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Recent advances in position localization techniques have fundamentally enhanced social networking services, allowing
users to share their locations and location-related content, such as geo-tagged photos and notes. We refer to these social
networks as location-based social networks (LBSNs). Location data both bridges the gap between the physical and digital
worlds and enables a deeper understanding of user preferences and behavior. This addition of vast geospatial datasets has
stimulated research into novel recommender systems that seek to facilitate users’ travels and social interactions. In this
paper, we offer a systematic review of this research, summarizing the contributions of individual efforts and exploring their
relations. We discuss the new properties and challenges that location brings to recommendation systems for LBSNs. We
present a comprehensive survey of recommender systems for LBSNs, analyzing 1) the data source used, 2) the methodology
employed to generate a recommendation, and 3) the objective of the recommendation. We propose three taxonomies that
partition the recommender systems according to the properties listed above. First, we categorize the recommender systems
by the objective of the recommendation, which can include locations, users, activities, or social media.Second, we categorize
the recommender systems by the methodologies employed, including content-based, link analysis-based, and collaborative
filtering-based methodologies. Third, we categorize the systems by the data sources used, including user profiles, user online
histories, and user location histories. For each category, we summarize the goals and contributions of each system and
highlight one representative research effort. Further, we provide comparative analysis of the recommendation systems within
each category. Finally, we discuss methods of evaluation for these recommender systems and point out promising research
topics for future work. This article presents a panorama of the recommendation systems in location-based social networks
with a balanced depth, facilitating research into this important research theme.
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1. INTRODUCTION

With millions of users, social networking services like Facebook and Twitter have become some
of the most popular Internet applications. The rich knowledge that has accumulated in these social
sites enables a variety of recommendation systems for new friends and media.
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Recently, advances in location-acquisition and wireless communication technologies have en-
abled the creation of location-based social networking services, such as Foursquare, Twinkle, and
GeoLife [Zheng et al.2008;Zheng et al.2010b;Zheng et al. 2009c]. In such a service, users can eas-
ily share their geospatial locations and location-related content in the physical world via online
platforms. For example, a user with a mobile phone can share comments with his social network
about a restaurant at which he has dined on an online social site. Other users can expand their social
networks using friend suggestions derived from overlapped location histories. For instance, people
who constantly hike on the same mountain can be put in contact.

The location dimension bridges the gap between the physical world and the digital online social
networking services, giving rise to new opportunities and challenges in traditional recommender
systems in the following aspects:

(1) Complex objects and relations: A location is a new object in location-based social networks
(LBSNs), generating new relations between users, between locations, and between users and
locations. New recommendation scenarios, like location and itinerary recommendations, can be
enabled using this new knowledge, and traditional recommendation scenarios, such as friend
and media recommendation, can be enhanced. However, doing so requires new methodologies
for generating high-quality recommendations.

(2) Rich knowledge: A location is one of the most important components defining a user’s context.
Extensive knowledge about a user’s behavior and preferences can be learned via their location
history [Ye et al. 2009]. The huge volume of location-related data generated by users improves
the likelihood that social opinions, e.g., the most favorite dish in a restaurant or the most popular
activity at a point of interest, can be accurately assessed by recommendation systems.

These opportunities and challenges have been tackled by many new approaches to recommenda-
tion systems, using different data sources and methodologies to generate different kinds of recom-
mendations. In this article, we provide a survey of these systems, and the publications proposing
them, with a systematic review on over fifty articles published over the last four years in the ma-
jor journals, conferences, and workshops, including KDD, WWW, Ubicomp, ACM SIGSPATIAL,
LBSN, RecSys, ACM TIST and VLDB. For each publication, we analyze 1) what a produced rec-
ommendation is (i.e., the objective of a recommendation), 2) the methodology employed to generate
a recommendation, and 3) the data source it used. According to these three aspects, we propose three
taxonomies to respectively partition the recommender systems. This survey presents a panorama of
the recommendations in location-based social networks with a balanced depth, facilitating research
into this rising topic. The contributions of this article are detailed as follows:

— We distinguish LBSNs from conventional social networks and define their unique properties,
challenges, and opportunities.

— We categorize the major recommender systems for LBSNs in three taxonomies, organized by
data sources, methodologies, and recommendation objectives. In each category, we summarize
the goals and contributions of each system. In addition, we highlight one representative system
in each category, providing a more in-depth view of the methodology.

— We summarize the major methods for evaluating the recommendations in LBSNs .
— We point out promising research directions in LBSN recommendation systems, paying special

attention to directions that result from the analysis and synthesis of the different recommendation
system categories.

The rest of the paper is organized as follows: In Section 2, we provide an overview of location-
based social networks. We then propose taxonomies for existing recommendation systems for LB-
SNs in the three subsequent sections. In Section 3, we propose a taxonomy organized by objective
of the recommendations. In Section 4, we propose a taxonomy organized by the methodology of the
recommendation system. In Section 5, we propose a taxonomy organized by the data source used
by the recommendation systems. In Section 6, we summarize the major methods for evaluating a
recommendation in an LBSN. In Section 7, we present potential future research directions and dis-
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cuss how they relate to the existing recommendation systems. Finally, in Section 8 we present our
concluding remarks.

2. OVERVIEW

In this section, we first present a formal definition of location-based social networks. After that,
we summarize the unique properties of locations as data and discuss the new challenges they bring
to recommendation systems for LBSNs.

2.1. Concepts of Location-Based Social Networks

A social network is an abstract structure comprised of individuals connected by one or more types
of relations, such as friendships, common interests, and shared knowledge. A social networking
service is a participatory digital representation of real-world social networks. These services reflect
their users actual social networks, but also enhance those networks and enable their growth by
allowing users to share ideas, activities, events, and interests.

The addition of location data strengthens the connection between the social networking services
and the real-world social networks. Zheng proposed a formal definition for these location-based
social networks [Zheng 2011; 2012]:

“A location-based social network (LBSN) does not only mean adding a location to an existing
social network so that people in the social structure can share location-embedded information, but
also consists of the new social structure made up of individuals connected by the interdependency
derived from their locations in the physical world as well as their location-tagged media content,
such as photos, video, and text. Here, the physical location consists of the instant location of an
individual at a given timestamp and the location history that an individual has accumulated in a
certain period. Further, the interdependency includes not only that two persons co-occur in the same
physical location or share similar location histories but also the knowledge, e.g., common interests,
behaviors, and activities, inferred from an individual’s location (history) and location-tagged data.”
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Fig. 1. Concept of location-based social networks.

Figure 1 gives an overview of location-based social networks, in which the addition of locations
creates new relations and correlations. Based on this new information, we can build three graphs
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in location-based social networks: a location-location graph, a user-location graph, and a user-user
graph.

— Location-location graph. In the location-location graph (shown in the bottom-right of Figure 1),
a node is a location and a directed edge between two locations indicates that some users consec-
utively visited the locations. The weight associated with an edge represents the strength of the
correlation between the two locations.

— User-location graph. In the user-location graph (shown in the left of Figure 1), there are two
types of nodes, users and locations. An edge starting from a user and ending at a location indicates
that the user has visited the location, and the weight of the edge can indicate the number of visits.

— User-user graph. In the user-user graph (shown in the top-right of Figure 1), a node is a user
and an edge between two nodes represents two relations. One relation is the original connection
between two users in an existing social network. The other relation is the new connection derived
from the users’ locations, e.g., two users may be connected if they have visited the same location,
or similar types of places. The latter connection, initially inferred from a user’s location history,
can be translated to the former through a recommendation mechanism. In other words, we can
recommend users to an individual based on the inferred location-based connection. Once the
individual accepts the recommendation, the relationship switches from the second category to
the first.

The existing location-based social networking services can be classified into three major groups:

— Geo-tagged-media-based. Geo-tagging services enable users to add a location label to media
content such as text, photos, and videos generated in the physical world. The tagging can occur
passively when the content is created or can be added explicitly by the user. Users can view their
content in the geographic context in which it was created (on a digital map or in the physical
world using a mobile phone). Representative websites of such location-based social networking
services include Flickr, Panoramio, and Geo-twitter. Though a location dimension has been added
to these social networks, the focus of these services is still on the media content. That is, location
is used only as a feature to organize and enrich the media content while the connections between
users are based on the media itself.

— Point-location-based. Applications like Foursquare and Google Latitude encourage people to
share their current locations, such as restaurants or museums. In Foursquare, points and badges
are awarded for checking in at venues. The individual with the most number of check-ins at
a venue is crowned “Mayor.” With the real-time location of users, an individual can discover
friends (from her social network) around their physical location to enable social activities in the
physical world, e.g., inviting people to have dinner or go shopping. Users can also add tips to
venues that other users can read, which serve as suggestions of things to do, see, or eat at the
location. With this kind of service, a venue (point location) is the main element determining the
connections between users, while user-generated content such as tips and badges are associated
with point locations.

— Trajectory-based. In a trajectory-based social networking service, such as Bikely, SportsDo, and
Microsoft GeoLife, users record both point locations and the route connecting the point locations.
These services tell users’ basic information, such as distance, duration, and velocity, about a
particular trajectory, but they also show users’ experiences, represented by tags, tips, and photos
along the trajectories. In short, these services provide “how and what” information in addition
to “where and when.” Other users can reference these experiences (e.g. travel) by browsing or
replaying the trajectory on a digital map or in the real world with a GPS-enabled phone.

2.2. Influence of Locations in Social Networks
Users’ location histories contain a rich set of information reflecting their preferences, once the
patterns and correlations in the histories has been analyzed [Eagle and Pentland 2009]. Research
into location histories found that the distribution of locations often fit a power law, i.e. the closer
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locations have a much higher probability of being visited, e.g., [Couldry 2004; Brockmann et al.
2006; Jiang et al. 2008]. In [Brockmann et al. 2006], the authors study the location histories of
marked currency as it circulates (shown in Figure 2a). They collect a total of 20,540 trajectories
throughout the United States. The authors investigate the probability P (r) of finding a traversal
distance r within a number of days. A total of 14,730 (that is, a fractionQ = 0.71) secondary reports
occurred outside a short range radius Lmin = 10 km. The distribution shows power-law behavior
P (r) r(1+β) with an exponent β = 0.59±0.02. Recent investigations found similar patterns in users’
location histories in LBSNs. For example, [Noulas et al. 2011] studies a large point-location data
set collected from Foursquare that reveals several patterns: a user’s activities are different during
the weekdays and weekends, and the spatiotemporal patterns of users’ check-ins fit the power law
distribution. They found that 20% of the user’s check-ins occur within a distance of 1 km, 60%
occur between 1 and 10 km, 20% occur between 10 km and 100 km, and a small percentage extend
to distances beyond 100 km. Analysis such as the above, coupled with investigations into user and
location correlations and patterns, provide clues of user preferences that can guide recommendation
systems.

(a) human mobility study via money circulation 
[Brockmann et al. 2006]

(b) Human mobility study via user check-ins 
[Noulas et al. 2011]

Fig. 2. Location Influences in LBSNs.

2.3. Unique Properties of Locations
Location information brings the following three unique properties to LBSNs, as shown in Figure 3,:

Hierarchical. Locations span multiple scales: for example, a location can be as small as a restau-
rant or as big as a city. Locations with different granularities form a hierarchy, where locations on a
lower tiers refer to smaller geographic areas. For example, a restaurant belongs to a neighborhood,
the neighborhood belongs to a city, the city belongs to a county, and so on (see Figure 3a). Different
levels of location granularity imply different location-location graphs and user-location graphs, even
given the same location histories of users. These hierarchical relationships need to be considered as,
for example, users who share locations at a lower level (such as a restaurant) likely have a stronger
connection than those who share locations at a higher level (such as living in the same city). This
hierarchical property is unique in LBSNs, as it does not hold in an academic social network, where
a conference never belongs to others.

Measurable Distances. Connecting the physical world to a LBSN leads to three new geospatial
distance relations, the distance between different users’ locations (shown as D1 in Figure 3b), the
distance between a user and a location (shown as D2 in Figure 3b), and the distance between two
locations (shown as D3 in Figure 3b). According to the first law of geography posed by Waldo
Tobler [Tobler 1970], “everything is related to everything else, but near things are more related
than distant things”, we propose that distance affects an LBSN in the following three ways. 1)
The user-user distance influences the similarity between users. For example, users with a history of
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visiting nearby locations are more likely to have similar interests and preferences [Li et al. 2008;
Xiao et al. 2010], and users who live close to each other are more likely to be friends [DeScioli
et al. 2011]. 2) The user-location distance influences the likelihood a user will be interested in a
location. For instance, users in Foursquare visit restaurants close to their homes more frequently than
others [Levandoski et al. 2012]. 3) The location-location distance affects the correlations between
locations. For example, shopping malls are often placed close to each other [Ye et al. 2011c].

Sequential ordering. Subsequent visits by a user to two locations creates a relation with a
chronological ordering. For instance, the two users in Figure 3c share a location visiting pattern.
From the time of each visit, we can create an ordering which may indicate some similarities between
their preferences [Zheng et al. 2009d] or may imply traffic conditions [Tang et al. 2010].

City 
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District 

level

u2D1

D3

D2

(a) Location Hierarchy Property (b) Location Distance Property (c) Location Sequential Property

D 3
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Fig. 3. Unique Properties of Locations.

2.4. Challenges to Recommendations in LBSNs
While creating new opportunities for LBSNs, the unique properties of locations also bring new
challenges such as 1) location context awareness, 2) the heterogeneous domain, and 3) the rate of
growth.

2.4.1. Location Context Awareness. Recommender systems in LBSNs need to consider how the
current location of a user, the location history of the user, and the location histories of other users
influences what recommendation to make.

The Current Location of a User. A user’s current location plays a vital role in generating rec-
ommendations in LBSNs due to the following three reasons.

First, a user’s current location can be represented on different levels of granularity (the hierar-
chical property of locations). Choosing a proper granularity for the recommendation scenario is
important and challenging. For instance, we should use a fine granularity when recommending
restaurants to a user, while a relatively coarse granularity (like in a city or state) for local news
recommendations.

Second, the distance property of locations implies that people are more likely to visit nearby
locations than distant ones. However, the quality of a location (like a restaurant) is also important for
recommendation-making. Ranking a recommendation based on both the user-location distance and
the quality of a location is non-trivial. Further, a location indicates a spatial constraint for generating
recommendations, but also influences user preferences. For example, beaches might be given a high
recommendation rank to a user traveling to Hawaii, even though the user prefers sporting events
more than beaches typically. The same user may be more interested in seeing the status of her
friends living in Hawaii. An additional challenge is that fine grain location needs to be taken into
account quickly: users often access LBSNs via mobile devices that frequently update their location
information. Addressing this requires efficient algorithms to generate recommendations quickly.

Third, due to the sequential property of locations, a user’s current location affects future travel
decisions. For instance, the majority of people visiting Tiananmen Square will subsequently travel to
the Forbidden City, or a dessert or drink recommendation may be appropriate after visiting certain
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restaurants. Discovering these sequential relations and incorporating them into recommendations
presents subtle challenges.

The Historical Locations of the User. Earlier works, e.g., [Eagle and Pentland 2006; Eagle
et al. 2009], have suggest that a user’s historical behaviors is a powerful indicator of the user’s
preferences. A user’s historical locations accumulated in an LBSN (e.g., check-ins and geo-tagged
photos) reflect more accurately a user’s experiences, living patterns, preferences and interests than
the user’s online behaviors [Zheng and Zhou 2011]. However, it is non-trivial to model a user’s
location history due to the hierarchy, distance, and sequential properties of locations. Moreover,
learning a user’s personal preferences from the user’s location history is very challenging for the
following reasons. 1) As users do not share their locations everywhere, a full set of a user’s location
history does not exist. Learning a user’s preferences from sparse location data is challenging. 2) A
user’s preferences span multiple kinds of interests, such as shopping, cycling, and arts, rather than
consisting of binary decisions, e.g., a set of ’like or dislike’ statements. 3) A user’s preferences
have hierarchies and granularity, such as “Food” → “Italian food” → “Italian pasta”. 4) A user’s
preferences are constantly evolving (and location dependent).

The Location Histories of Other Users. Location histories generated by other users in LBSNs
make up the social opinion, which is one of the most important information bases for making rec-
ommendations. To extract social opinions from the location histories, however, we are faced with
the following two challenges. 1) It is difficult to design a model to consistently represent different
users’ distinct locations and make these location histories comparable and computable. 2) Users
have different degrees of knowledge about different geospatial regions. For instance, local experts
of a town are more likely to find high quality restaurants and shopping malls. As a result, weighting
different users’ data according to their experiences and knowledge is useful when inferring social
opinions from the massive user-generated and location-related data. Further, the knowledge of a
user is region-related and changes over the granularity of a location. A travel expert in New York
City might have less knowledge of Seattle. Likewise, people who are shopping experts in one dis-
trict of a city might not be the most knowledgeable of the city as a whole. Effectively and efficiently
inferring social opinions with respect to users’ knowledge of different regions is a difficult problem.

2.4.2. Heterogeneous Domain. The graph representing an LBSN is heterogeneous, consisting of
at least two types of nodes (user and location) and three types of edges (user-user, location-location,
and user-location). Alternatively, we can say there are at least three tightly associated graphs that
model an LBSN (as mentioned in Section 2.1). If an LBSN is trajectory-centric, trajectories can be
regarded as another type of node in the social network.

A location is not only an additional dimension of information about the user, but also an important
object in the LBSN. Inferring the similarity or correlation between two objects in a heterogeneous
graph must incorporate the information from related nodes of other types. For instance, determining
the connection between two users in an LBSN needs to involve the user-location and location-
location relations. A location shared by two users could be evidence of similarity, or it could simply
indicate that a location is very popular. Only careful analysis can determine which case holds, and
to what extent it should influence the strength of the connection between the users.

2.4.3. The Rate of Growth. Location-based social networks evolve at a faster pace than traditional
social networks in both social structure and properties of nodes and links. Though academic social
networks are also heterogeneous, with authors, conferences, and papers, they evolve at a much
slower speed than LBSNs do. For example, adding new links in an LBSN is much easier than it is
in a academic social network as visiting a new location is easier than publishing a paper. Further,
the properties of nodes and links in a LBSN evolve more quickly than those of academic social
networks. A user can become a travel expert in a city after visiting many interesting locations over
several months, while a researcher needs years before becoming an expert in a research area. The
rate of growth and evolution in LBSNs raise the standard of scalability, efficiency, and updating
strategy demanded of recommender systems.
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Table I. Comparison of three social networks.

Location Heterogeneous Evolving
Awareness Environments Speed

Academic Social Networks
√

Slow
General Online Social Networks Fast
Location-Based Social Networks

√ √
Fast

Data Sources

Methodologies

Recommendation

Objectives

1. Locations

2. Users

3. Activities

4. Social Media

1. Content-based

2. Link Analysis -based

3. Collaborative Filtering-based

1. User Profiles

2. User Individual Locations

3. User Trajectories 

Fig. 4. An overview of recommendation system categories in LBSNs.

We summarize the differences among different types of social networks, e.g., academic networks,
such as DBLP, general online social networks, such as Facebook, and location-based social net-
works, like Foursquare and GeoLife, in Table I. LBSNs present novel opportunities and challenges
given the unique properties of locations, the heterogeneous structure of a network, and their high
rate of growth and evolution.

2.5. Structure of The Paper
To provide a comprehensive survey on recommendations in LBSNs, we studied over forty related
publications from the major conferences and journals from 2008 to 2011, as summarized in Table II.

For each publication, we study: 1) what is being recommended (i.e. the objective), 2) the method-
ology employed to generate the recommendation, and 3) the data source used. Based on these three
aspects, we propose three taxonomies to partition these recommendation systems for LBSNs. Fol-
lowing the framework shown in Figure 4, we further detail the three taxonomies taxonomy as fol-
lows.

Table II. Statistics on literatures related to Recommendations in LBSNs.

Names 2008 2009 2010 2011

C
on

fe
re

nc
es

WWW 0 2 3 2
MDM 1 1 1 1
KDD 0 0 1 4
ACM-GIS 1 1 2 3
UbiComp 0 0 4 1
LBSN N/A 3 3 5
RecSys 0 0 2 1

Jo
ur

na
ls VLDB 0 0 2 0

ACM-TIST 0 0 1 1
ACM TWEB 0 0 0 1
PUC 0 0 0 1

Total Numbers 2 7 19 20
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Table III. Summary of the existing recommendation systems in Location-Based Social Networks.

Objectives Methodologies Data Sources
Social Location User Activity Content Link CF User Individual User
Media based Analysis Profile Locations Trajectories

Sandholm, [2011]
√ √ √

Levandoski, [2012]
√ √ √ √

Park, [2007]
√ √ √

Horozov, [2006]
√ √ √

Ye, [2010]
√ √ √

Chow, [2010]
√ √ √

Ye, [2011c]
√ √ √

Tai, [2008]
√ √ √

Yoon, [2010]
√ √ √

Cao, [2010a]
√ √ √

Ye, [2011b]
√ √ √

Cao, [2010b]
√ √ √

Venetis [2011]
√ √ √

Zheng, [2009]
√ √ √ √

Zheng, [2011]
√ √ √ √

Li, [2008]
√ √ √

Hung, [2009]
√ √ √

Xiao, [2010]
√ √ √ √

Ying, [2010]
√ √ √ √

Scellato, [2011b]
√ √ √

Zheng, [2010]
√ √ √ √ √

Symeonidis, [2011]
√ √ √ √

Recommendation objective. Four types of recommendations are common in LBSNs: 1) location
recommendations, which suggest stand-alone locations (e.g., POIs and regions) or sequential lo-
cations (such as travel routes and sequences) to a user; 2) user recommendations, which suggest
popular users (like local experts and opinion leaders), potential friends (i.e., who share similar in-
terests and preferences), or communities, which a user may wish to join due to shared interests
and activities; 3) activity recommendations, which refer to activities that a user may be interested
taking into consideration the user’s interests and location; 4) social media recommendations, which
suggest social media, such as photos, videos, and web contents, to the user taking into account the
location of a user and the location metadata of the social media.
Recommendation system methodology. We categorize the major methodologies used by the rec-
ommendation systems in LBSNs into the following three groups: 1) content-based recommendation,
which uses data from a user’s profile (e.g., age, gender, and preferred cuisines) and the features of
locations (such as categories and tags associated with a location) to make recommendations; 2) link
analysis-based recommendation, which applies link analysis models, e.g., hypertext induced topic
search (HITS) and PageRank, to identify experienced users and interesting locations; and 3) collab-
orative filtering (CF) recommendation, which infers a user’s preferences from historical behavior
(such as from a location history).
Data sources used. Recommendation systems in LBSNs can take advantages of various data
sources such as: 1) user profiles, which explicitly specify a user’s age, gender, interests, prefer-
ences, etc.; 2) user geo-located content, which includes a user’s ratings of visited locations, geo-
tagged content, check-ins, etc.; and 3) user trajectories, consisting of sequential locations contained
in a user’s GPS trajectories.

Table III provides an overview of some representative publications in regard to the three aspects
mentioned above. For instance, Zheng et al. [Zheng et al. 2009b] recommend interesting locations
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and local experts in a city to users based on user location histories in a form of GPS trajectories
using a HIST-based link analysis method.

3. CATEGORIZATION BY OBJECTIVES

Location-based social networks open new recommendation possibilities, including locations. In
this section, we categorize the existing recommendation systems in LBSNs based on the items they
recommended, 1) locations, including the stand-alone locations and traveling routes, 2) users, in-
cluding expert users, friends recommendation, and community discovery, 3) activities, and 4) social
media.

3.1. Location Recommendations

As location recommendation is a very broad topic, in this paper, we only focus on location recom-
mendations in the context of social networking. Figure 5 gives an overview of the existing location
recommendation system in LBSNs. These systems can be divided into two groups by the objective
of their recommendation: 1) stand-alone location recommendation systems, which provide a user
with individual locations, such as restaurants or cities, that match their preferences, and 2) sequen-
tial location recommendation systems, which recommend a series of locations (e.g., a popular travel
route in a city) to a user based on their preferences and their constraints, such as in time and cost. As
shown in Figure 5, each type of location recommendation system can be further categorized based
on the data sources used.

3.1.1. Stand-alone Location Recommendations.
The stand-alone location recommendation systems have been a focus of recent research, including

the development of multiple prototype systems, e.g.,[Chow et al. 2010;Park et al.2007; Takeuchi
and Sugimoto 2006;Yang et al. 2008;Ye et al. 2010;Zheng et al.2010a;Zheng et al.2010c; Zheng
and Xie 2011;Zheng et al.2009b]. We can further subdivide and categorize the stand-alone location
recommender systems based on the data sources used, as follows.
User profiles. These location recommendation systems suggest locations by matching the user’s
profile against the location metadata, such as description and semantic text and tags. The system
proposed in [Park et al. 2007] matches user’s profile data – including age, gender, cuisine prefer-
ences, and income – against the price and category of a restaurant using a Bayesian network model.
In [Ramaswamy et al. 2009], the authors focus on enabling location recommendation on low-end
devices capable only of voice and short text messages (SMS). Their approach focuses on using a
user’s address and ’social affinity’, social connections implied by a user’s address book, to make
recommendations. The social affinity computation and spatiotemporal matching techniques in the
system are continuously tuned through the user feedback. In [Kodama et al. 2009], the authors select
location candidates using semantic data and make a final recommendation using a skyline opera-
tor [Borzsony et al. 2001] that takes into account both the price and the distance of the candidate

Location 

Recommendations

Stand-alone Location 

Recommendation

Sequential Location 

Recommendation

User Profile Based

Location Histories Based

User Trajectories Based

Geo-Tagged Social Media

User GPS Trajectories

Fig. 5. Location Recommendations in LBSNs.
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locations. In [Sheng et al. 2010], the authors propose a method to recommend whole regions, which
have geometric extents and points of interest (POI).

Additionally, another branch of ongoing research aims to extract the features of locations, which
can be later used in a profile-based location recommendation system. For example, In [Lu et al.
2011], the authors explore the spatial and temporal relationships among individual points within
trajectories to identify the subsequences related to the user’s preferred activities and assign to them
a semantic meaning. [Ye et al. 2011a] proposes a method to extract location features based on the
temporal distributions of users’ check-ins. [Ye et al. 2011b] extends this work by considering two
additional aspects, 1) a set of explicit patterns, including the total number of check-ins, the total
number of unique visitors, the maximum number of check-ins by a single visitor, the distribution of
check-in times in a week, and the distribution of check-in times in a 24-hour interval, and 2) implicit
relatedness, which captures the correlations between locations in check-in behavior.
User location histories. A user’s location history includes a) their online rating history of locations
(e.g., hotels and restaurants) and b) their the check-in history in location-based social networking
systems. Using users’ location histories, as described above, for making recommendations has ad-
vantages over relying solely on profile data as location histories also capture the ratings from the
other users. It therefore improves the quality of recommendation by ignoring poorly-reviewed loca-
tions that otherwise match user’s profile.

Many online web services, e.g. Yelp and Yellowpage, allow users to explicitly express their
preferences for locations using ratings. Using these ratings, a body of research, e.g., [Chow et al.
2010; Horozov et al. 2006; Ye et al. 2010; Del Prete and Capra 2010], proposes location recommen-
dation systems using Collaborative Filtering (CF) models that give personalized recommendations
for locations that take into account other users’ ratings. The intuition behind these methods is
that a user will share location preferences with similar users. Most of the CF-based location
recommender systems undertake three discrete operations, 1) similarity inference, which calculates
a similarity score between users based on their historical ratings, 2) candidate selection, which
selects a subset of candidate locations using the user’s current location, and 3) recommendation
score predication, which predicts the rating a user would give to a location. For example, motivated
by the observation that “people who live in the same neighborhood are likely to visit the same local
places”, [Horozov et al. 2006] uses the historical ratings from users living close to the user’s query
location, which significantly reduces the number of users in the user similarity matrix and thus
reduces the computational cost of the recommendation. Similarly [Ye et al. 2010] suggests that
solely using the ratings of a user’s friends is more efficient and just as effective as using the ratings
generated by the top-k most similar users. The authors present a set of experiments showing that a
user’s friends share more preferences than strangers. In [Chow et al. 2010], the authors focus on the
efficiency of a recommendation system that makes location-based recommendations continuously
as a user changes their location. In [Del Prete and Capra 2010], the authors present a decentralized
mobile recommendation service designed for pervasive environments. In [Ye et al. 2011c], the
authors use user check-ins to study the effects of the CF-model, geographical distance, and social
structures in making location recommendations. The authors find that geographical distance has
the largest impact in their model. In [Shi et al. 2011] the authors propose a personalized location
recommendation system based on a category-regularized matrix, which is constructed from the
user location histories. The location recommendations consider both the user’s preferences as well
as a category-based location similarity. [Bao et al. 2012] identifies the three key components in
a location recommendation system, a) the user’s current location, which constrains the location
candidates, b) the user’s location histories, which reflect the user’s preferences, and c) the location
histories from the other users (including local experts), which is considered as the social context.

Representative Research. [Ye et al. 2011c] presents a recommendation system that integrates a) the
user’s preferences, which are extracted from the check-in history, b) the user’s social connections,
which are measured by the user’s distance to other users in the social network, and c) the geographic
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distance between the user and the candidate locations. As a result, the probability Si,j of a location
lj to be visited by the user ui can be estimated using the following equation:

Si,j = (1− α− β)× Sui,j + α× Ssi,j + β × Sgi,j (1)

where the two weighting parameters α and β (0 ≤ α + β ≤ 1) denote the relative importance
of social influence and geographical influence compared to user preference. Here α = 1 implies
that Si,j depends completely on social influences, β = 1 implies that Si,j depends completely on
geographical influences, and α = β = 0 implies that Si,j depends only on user preference.

The authors explore the effect of the different factors in two large data sets from Foursquare and
Whrrl. They found their model allowed high precision and recall. Further, they observed that a)
geographical influences had a greater impact on the probability of a user visiting a location than did
social influences, b) Random Walk and Restart may not be suitable for POI recommendations in
LBSNs as close social network connections still exhibit significantly different location preferences,
and c) the insufficient number of visitors to many locations limits some Collaborative Filtering
approaches.

User trajectories. Compared to stand-alone check-in data, user-generated trajectories contain a
richer set of information, such as the visiting sequence between locations, the path traveled, and
the duration of stay at each location. As a result, trajectory data can be used to more accurately
estimate a user’s preferences. Examples of recommendation systems using trajectory data include
[Leung et al. 2011; Takeuchi and Sugimoto 2006; Zheng et al. 2009a; 2009b; Lian and Xie 2011].
In particular, Zheng, et al [Zheng et al. 2009a; 2009b] propose a recommendation framework
to find expert users and interesting locations by mining GPS trajectory data. In [Cao et al.
2010a], the authors extend the previous work to consider location-location relations as well
as location-user relations. In [Leung et al. 2011] the authors propose a dynamic clustering al-
gorithm in a collaborative location recommendation framework that takes advantage of user classes.

Representative Research. In [Zheng et al. 2009b;Zheng et al.2010c], the authors extend the hyper-
text induced topic search (HITS) model to extract interesting locations and experienced users using
two approaches, 1) dividing the geographical space into a Tree-based Hierarchical Graph (TBHG),
and 2) assigning scores to each user and location that indicate the popularity of the location and the
travel experience of the user. Figure 6 gives an example of a TBHG structure, in which the multiple
layers on the right side of the figure represent the location clusters at different levels of granularity,
and the tree structure on the left describes the relationships between the clusters on each level. The
intuition behind the score assignment in (2) is that the more experienced users should be better able
to recommend interesting locations, while the interesting locations are likely to be accessed by more
experienced users, as shown in Figure 7.

In this model, a user’s visit to a location is modeled as an edge from the user to the location.
Thus, a user is a ’hub’ if they have visited many locations, and a location is an ’authority’ if it has
been accessed by many users. Further, the user’s travel experience and a location’s interest have a
mutually reinforcing relationship. Based on this relationship, a ranking of experienced users and
interesting locations can be derived from the model using the following equations:

alij =
∑
uk∈U

vkjk × hklq (2)

hklq =
∑

cij∈clq

vkij × alij (3)

where the subscripts ij implies that the quantity xij is of the ith level of the jth cluster in the TBHG,
hkij represents the kth user’s experience, alij represents the location interest, and clq is cij’s parent
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node on the lth level. The rating is local, as the system rates user experience and location interest at
every level of the TBHG, which is consistent with the intuition, for example, that a very experienced
user in New York may not have any idea of the interesting locations in Beijing. The authors use this
model to extract the top nmost interesting locations and the top k most experienced users in a given
region using a power iteration method.

3.1.2. Sequential Location Recommendations.
Sequential location recommendations can have more complex objectives. For example, a sug-

gested location path could maximize the number of interesting places visited while minimizing
travel time or energy consumption. From a user’s location history, one can infer how a users pref-
erences for locations are correlated [Zheng and Xie 2010]. A number of sequential location recom-
mendation systems have been proposed based on either users’ geo-tagged social media posts [Tai
et al. 2008; Lu et al. 2010; Lian and Xie 2011; Wei et al. 2012; Liu et al. 2011] and users’ GPS
trajectories [Doytsher et al. 2011; Chang et al. 2011; Ge et al. 2011; Ge et al. 2010; Yoon et al.
2010; 2011; Zheng and Xie 2011].

1) Mining Geo-tagged social media. A user’s geo-tagged social media content can be used as
a knowledge base for making sequential location recommendations, e.g., as done in [Arase et al.
2010; Hao et al. 2010]. In [Tai et al. 2008] the authors use association rule mining [Agrawal and
Srikant 1994; Han et al. 2000] and sequence mining [Han et al. 2004; Srikant and Agrawal 1996]
over sequences of locations extracted from geo-tagged photos. Based on the user’s historical visit-
ing pattern, the system creates an itinerary of scenic locations to visit that are popular among other
users. Using a vast amount of geo-tagged photos collected from Panoramio, the authors of [Lu et al.
2010] propose a Travel Route Suggestion algorithm to suggest customized travel plans that take
into account the time spent at each location, the total travel time, and user preferences. In [Yin et al.
2011a], the authors propose a trip recommendation method that focuses on ranking trajectory pat-
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Fig. 8. Construct Popular Routes.

terns mined from uploaded photos. In [Lian and Xie 2011], the authors make use of users’ historical
visiting patterns, including the type of location, to suggest subsequent locations.
Representative Research In [Wei et al. 2012; Liu et al. 2011], the authors propose the Route
Inference framework based on Collective Knowledge (RICK) to construct popular routes from
uncertain trajectories. Given a location sequence and a time span, RICK constructs the top-k
routes by aggregating uncertain trajectories in a mutually reinforcing way. RICK is comprised
of constructing a routable graph and inferring popular routes, as seen in Figure 8. First, RICK
constructs a routable graph from uncertain trajectories by aggregating user check-in data. Second,
a routing algorithm is used to construct the top-k routes according to a user-specified query.

2) Mining GPS trajectory.
GPS trajectories contain a rich set of information, including the duration a user spent at a location

and the order of location visits, that can improve sequential location recommendations. In [Doytsher
et al. 2011], the authors present a graph model for socio-spatial networks that stores information
about frequently traveled routes and implement a route recommendation system using their query
language. In [Chang et al. 2011], the authors propose a route recommendation system that takes
into account a user’s own historically preferred road segments, mined from the user’s historical
trajectories. The intuition for this approach is that users may feel more comfortable traveling on
familiar roads. In [Ge et al. 2011], the authors propose an approach to travel recommendation
based on the user’s cost constraints, where the travel costs are learned using tour data from
professional travel agencies. In [Ge et al. 2010], the authors integrate energy consumption into
a mobile recommender system by learning energy-efficient transportation patterns from trajectories.

Representative Research. The itinerary recommendation system [Yoon et al. 2010; 2011; Zheng
and Xie 2011] further extended the previous works by incorporating additional constraints, such
as 1) a total time constraint on the trip, e.g., a user only has 8 hours for traveling, 2) a destination
constraint, which indicates that the user wants to end the trip with a selected location, e.g. a user
may need to return to a hotel or the airport, and 3) a constraint on specific ratio metrics, including
a) the elapsed time ratio (ETR) between the duration of the recommended trip to the total time
constraint, which captures a user’s desire to utilize as much available time as possible, b) the stay
time ratio (STR) between the amount of time a user stays at location to the amount of time spent
traveling between locations, which captures a user’s desire to maximize the time in the interesting
locations, and c) the interest density ratio (IDR), which is the summation of interest scores for all the
locations in the trip over the maximum total interest. Figure 9 shows the architecture of the itinerary
recommendation system, containing the following two components:
Offline model building. The offline system builds the model used to identify interesting locations and
estimate travel times. First, it detects points along the user trajectories at which a user has stayed at
a location for some significant duration of time. Next, it clusters these points into interest locations.
The duration of a user’s stay and the travel time between each location is then computed. Finally,
the system infers the interest level based on the HITS model.
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Fig. 9. An overview of itinerary recommendation system.

Online recommendation. The online system receives a user’s query, including a starting location,
a destination, and a time constraint, and returns an itinerary with a sequence of locations. This
computation involves three main steps, 1) query verification, which checks the feasibility of the
query with the spatial and temporal constraints, 2) itinerary candidate selection, which collects the
candidate itineraries based on the HITS model generated in the model building step, and 3) itinerary
candidate ranking, which ranks the candidate trips based on the elapsed time ratio, stay time ratio,
and interest density ratio.

3.2. User Recommendations

User recommendations, which includes popular user discovery [Valente 1996; Burt 1999; Gilbert
and Karahalios 2009], friend recommendation [Chen et al. 2009; Backstrom and Leskovec 2011;
Roth et al. 2010; Xiang et al. 2010; Yin et al. 2010], and community discovery [Lin et al. 2009;
Wiese et al. 2011], have been extensively studied in the context of traditional social networks. The
traditional user recommendation approaches are based on the underlying social structure and user
interaction patterns. Location-based social networks provide a new way to make user recommen-
dations by also considering users’ location histories. Location histories provide rich contextual in-
formation and have significant correlations to real social behaviors [Cranshaw et al. 2010]. Several
studies reveal that geographical information actually plays a vital role in determining user rela-
tionships within social networks. For example, by analyzing the spatial dissemination of new baby
names, [Goldenberg and Levy 2009] confirms the importance of geographical proximity, despite
the interconnectedness of the Internet era. [Liben-Nowell et al. 2005] shows that at least 2/3 of
the friendships in an online social network are determined by the users’ locations. [Scellato et al.
2011] analyzes the data collected from a location-based social networking system (Foursquare) and
finds that 1) about 40% of the connections are within 100 km, 2) a strong heterogeneity exists
across users regarding the spatial distances of connections between their social ties and triads, and
3) gravity models may influence how these social connections are created. Thus, considering users’
location histories in an LBSN can improve the effectiveness and efficiency of user recommenda-
tions. In this section, we summarize the existing work in user recommendation for location-based
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social networks, e.g., [Hung et al. 2009; Zheng et al. 2009b; Li et al. 2008; Xiao et al. 2010; Ying
et al. 2010; Ying et al. 2011], categorizing each work by its objective, 1) popular user discovery,
2) friend recommendation, or 3) community discovery.
Popular user discovery. Traditional approaches to popular user discovery [Valente 1996; Burt
1999] find the opinion leaders in a social networking service by analyzing the node degrees within
the information diffusion networks. In LBSNs, we consider ’popular users’ to be the users with more
knowledge about the locations. Finding experienced users is very important for the recommender
systems in LBSNs as these users can provide high quality location recommendations. [Zheng et al.
2009b] finds that a user’s traveling experiences are regional, and a user’s experience is best deter-
mined by considering the qualities of the locations in addition to the number of locations visited.
The authors propose a system to identify experienced travelers by applying a HITS inference model
over a Tree-Based Hierarchical Graph of users’ historical trajectories. [Ying et al. 2011] extends
the previous work and proposes four metrics that are used for analysis on EveryTrail (a website
for sharing trips). They found that users who share more trajectories get more attention from other
users, and users who are popular are more likely to connect to other popular users.
Friend recommendation. Traditional friend recommendation systems provide a user with promis-
ing potential friends based on their user profiles [Chen et al. 2009; Xiang et al. 2010], the so-
cial structure [Doyle and Snell 2000], and the users’ interactions [Backstrom and Leskovec 2011;
Gilbert and Karahalios 2009; Roth et al. 2010]. Location information in can significantly improve
the effectiveness of friend recommendations. The basic intuition is that user location histories re-
veal preferences, and thus users with similar location histories have similar preferences and are
more likely to become friends. Several publications investigate the impact of users’ geographical
locations on their social relations. For example, a recent study [DeScioli et al. 2011] on MySpace
data reveals that users’ social connections are highly related to their geographical distances, i.e. that
the users living close to each other are more likely to be friends. Moreover, [Backstrom et al. 2010]
observes that at medium to long-range distances, the probability of friendship is roughly propor-
tional to the inverse of the distance. However, at shorter ranges, distance does not play as large a
role in determining the likelihood of friendships. Similarly, [Scellato et al 2011b] analyzes a large
set of data from Gowalla (a location-based social networking system), from which they find that the
link prediction space can be reduced by 15 times by focusing on location-friends and friends-of-
friends. Based on this observation, they propose a link predication model using supervised learning
that considers the users’ visited locations. [Yu et al. 2011] builds a pattern-based heterogeneous
information network to predict connection probabilities using an unsupervised link analysis model.
The connections inside the information network reflect users’ geographical histories as well as their
social relationships. The connection probability and the friend recommendation score are calculated
by a random walk process over the user-location network. Other works, such as [Cho et al. 2011],
study the relationship between user movement and friendships through an analysis of mobile phone
communications and check-ins. The authors discover that users’ short term periodical movement
is irrelevant to social structure, but their long distance movement significantly affects their social
structure.

A related body of research proposes to measure the similarity between two users from their
historical locations and trajectories. [Li et al. 2008] presents a user similarity algorithm that builds
a tree-based hierarchical graph of locations. A user’s detailed trajectory is abstracted as a set of
sequentially visited locations. Based on a sequence matching algorithm that takes into account
location hierarchies, the system finds users with similar traveling patterns. [Xiao et al. 2010]
extends the user similarity approach by considering the available semantic information for each
location, such as its tags and categories. This allows connections between users who have different
geographic behaviors, e.g., living in different cities, but share similar semantic behaviors, i.e. they
go to the same types of locations. For this approach, the authors transform users’ trajectories int
location histories with category information. Similarity scores between users are calculated by
matching their maximal traveling sequences at different spatial granularities. [Ying et al. 2010]
expands on the use of location semantic information. Their framework consists of four phases,
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1) semantic trajectory transformation, which converts a user trajectory into a sequence of locations
with semantic data, such as parks and schools; 2) maximum semantic trajectory pattern mining,
which applies the sequential pattern mining algorithm to each user’s trajectory to find the most
frequent sequence, 3) semantic similarity measurement, which computes a similarity score between
users maximum semantic trajectories, and 4) potential friend recommendation, which uses the
constructed user similarity matrix to suggest potential friends.

Representative Research. [Zheng et al. 2011] further extends the user similarity measure framework
presented in [Li et al. 2008] by considering the sequences of locations at different spatial granular-
ities. The authors propose a new sequence matching algorithm that divides the location sequences
and considers the popularity of each visited locations separately. The newly proposed framework,
referred to as a hierarchical-graph-based similarity measurement (HGSM, shown in Figure 10), is
proposed to model each individual’s location history and measure the similarity between each user.
This similarity is based on the users’ location histories and is measured using three factors, 1) the
shared sequence of users’ movements, i.e. the longer the sequence of similar visitations shared by
two users, the more similar the two users, 2) the baseline popularity of the locations, e.g. two users
visiting a location less traveled might be more correlated than others visiting a popular location, and
3) the hierarchy of geographic spaces, i.e. the finer the granularity of geographic regions shared by
two individuals, the more similar these two individuals.
Community discovery. Traditional approaches to community discovery often cluster users with
either spectral clustering [Mishra et al. 2007; Von Luxburg 2007; Li et al. 2012] or tensor factor-
ization [Lin et al. 2009] based on the social structure (see [Getoor and Diehl 2005] for a detailed
survey). With the availability of location information, community discovery in LBSNs can be ex-
tended to discover user communities with similar location preferences. For example, [Hung et al.
2009] clusters users based on their traveling patterns, which are mined from their trajectories. First,
the authors extract each user’s frequently visited locations. They then apply a distance based clus-
tering algorithm to discover communities within the social networks. This computation includes
1) constructing profiles, consisting of a probability suffix tree (PST) for each user describing the
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frequency of location visits, 2) measuring the distance between profiles, and 3) identifying commu-
nities using a clustering algorithm.

Fig. 11. Hierarchical graph modeling individual location history.

Representative Research. [Xiao et al. 2012] presents an example of this line of research. They
hierarchically cluster users into groups by clustering according to the similarity measure proposed
in [Xiao et al. 2010]. Consequently, as depicted in Figure 11, they can build a hierarchy of user
clusters, where a cluster denotes a group of users sharing some similar interests, at different levels of
similarity. The clusters on the higher layers stand for big communities in which people share some
high-level interests, e.g. sports. The clusters occurring at the lower layers denote people sharing
some narrower interests, e.g. hiking a particular mountain.

3.3. Activity Recommendations

An activity recommendation in an LBSN is an information retrieval operation of one or more
activities that are appropriate for a query location. For example, sightseeing, boating, and jogging
could be recommended for the Olympic Park of Beijing. A list of possible activities at a location
can be obtained directly from user-labeled tags or inferred from users’ location histories and the
semantic data attached to each location.

3.3.1. Individual Inference-based Approaches. A user’s activity at a certain location can be in-
ferred from the user’s geo-tagged social media data and the POI dataset. For example, [Yin et al.
2011b] studies the distributions of some geographical topics (like beach, hiking, and sunset) from
the geo-tagged photos acquired from Flickr. [Pozdnoukhov and Kaiser 2011] studies a large set of
geo-tagged tweets to explore the spatial-temporal distribution of the topical content. The authors
show that the topics, and thus activities, are often geospatially correlated. [Huang et al. 2010] pro-
poses a method to automatically detect activities using the spatial temporal attractiveness (STPA)
of points of interest (POI). By comparing the sub-trajectories contained in each POI’s STPA, the
authors show that most likely activities and their durations can be discovered. The accuracy of this
method depends on the POIs and trajectories having accurate arrival time, duration, spatial accuracy,
as well as other background factors.

3.3.2. Collaborative Learning-based Approaches. One shortcoming of individual inference-
based approaches is that they have difficulty dealing with data sparsity, which can be a common
occurrence in LBSNs as some users may have a limited location history and some locations may
receive few visitors. An alternative approach based on collaborative learning uses information from
all users to discover activities. This idea was first proposed in [Zheng et al. 2009d], which extracts
the location semantics from GPS data and uses it in conjunction with user profile data to identify
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16  

cises and nice foods nearby besides go sightseeing. This recommender integrates 

location recommendation and activity recommendation into one knowledge-

mining process, since locations and activities are closely related in nature. 

9.2.3.1 Data Modeling 

Location-activity matrix: As mentioned before, to better share life experience, 

an individual could add some comments or tips to a point location in a trajectory. 

For example, in Foursquare a user can leave some tips or to-do-list in a venue so 

that her friends are able to view these tips when they actually arrive at this venue. 

Sometimes, these tips and to-do-list clearly specify a user’s activity in a location, 

enabling us to study the correlation between user activities and a location, for in-

stance, what kinds of activities can be performed in a location, and how often a 

particular activity is conducted in the location. Consequently, a location-activity 

matrix can be built, in which rows stand for locations and columns represent activ-

ities, as shown in the middle part of Figure 9.10. An entry in the matrix denotes 

the frequency of an activity performed in a location. For example, if 5 users had a 

dinner and 7 people watched a movie in this location in a week, the frequency of 

activity “dining” and “watching movies” is 5 and 7 respectively. This frequency 

denotes the popularity of an activity in a location and indicates the correlation be-

tween an activity and a location.  

If this location-activity matrix is completely filled, the above-mentioned rec-

ommendations can be easily achieved. Specifically, when conducting the location 

recommendation given an activity, we can rank and retrieve the top k locations 

with a relatively high frequency from the column that corresponds to that activity. 

Likewise, when performing activity recommendation for a location, the top k ac-

tivities can be retrieved from the row corresponding to the location.  

However, the location-activity matrix is incomplete and very sparse. Intuitively, 

people would not leave tips and to-do-list in every restaurant and shopping mall. 

In short, many venues would not have labels of user activities. To address this is-

sue, the information from another two matrices, respectively shown in the left and 

right part of Figure 9.10, can be leveraged. One is a location-feature matrix; the 

other is an activity-activity matrix.  

 

Figure 9.10. The collaborative location-activity learning model 

Location-feature matrix: In this matrix, a row stands for a location, and a col-

umn denotes a category (termed as feature in this section), such as restaurants, 

cafe and bars, illustrated in the left part of Figure 9.10. Usually, a location could 

include multiple points of interest (POI) pertaining to different categories. For ex-

ample, a mall would include different types of shops, movie theaters, and cafes. 
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Fig. 12. Collaborative location-activity leaning model.

activities. The system exploits the connections between the user activities and profiles in a joint
learning process. Further, [Zheng et al. 2010c] proposes a new model for location and activity
histories using a user-location-activity rating tensor. Their system uses this model to provide
location-specific activity recommendations. [Zheng et al. 2012] proposes a new algorithm that
uses a ranking-based collective tensor and matrix factorization model. Separately, [Symeonidis
et al. 2011] extends the previous work by using the Higher Order Singular Value Decomposition
(HOSVD) technique to perform dimensionality reduction and semantic analysis. As more data is
accumulated by their system, it uses incremental solutions to update a tensor that includes users,
locations and activities.

Representative Research. [Zheng et al. 2010c] provides location and activity recommendations in
LBSNs to answer two questions for the tourists, 1) where to go for activities such as sightseeing or
dining in a large city and 2) what activities are available at specific locations, e.g. if someone visits
the Bird’s Nest in Beijing Olympic park, what can they do there? The major challenge is due to
data sparsity, as users in the system have very limited histories. To this end, the authors propose a
collaborative-based approach to extract the features for the locations. Three matrices are constructed
as the data model, as shown in Figure 12:
Location-activity matrix. A user can log an activity in order to associate it with a point in a trajectory.
For example, in Foursquare, users can associate content with venues to share with their friends. The
specification of both activity and location in this social media enables the authors to study the
correlation between locations and activities and to construct a location-activity matrix. Ideally, the
activities associated with a location can be discovered from the location-activity matrix. However,
the matrix is typically very sparse as the amount of user-added content is dwarfed by the number of
locations. To address this, the paper uses the location-feature and activity-activity matrices to infer
missing items in the location-activity matrix, as shown in Figure 12.
Location-feature matrix. This matrix connects locations and categories (such as restaurants, cafes,
and bars) based on the intuition that locations of the same category are likely to have the same
activity possibilities. In this matrix, a location may include multiple categories (or features). For
example, a mall would include shops, movie theaters, and cafes. The matrix is built from a POI
database, in which each POI is associated with a set of properties such as, name, address, GPS
coordinates, and categories.
Activity-activity matrix. This matrix models the correlations between different activities. From this,
the authors infer the likelihood of an activity being performed at a location given that a user has
performed some other activity. The paper suggests two ways to determine these correlations, (1) by
mining the user-created content and (2) by using the number of search engine results for the activity
terms (if the user-content is insufficient).

After the system constructs the three matrices, a filtering approach is applied to train the location-
activity recommendation system using collective matrix factorization [Singh and Gordon 2008]. An
objective function, shown in Equation 4, is defined to infer the missing values. This function is
iteratively minimized using gradient descent.
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L(U, V,W ) =
1

2
‖ I ◦ (X − UV T ) ‖2F +

λ1
2
‖ Y − UWT ‖2F +

λ2
2
‖ Z − V V T ‖2F

+
λ3
2
(‖ U ‖2F + ‖ V ‖2F + ‖W ‖2F ) (4)

Where ‖ · ‖F denotes the Frobenius norm. I is an indicator matrix with its entry Iij = 0 if Xij is
missing, Iij = 1 otherwise. The operator “◦” denotes the entry-wise product. As shown in Figure 12,
the authors propagate the information among Xm×n, Ym×l and Zn×n by requiring the matrices to
share the low-rank matrices Um×k and Vn×k. The first three terms in Equation 4 control the loss
in matrix factorization, and the last term controls the regularization over the factorized matrices
to prevent over-fitting. From the final location-activity matrix, the top k values are suggested as
activities for the location.

Fig. 13. Personalized Collaborative location-activity leaning model.

One limitation of the proposed activity recommendation approach is that it can not provide per-
sonalized recommendations for the users that take into account each user’s preferences. Therefore,
[Zheng et al. 2010a] extends the approach to create a personalized activity recommendation sys-
tem which includes user-user and user-location matrices. Specifically, the authors model the user-
location-activity tensor A under the factorization framework and use additional information to ad-
dress the data sparsity issue. Figure 13 illustrates the new tensor model. Data scarcity results in
missing entries in tensor A that must be filled. In addition to the location-features, activity-feature,
and activity-activity matrices used in the previous system, the matrix B ∈ Rm×m, which encodes
the user-user similarities, and the matrixE ∈ Rm×n, which models the user’s location visiting pref-
erences, are added to the computation. Finally, to fill the entries in tensor A, model-based methods
are applied [Srebro et al. 2003; Singh and Gordon 2008] to decompose the tensor A with respect to
each tensor entity.

3.4. Social Media Recommendations

Social media recommendation aims to provide users with suggestions of photos, videos, or other
web content they might like. Using location information in LBSNs can improve both the effective-
ness and efficiency of traditional social media recommendations. Several works in spatial keyword
searching for web content show the effectiveness of this pairing, e.g., [Chen et al. 2009; Zhang et al.
2009; Cao et al. 2010b; Cao et al. 2011; Bouidghaghen et al. 2011].

[Mokbel et al. 2011] analyzes the rating data from MovieLens [MovieLens ] and finds that peo-
ple at different locations have different preferences. For example, users from Minnesota are more
interested in crime and war movies, while users from Florida are more interested in fantasy and
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animation movies. Location-aware image ranking algorithms have been proposed to increase the
relevance of the search results, e.g., [Arase et al. 2009; Kawakubo and Yanai 2011]. [Silva 2011]
improves the quality of the image tags using a recommender system to automatically infer and sug-
gest candidate location tags. [Daly and Geyer 2011] discovers events using both social and location
information.

The efficiency of recommendation systems can be significantly improved by using location data
to prune out irrelevant information. [Scellato et al. 2011a] improves the efficiency of content de-
livery networks using a novel caching mechanism based on geographic location. [Sandholm and
Ung 2011] builds a real-time recommendation system for online web content using a collaborative
filtering method to make more diverse and personalized recommendations within a geographical
area. [Levandoski et al. 2012] proposes a novel location-aware recommendation framework, LARS,
to exploit users’ ratings of locations using a technique that uses the distance of querying users to
influences recommendations.

4. CATEGORIZATION BY METHODOLOGY

Although traditional recommendation systems have been successful by using community opin-
ions, e.g., inventories in Amazon [Linden et al. 2003] and news from Google [Das et al. 2007],
incorporating location information requires novel approaches. In this section, we categorize the
major methodologies used by recommendation systems in location-based social networks as being
based on: 1) content, 2) link analysis, or 3) collaborative filtering.

4.1. Content-based Recommendations
Content-based recommendation systems, such as [Park et al. 2007; Ramaswamy et al. 2009], match
user preferences, discovered from users’ profiles, with features extracted from locations, such as tags
and categories, to make recommendations. These systems require accurate and structured informa-
tion for both the user profiles and the location features to make high quality recommendations.

The major advantages of the content-based approach that such a system is robust against the cold
start problem for both new users and locations. As long as the newly added user or location has
the appropriate descriptive content, they can be handled effectively. However, content-based recom-
mendation systems have many drawbacks in regard to LBSNs: 1) content-based recommendation
systems do not consider the aggregated community opinions (inferred from users), which may re-
sult low quality recommendations, and 2) content-based recommendation systems require that the
structured information for both users and locations be created and maintained, which can be costly,
especially in LBSNs in which the majority of the contents (i.e., user profiles and location tags) are
generated by the users.

4.2. Link analysis-based Recommendations
Link analysis algorithms, e.g., PageRank [Page et al. 1999] and Hypertext Induced Topic Search
(HITS) [Chakrabarti et al. 1998; Kleinberg 1999], are widely used to rank the web pages. These
algorithms extract high quality nodes from a complex network by analyzing the structure. In LBSNs,
there are interconnected networks of different types, e.g., user-user, user-location, and location-
location networks. [Zheng et al. 2009b] extends the HITS algorithm for discovering experienced
users and interesting locations in an LBSN. In their system, each location is assigned a popularity
score, and each user is assigned a hub score, which indicates their travel expertise. Based on a
mutually reinforcing relationship, a ranking of expert users and interesting locations is computed.
Similarly, [Raymond et al. 2011] extends a random walk-based link analysis algorithm to provide
location recommendation.

The advantages of link analysis-based methodologies are that 1) they take into account the user’s
experiences when making recommendations and amplify ratings from experienced users, and 2) they
are robust against the cold start problem. However, they have a major drawback: they can only
provide generic recommendations for all users, which overlooks users’ personal preferences.
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4.3. Collaborative Filtering-based Recommendations
Collaborative filtering (CF) is widely used in conventional recommendation systems [Adomavicius
and Tuzhilin 2005]. The intuition in extending the CF model for recommendations in LBSNs is that
a user is more likely to visit a location if it is preferred by similar users. The CF approach used by
recommender systems in LBSNs consists of three processes: 1) candidate selection, 2) similarity
inference, and 3) recommendation score predication.
Candidate Selections. The first step of CF-based recommendation systems is to select a subset
of candidate nodes to reduce the computational overhead. The traditional CF-based recommenda-
tion algorithms limit use the most similar users (or locations, activities, etc.) as the candidates.
CF-based recommender systems in LBSNs can also use geographic bounds and associations to con-
strain the candidate selection process. A spatial range can be computed to prune candidate locations,
e.g., [Chow et al. 2010]. [Horozov et al. 2006] selects candidate users by considering only individ-
uals who live near the user’s querying location. Non-geographic criteria can also be used. In [Ye
et al. 2010], the authors select candidates by considering user preference and social influence, but
also geographic influence modeled as a power-law probabilistic model.
Similarity Inferences. Similarities between users (or locations, activities, etc.) are inferred from
users’ ratings and location histories in LBSNs. The traditional CF models can be divided into two
subgroups: 1) user-based models, such as [Herlocker et al. 1999], that use similarity measures
between each pair of users; and 2) item-based models, such as [Lemire and Maclachlan 2005], that
use similarity measures between each pair of items (media content, activities, etc.). The following
equation demonstrates a simple user similarity computation for user u and u′ using the Cosine
correlation function in a user-based CF model:

UserSim(u, u′) =

∑
o∈O r(o, u)× r(o, u′)√∑

o∈O r(o, u)
2
√∑

o∈O r(o, u
′)2

(5)

where r(o, u) is the rating user u gives to each object o in the set of all objects O. Many of the
existing recommendation systems in LBSNs, e.g., [Chow et al. 2010; Horozov et al. 2006; Ye et al.
2010; Del Prete and Capra 2010], provide location recommendations based on the distribution of
user’s ratings over their visited locations using the above equation.

Similarity inference between users (and locations etc.) can also be done by analyzing the pattern
of location co-visitation. Recently, systems have been proposed that use the number of visitations
(e.g., tips and check-ins) at locations as an implicit rating of the location, e.g., [Takeuchi and Sugi-
moto 2006; Shi et al. 2011]. Location similarity can also be captured using sequential relations [Li
et al. 2008] or semantic similarities [Xiao et al. 2010].
Recommendation Score Predication. Finally, CF systems predict a recommendation score for each
object oi (locations, social media, etc.) in the candidate set. These scores are calculated from ratings
given by the set of users (U ) and the similarity measures between individual users. The following
equation gives an example of a recommendation score computation:

RecScore(oi, u) =

∑
uj∈U ′ UserSim(u, uj)× r(oi, uj)∑
uj∈U ′:r(oi,uj)>0 |UserSim(u, uj)|

(6)

The advantages of the collaborative filtering models are that 1) they do not need to maintain
well structured descriptions of items (locations, activities, etc.) or users, and 2) they take advantage
of community opinions, which provide high quality recommendations. However, CF models also
suffers from several drawbacks: 1) when data is sparse, e.g. the number of user ratings is low, the
user-item (location, etc.) rating matrix is very sparse and the collaborative filtering model fails to
make effective recommendations; 2) due to the large number of users and items in the systems, the
similarity model construction process is very time consuming, presenting a scalability challenge
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that is exacerbated by the rapid growth and evolution of LBSNs, and 3) the CF model deals poorly
with the cold start problem, providing recommendations for new users or new items in the system.

5. CATEGORIZATION BY DATA SOURCES

In this section, we summarize the different types of data sources used in recommendation systems
for LBSNs, including 1) user profiles, 2) user online histories, and 3) user location histories.

5.1. User Profiles
As in the conventional social networks, LBSN users maintain profiles that may include democraphic
data, interests, and preferences. Such profile information is used by many content-based recom-
mender systems, e.g., [Park et al. 2007], to recommend locations based on the location’s categories,
user generated tags, etc. Other research, e.g. [Ye et al. 2011a; 2011b], focuses on improving the
accuracy of the location tags and categories by extracting user activity patterns for each location.

5.2. User Online Histories
Users’ online histories come in three main classes, user ratings, user interaction patterns, and user
search histories. Users in LBSNs may leave explicit ratings for locations to express their opinions,
just as they can in traditional recommender systems. User ratings in LBSNs are associated with
locations and can be used to find similar users or similar locations, e.g., [Chow et al. 2010; Horozov
et al. 2006; Ye et al. 2010]. User interaction patterns in LBSNs include user tags and commenting
patterns. The user interaction patterns are used for friend recommendation and community discov-
ery systems, e.g. as in [Gilbert and Karahalios 2009; Xiang et al. 2010]. User search histories
include map browsing histories and spatial searching logs. By accumulating such information, rec-
ommendation systems can estimate the community’s knowledge and preferences, e.g., [Weakliam
et al. 2005; Ballatore et al. 2010; Venetis et al. 2011].

5.3. User Location Histories
A user location history is a record of a user’s previously visited locations accumulated in an LBSN,
including for example check-in data and trajectories. A user’s location history can be a more accu-
rate data source to study the user’s behaviors and preferences as it records where users actually go,
rather than what they list as preferences. Location histories can also be used for friend recommen-
dation. For example, when two users share the location history sequence or stay similar amounts of
time at a same location, it provides evidence that the users share preferences and interests.

6. METHODS OF EVALUATION

Recommendation systems in LBSNs have typically used two methods to evaluate the effective-
ness of their recommendations, 1) user studies and 2) precision and recall ratios.
User Studies. To conduct a user study of a recommendation system, the researchers invite multiple
subjects to use the recommender system and evaluate its performance, e.g., [Zheng et al. 010c]. For
each recommendation task, the subjects need to evaluate the top-k recommendations suggested by
the recommendation system.

To create a baseline for evaluation, researchers aggregate all the feedback provided by the subjects
to create an ideal ranking list. As recommendations are based on result rankings, the normalized
discounted cumulative gain (nDCG) [Manning et al. 2008] is used to measure the effectiveness of
the recommendation list. nDCG is also commonly used in information retrieval to measure search
engine performance. A higher nDCG value means that more relevant items appear first in the results
list.
Precision and Recall Ratios. Precision and recall ratios are also used to evaluate the effectiveness
of recommendations in LBSNs, e.g.,[Ye et al. 2011c], [Bao et al. 2012]. To use this evaluation
method, a user’s location history is divided into two parts, 1) the location history generated within a
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Fig. 14. Evaluate Recommendation using Precision and Recall Ratios.

query area, which is used as ground truth, and 2) the rest of the user’s location history, which is used
as a training set to learn the user’s preferences and build the recommendation model. The system
is then evaluated by whether it can suggest those sites within the querying region that the user has
actually visited based on the training data (the location history outside of the query region).

For example, in the left part of Figure 14, the black dots are the venues the user visited. A system
trained with data outside the query region (the dotted square) recommends the venues illustrated
by the striped dots in the right part of Figure 14. Using the black dots as ground truth, recall and
precision can be calculated.

precision =
number of recovered ground truths
total number of recommendations

(7)

recall =
number of recovered ground truths

total number of ground truths
. (8)

This evaluation measurement may be pessimistic as, for example, a user may still prefer a location
even if the user has not yet visited it.

7. FUTURE WORK

Although many recommendation systems have been proposed in LBSNs, there are still many
open questions and challenges to be addressed. In this section, we summarize potential research
directions to improve the effectiveness and efficiency of recommendation systems in LBSNs.

7.1. Effectiveness of Recommendations
To improve their effectiveness, recommendation systems need more accurate estimations of user
preferences and social knowledge. Potential paths to achieve this include 1) using diverse data
sources, 2) integrating and hybridizing different types of recommendation methodologies, and 3) in-
creasing context awareness.

Diverse Data Sources. Most recommendation systems in LBSNs currently use only one type of
the data source to make recommendations. However, there are many different types data in LBSNs,
e.g., users’ friendships, online interactions, and user location histories. Moreover, many of the data
sources are related and may mutually reinforce each other. By considering more diversified data
sources, more effective recommendations can be provided. For instance, the user online interac-
tions, social structures, and location histories are all very relevant to friend recommendation. If two
users have more online interactions, are close in the social structure, and have overlapped location
histories, these users are likely to be compatible. A friend recommender system that can consider
all these factors will make higher quality friend recommendations.

Hybrid Methodologies. The recommendation methodologies used in the existing recommen-
dation systems each have their own drawbacks. For example, in collaborative filtering based rec-
ommendation systems, data sparsity and cold starts are challenging problems. Link analysis-based
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recommendation systems avoid these problems, but only provide generic recommendations that ig-
nore users’ personal preferences. By integrating CF and link analysis-based techniques, a hybrid
recommendation system could overcome the weaknesses of both.

Context Awareness. Current recommendation systems in LBSNs use a user’s history to extract
preferences. However, the user’s context is currently ignored. A context aware recommender system
in LBSNs would need to consider 1) user context, including static attributes like income, profession,
and age, as well as dynamic attributes include current user location, mood, and status, (e.g., at
home or in meeting) and 2) environmental context, including information about the surrounding
environment, e.g. the current time, weather, traffic conditions, events, etc.

7.2. Efficiency of Recommendations
Recommendations in LBSNs can be computationally costly, especially given the frequency with
which users add new location data and content.

User Mobility. Users in LBSNs interact with the services using mobile devices and want up-
to-date recommendations based on their current location. However, processing continuous recom-
mendation requests as multiple individual requests is inefficient as many redundant computations
are undertaken between the consecutive recommendation queries. To address this, more advanced
recommendation algorithms are required that leverage prior computations to reduce the cost of con-
tinuous recommendation requests.

Frequent User Updates. Users in LBSNs can be very active. They visit many locations over short
time spans, which adds information related to their preferences at a high rate. It is very inefficient to
re-compute the user preferences and user similarities every time a user undertakes a new activity. As
a result, new recommendation techniques are required to efficiently address the update frequency in
LBSNs.

8. CONCLUSION

Motivated by the prevalence of location-based social networks and the importance of recommen-
dation systems, we have provided a systematic survey of the related recent research. We studied
over 50 papers published in the last five years at over 10 major conference and in journals, such as
KDD, WWW, RecSys, UbiComp, ACM SIGSPATIAL LBSN, ACM TIST, and ACM TWEB. We
provided categorizations of existing systems in regard to their data sources, their methodologies,
and their recommendation objective. This survey presents a panorama of this research with a bal-
anced depth and scope. Further, this survey serves as a tutorial, introducing the concepts, unique
properties, challenges, representative solutions and systems, evaluation methods, and future work
for recommendation systems in LBSNs.
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