ≤ 𝑚 such that  ∀𝑖 𝑎𝑖⊆ 𝑏𝑗𝑖

• Find all subsequences of S set of sequences supported by at least λmin_sup
sequences

• Pseudo-polynomial time complexity

Example: β =<a(abc)(ac)d(cf)>

α1=<aa(ac)d(c)>⊆ β α4=<df(cf)> ⊈ β

α2=<(ac)(ac)d(cf)>⊆ β α5=<(cf)d> ⊈ β

α3=<ac> ⊆ β α6=<(abc)dcf> ⊈ β
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Found route patterns
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Personal pattern frequency estimation

What’s your traveling frequency on the route?
What’s the proportion of the route pattern to your 
regular trip, containing the route, in length?
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Unique in the crowd

• Four spatio-temporal point is enough to uniquely identify 95% of 
people

• Electronic Frontier Foundation published about inferring potentially 
sensitive information out of mobility trace

• 33% of App Store applications access geo-location

• Medical DB combined with voters list to extract health record of 
governor of Massachusetts 

by Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, 
Vincent D. Blondel @ MIT, Harvard, … , 2013
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Anonymized dataset

• No personal info (name, address, 
phone number, email)

• Rough spatial records based on GSM 
cells and hourly temporal resolution

• 1.5M individuals, all subscribers of a 
nameless European operator

• 1.5 years of data

• Not continuous
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Uniqueness, ε

• D a simply anonymized dataset

• Ip a p size set of spatio-temporal 
points

• S(Ip) subset of D matching Ip

• ε uniqueness, the probability of 
𝑆(𝐼𝑝) = 1 by choosing the 

points of Ip uniformly 
distributed among the range of 
spatio-temporal points of D
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Uniqueness, ε
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Scaling properties

• Decrease spatial and temporal resolution
Merge cells and increase the observation time 
window

• h – proportion of time window to original 1 
hour

• v – number of merged cells
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Uniqueness of traces

• Easier to attack if dataset is coarse on one dimension but fine on 
the other than mid-grained on both dimensions

p = 4 p = 10
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Uniqueness as a function of 
resolution
• Power function fits data

• ε = 𝛼 − 𝑣ℎ 𝛽

• β is linear function of number of points
• If the resolution halves the uniqueness decreases 

by constant factor 2−𝛽

• Privacy is increasingly hard to gain by lowering the 
resolution
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Lessons

• Privacy is increasingly hard to achieve

• Re-identification is possible even in sparse, large scale, coarse dataset

• Knowing the bounds of individual privacy is important for future 
policies and information technologies 
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Questions

Thank you for the attention!

Adam Ludvig
258801

hunludvig@gmail.com


