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Abstract. This paper presents an automated approach to extracting product data 
from commercial web pages. Our web mining method involves the following 
two phrases: First, it analyzes the data information located at the leaf node of 
DOM tree structure of the web page, generates the semantic information vector 
for other nodes of the DOM tree and find maximum repeat semantic vector pat-
tern. Second, it identifies the product data region and data records, builds a 
product object template by using semantic tree matching technique and uses it 
to extract all product data from the web page. The main contribution of this 
study is in developing a fully automated approach to extract product data from 
the commercial sites without any user’s assistance. Experiment results show 
that the proposed technique is highly effective. 
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1 Introduction 

With the information time coming, more and more companies manage their business 
and services on the World Wide Web and thus these web sites have an explosive 
growth. Huge amounts of product have been displayed in respective commercial web 
sites using fixed templates. It has important meaning to extract these product data for 
offering valuable services such as comparative shopping and meta-search, etc.  

The early approaches use the information extraction technique called wrapper [1], 
which is a program that extracts data from web pages based on a priori knowledge of 
their format. The wrapper could either be generated by a human being (called  
programming wrapper) or learned from labeled data (called wrapper induction). Pro-
gramming wrapper needs users to find patterns manually from the HTML code to 
build a wrapper system. This is very labor intensive and time consuming. Systems 
that use this approach include RAPIER[2], Wargo[5], WICCAP[12], etc. The wrapper 
induction uses supervised learning to learn data extraction rules from a set of manual-
ly labeled examples. Example wrapper induction systems include Stalker[3], WL[6], 
etc. These wrapper construction systems actually output extraction rules from training 
examples provided by the designer of the wrapper. But, they have two major draw-
backs. Firstly, they require a previous knowledge of the data. Secondly, additional 
work might be required to adapt the wrapper when the source changes. 
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To overcome these problems, some automatic extraction techniques were devel-
oped to mine knowledge or data from web pages [7], [10]. Embley et al. [4] uses a set 
of heuristics and domain ontologies to automatically identify data record boundaries. 
But the method requires users to predefine a detailed object-relationship model. Zhai 
et al. [14] proposes an instance-based learning method, which performs extraction by 
comparing each new instance to be extracted with labeled instances. This approach 
also needs users to label pages when a new instance cannot be extracted. In [8], the 
system IEPAD is proposed to find patterns from the HTML tag string of a page, and 
then use the patterns to extract data items. However, the algorithm generates many 
spurious patterns. Users have to manually select the correct one for extraction. 

In [9], [11], [13], these automatic extraction techniques require multiple similar 
pages from the same site to generate a template and extract data. The typical system is 
RoadRunner [9], which infers union-free regular expressions from multiple pages 
with the same template. It is a limitation for our opnion: not all web sites can find 
several pages with the similar structure for every product. 

In this paper, we proposed a novel technique to perform automatic data extraction. 
There are three different features between our method and existing automatic 
extraction techniques: First, we just need a single page with lists of product data. But 
most existing methods require multiple pages. Second, our method is a fully automatic 
extraction technique without any human’s labor. Third, existing methods execute tag 
matching for finding repeated pattern based on whole page. There are two obstacles: 1) 
The navigator and advertisement bar also contain many repeated structures. It is a 
problem to accurately estimate which one is a correct repeated pattern for a page with 
the complex structure. 2) For similar pages of the same site, they have almost the same 
structure. The automatic extraction methods requiring multiple pages are prone to see a 
whole page as a data record. So, most existing approaches have a low accuracy. 
However, our method, firstly, extracts maximal repeated semantic information pattern 
from a page. Then, it searches the product data region and finds product data in this 
page by matching the extracted semantic pattern. Finally, it generates the correct 
repeated pattern from the found product data and uses it to extract all product data from 
the page. The maximal repeated semantic information pattern is more appropriate to 
identifying data region than the repeated tag pattern on commercial web pages because 
the product data with the rich semantic information assure the accuracy of the pattern. 
So, our method can avoid above two obstacles. Experiment results show that our 
system has higher accuracy than most existing automatic extraction methods. 

The remaining of the paper is organized as follows. Section 2 presents the overall 
procedure for extracting product data. Section 3 describes the algorithm for finding 
product data region and extracting product data. We present and analyze experimental 
results in Section 4. Section 6 concludes our study. 

2 Our Approach: Mining Produce Data on the Web Sites 

2.1 Product Data Representation Structure 

There are three typical representation structures for product data from the view of the 
page as shown in Fig. 1. However, on the DOM tree, these representations are written 
in HTML by using following two structures: single data region or multiple data  
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regions structure as shown in Fig. 2. In fact, the data region is one of the sub-trees of 
DOM tree and all product data are the child sub-trees of the data region. In here, we 
have to explain two definitions about product data region. 

 

Fig. 1. Typical representation of product data on the commercial web pages. (a) Tabular struc-
ture. (b) List structure. (c) Block structure. 

 

Fig. 2. HTML structure of product data on DOM tree. (a) Single data region structure. (b) Mul-
tiple data regions structure. 

Definition 1: Product data region is the minimum sub-tree which contains all product 
data sub-trees in the DOM tree of a pag and Np is the root node of the sub-tree. In Fig. 
2a, the Np node is the TABLE tag. But the TBODY tag is the Np node rather than the 
TABLE tag in Fig. 2b because the TABLE tag does not contain all product data. 

Definition 2: Direct product region is the sub-tree that contains product data sub-trees 
directly in the DOM tree of a pag and Nd is the root of the sub-tree. In Fig. 2a and Fig. 
2b, all the TABLE tags are the Nd node. The TBODY tag is not the Nd node because it 
does not contain product data sub-trees directly. 

So, the single data region structure means it just has a Np node and the Np node is also 
a Nd node as shown in Fig. 2a. The multiple data regions structure means it has a Np 
node and several Nd nodes, and the Np node is not a Nd node as shown in Fig. 2b. 

From our experiments, we found that the pages containing the tabular structure Fig. 
2a must be the single data region structure. Most pages containing the list structure 
Fig. 2b are the single data region structure. On the contrary, most pages containing the 
block structure Fig. 2c are the multiple data regions structure. These will be shown in 
Section 4. Some pages may contain combinations of the above structures, such as a 
block structure Fig. 2c embedded in an advertisement bar of a page with a list 
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structure Fig. 2b. It is difficult to mine all product data accurately from this page. 
Fortunately, most pages use only one type of representation. 

Therefore, our method will, firstly, find the Np node and then recognize the Nd node 
under the Np node. Finally, we generate the product object template by aligning the 
product data sub-trees under the Nd node and use the model to extract all product data 
from the page. The detailed steps will be described in next phase. 

2.2 Outline of Our Approach 

The important step for structured data extraction is to find the correct repeated pat-
tern. We proposed a novel and effective technique (PDM) to find the boundary of 
product data. It is based on the following two observations: 

1. Product data have the diverse contents such as image, price, title, description, etc. 
So, product data region has richer semantic information than any other regions 
which always have the monotone content on the page. For example, the navigator 
bar consists of links and the advertisement bar basically is dominated by images. 

2. Among the product data, their contents are similar. For example as shown in Fig. 
1, every phone product are decribed by the similar contents. The product data 
region contains many such content model about the product. Therefore, the 
repeated rich content informationis almost unique in most commercial web pages. 

Based on the above observations, we devise the following workflow to identify prod-
uct data and extract them from a commercial web page: 

1. We use the nekoHTML parser to preprocess the page and remove some useless 
nodes and information for our work from the page such as javascript language, 
etc. Then, we build the DOM tree of the page. 

2. The semantic analyzer developed by us identifies the semantic type of the 
information located at every leaf node of the DOM tree. Next, The semantic 
information vector is built for every node from down to up on the DOM tree.  

3. We align the semantic information vector of nodes in every level of the DOM 
tree from the down to up and get the maximum repeated semantic vector pattern 
(MRSV). Then, the pattern is used to find the product data region and Nd node. 

4. In final, we build the product object template of the page by matching the product 
data sub-trees under the Nd node and use this model to extract all product data. 

The difference between our approaches with existing methods is that we use the novel 
semantic analysis and align technique to identify the structured data. It is effective to 
be applied in the product data extraction because the MRSV always reflects the cor-
rect product data region in most commercial sites. Especially, it also can achieve high 
accuracy when it handles complicated pages from the commercial sites. 

3 Product Data Identification 

3.1 Semantic Analysis about the Information of the Page 

We develop a semantic analyzer to identify the semantic type on the page. In our 
work, all pair-tags (like <tr></tr>) on DOM tree are nodes and other tags and contents 
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under these pair-tags are the semantic information. We classify the semantic informa-
tion into seven semantic types: title (TIT), description (DES), price (PRI), number 
( N U M ) ,  i m a g e  ( I M A ) ,  s i n g l e  t a g  ( S _ T )  a n d  s p e c i a l  ( S P E ) .  

The semantic analyzer consists of several if-then rules. These rules are used to 
match with the semantic information and the result deduced by the best matching rule 
will be as semantic type of the information. The following show the rules: 

Definition of Expressions 
X: is variable. (X)1 denotes X has only one appearance, (X)? denotes X has only one or 
no appearance, and (X)+ denotes X is larger than or equal one appearance. ¬X denotes 
it is not X. 

W: denotes a word. 
CW: denotes the first letter capitalized word. 
Tag:  denotes a single tag such as <br>, <p>, etc. 
Num: denotes the number. 
Ȉ: is a alphabet {a, b, c, …}. 
Ȉv: is a character set {$, ¥, £, …}. These characters are popular value expressions. 
Img: The information could be an image. So, Img denotes an image tag <img …>. 
Num(X): the function Num(X) denotes the number of the variable X. 
X·Y: denotes the union between two variables X and Y.  

Semantic Rule Pool 
RTIT identifies the title type: 

 If (W)+ & Num(CW) >=1/2 * Num(W) then TIT. (1) 

RDES identifies the description type: 

 If (W)+ & Num(CW) < 1/2 * Num(W) then DES.  (2) 

RIMG identifies the image type: 

 If (Tag)
1
 & Img then IMG. (3) 

RS_T identifies the single tag type: 

 If (Tag)
1
 & ¬Img then S_T.  (4) 

RNUM identifies the number type including quantity, size, etc:          

 If ((Num)+ & (W)?) | (Num·(x∈Ȉ))1 then NUM. (5) 

RPRI identifies the price type: 

 If ((x∈Ȉv)·Num)+ & (W)? then PRI.  (6) 

The information which cannot match any rules will be as special semantic type.  
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3.2 Building Semantic Information Tree 

After obtaining the semantic types of leaf nodes, we start to generate semantic  
information vectors (SIV) for all non-leaf nodes of the DOM tree. The SIV consists of 
seven items and every item expresses a semantic type as shown in the follows: 

SIV = [S_T, IMG, DES, TIT, NUM, PRI, SPE] 

The SIV of the node is generated by adding up the value of the SIV of its all child 
nodes as shown in Fig. 3. For example, the leaf node <br> and <img> in the lowest 
level of the tree are tagged the semantic type as the S_T and IMG respectively by the 
semantic analyzer. Then, the SIV of their parent node <td></td> is[1,1,0,0,0,0,0] by 
adding up [1,0,0,0,0,0,0] and [0,1,0,0,0,0,0]. Final, the SIV [4,6,0,6,0,2,0] of the root 
node <<body></body> can be generated by iterative computing from down to up. 
From the DOM tree with semantic information vectors, we can see the distribution of 
the information of the web page clearly. In the next phases, we will present how to 
use the semantic information to find product data region and identify product data. 

3.3 Maximum Repeated Semantic Vector 

As we mentioned in the above, the biggest difference between our work and existing 
methods is that we identify the data region by finding MRSV (maximum repeated 
semantic vector) pattern of the page rather than repeated tag pattern. For some com-
plex commercial pages, many repeated tag patterns could be found and it is difficult 
to find a correct one from them automatically. But, due to many products with rich 
information contained by most pages, the MRSV always is the correct pattern of 
product data. For obtaining the MRSV of a page, we need to generate the MRSV of 
every non-leaf node of the DOM tree from down to up and the MRSV of the root 
generated in the last will be the MRSV of this page. In the following, we explain how 
to generate the MRSV of a node. There are two steps: 

 

Fig. 3. The DOM tree with semantic information vectors 
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1. Findind all RSV patterns contained by the node. 
Under a node, there could be several RSV patterns. There are two sources for them: 1) 
the first source is the similar semantic vectors of several child nodes. It can be 
detected by using vector similarity computation. We designed a new vector similarity 
formula which can reflect the similarity of semantic types and the information 
quantity between two SIVs (semantic information vectors). Let us see the definition 3. 

Definition 3: Suppose v and w are two semanic information vectors, the similarity of 
v and w is 

m

1

( , )

( ( , ) / ( , ) )
, 0   o r   0

( , )

i i i i
i

i i
v w

S IM v w
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¦          (7) 

Here, xi ,yi denotes the value of the ith item of vector v and w respectively, and nv , nw 
denotes the number of the items with values larger than zero in vector v and w respec-
tively. We use this formula to detect whether there are similar SIVs among child 
nodes of the node. If the similarity of two SIVs is larger than a set threshold, then they 
are similar. After finding similar SIVs, we get their average as the RSV. 2) The 
second source is the MRSV patterns generated by child nodes of the node. 

2. Selecting the maximum one from found RSV patterns.  
After finding all RSV patterns contained by the node, we compare them and select the 
maximum one as the MRSV of the node. So, we need to transform every RSV into a 
measure value. Definition 4 shows the transforming formula. 

Definition 4: Suppose w is a RSV and the information value of w is as follows 

m

1

( ) i w w
i

V w y n r
=

= ⋅ ⋅¦                 (8) 

Here, yi denotes the value of the ith item of vector w, nw denotes the number of the 
items with values larger than zero in w and rw denotes the repeated number of vector 
w. Definition 4 means more semantic types, information quantity and repeated num-
ber the RSV has, larger value it can obtain. Therefore, the RSV with the maximum 
value will be the MRSV of the node. Similarly, the MRSV of the Np node (root node 
of the product data region sub-tree) with rich semantic information has the highest 
probability to become the MRSV of the whole page. 

For example, Fig. 4 shows the detailed searching process of the MRSV with the 
similarity threshold 0.7. The three nodes <div></div>, <table></table> and 
<div></div> in the second level of the tree obtain their MRSVs respectively. In the 
table of the MRSV, n denotes the repeated number and v is the information value of 
the MRSV. When the algorithm is implemented to the root <body></body>, it firstly 
detects whether there are similar SIVs among its three child nodes. From the Fig. 4, 
we can see the SIV [0,2,0,2,0,0,0] of the node <div></div> is similar with the SIV 
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[0,1,0,2,0,0,0] of another node <div></div> because the similarity is equal to 0.75. 
So, there is a RSV pattern among child nodes of the root and we extract it by averag-
ing the two SIVs. So, the RSV is [0,1.5,0,2,0,0,0]. Second, the algorithm detects 
whether the child nodes of the root have their MRSVs. In this example, all three child 
nodes have their MRSVs. In final, there are four RSV patterns for the root. Through 
comparing their information values, the RSV [2,2,0,2,0,1,0] with the maximum value 
56 is the MRSV of the root. Therefore, it is also the MRSV of the whole page. 

 

Fig. 4. The searching process of the MRSV pattern with the similarity threshold 0.7 

3.4 Identifying the Boundary of the Product Data 

In this phase, we will identify the product data using the MRSV. It is easy to identify 
the product data region (the sub-tree whose root node is the Np node) because the 
MRSVs of all nodes are same with the MRSV of the root on the pass from the root to 
the Np node if the MRSV of the root is correct pattern of the product data region. But 
for identifying product data (sub-trees under the Nd node), there are two situations: 

1. The MRSV of the root reflects the semantic information of product data directly. 
This situation means the Nd node is the lowest level node containing the MRSV of the 
root node. So, it is simple to identify product data in this situation because the sub-
trees of product data are under the Nd node directly. Therefore, we firstly find the Nd 
node, and then we align the SIV of every child node of the Nd node with the MRSV of 
the root. If the SIV of some child node is similar with the MRSV, then all sub-trees 
under the child node is the product data information. While, The Nd node can be found 
by aligning the MRSV because it is the lowest level node whose MRSV is same with 
the MRSV of the root. The page with a single data region structure belongs to this 
situation because the Np node and the Nd node point to the same node.  

2. The MRSV of the root reflects the semantic information of the sub data region. 
This situation means the Np node is the lowest level node containing the MRSV  
of the root rather than the Nd node. This situation often happens in the page with  
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multiple data regions becauses there are a Np node and several Nd nodes in this page 
and the Np node is not the Nd node. When there are several sub data regions sharing 
most product data averagely in the page, the SIVs of the Nd nodes of these sub data 
regions will be the MRSV of the whole page. Fig. 5 shows the example about three 
sub data regions sharing the product data of the page. The <table></table> with the 
SIV [12,12,0,12,0,6,0] is the Np node and three <tr></tr> nodes with the SIV 
[4,4,0,4,0,2,0]  are the Nd  nodes. If using the above searching algorithm, the three 
sub data regions will be mistaken for the product data. 

 

 

Fig. 5. Identifying the product data on the multiple regions 

So, we need to check whether found product data sub-trees are correct. We com-
pare the SIV of the root of the found sub-tree with the product of its MRSV and the 
repeated number of the MRSV because the SIV of the sub data region basically is  
the sum of the SIVs of the product data contained by it. If they are similarity, then the 
found sub-tree is the sub data region rather than product data. So, we continue to ex-
tract the real product data from these found sub data regions by aligning the MRSV of 
them with the SIVs of their child nodes. 

For example, let us see Fig.5 again. The three sub data regions with the SIV 
[4,4,0,4,0,2,0] of the root, firstly, will be extracted and we select one among them to 
compare its SIV [4,4,0,4,0,2,0] with the product of its MRSV [2,2,0,2,0,1,0] and 
repeated number 2. Due to the product 2*[2,2,0,2,0,1,0] equal to [4,4,0,4,0,2,0], they 
are similarity. So, they are not product data and we continue to extract real product 
data under these sub data regions by comparing the SIVs of child nodes with their 
MRSV. We can see all <table></table> nodes with the SIV [2,2,0,2,0,1,0] are the root 
nodes of product data sub-trees. 

Therefore, the MRSV information of nodes can help us to find product data region 
and identify the boundary of the product data. In the last, we generate the product 
object template from found product data and use it to find all product data. 
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4 Experiments 

In this section, we evaluate our system, PDM (Product Data Mining), which imple-
ments the proposed techniques. The system is implemented in Eclipse and runs on a 
1.66GHz Double Core with 512MB RAM. 

The number of sites in our experiments is 154. The total number of pages is 209 
and 85 pages from 30 sites are used to compare our system with RoadRunner system. 
We use Google engine to select diverse commercial sites randomly from the Web. 
The selection of pages is also based on the diversity of products and representation 
structure. These pages are preprocessed by using the nekoHTML parser. 

For our system, the selection of the threshold of the semantic vector similarity is 
important. Therefore, we use four different similarity thresholds to run our system 
respectively and compare their results for finding the most appropriate one. 

Table 1 shows the results of PDM with the four different thresholds 0.65, 0.7, 0.75 
and 0.8. The pages are divided into five categories according to the representation and 
data region structure and are listed in the first and second column. The “L”, “T”,  
and “B” denotes three representations List, Tabular and Block structure respectively, 
and the “S” and “M” denotes single data region and multiple sub data regions. The 
fourth column marked with “r” shows the number of the product data records and the 
columns marked with “c” and “f” shows the number of correct product data records  
extracted by our system and the number of found product data records. 

From the values of recall and precision in the last two rows for each threshold, we 
can see, when the threshold is smaller than 0.7, the recall is the lowest because the 
product data are easy to be missed in the page with any structure. While, when the 
threshold is larger than 0.7, the system did not perform better for handling the page 
with multiple sub data regions. With the threshold be larger, the recall and precision 
become more and more low. Therefore, the semantic vector similarity threshold with 
the valueof 0.7 is the most appropriate for our system. 

Table 1. Experimental Results 
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In the following experiment, Table 2 shows the comparing results between 
RoadRunner and our PDM system with 0.7 threshold. The column 1 gives the 
structure type of pages. The column 2 gives 30 commercial sites selected randomly 
from the above 154 sites and column 3 shows the product type. The column 3 and 4 
give the number of pages and the number of product data records in these pages. The 
columns marked with “corr.” and “found” denote the number of correct product data 
records extracted by the system and the number of found product data records. 

The last two rows of the table give the total number of product data records in each 
column, the recall and the precision of each system.  

see p as a r: It means almost the whole page is extracted as a data record. 
see dr as a r: It means sub data regions are extracted as data records and the 

product data under these regions are viewed as their nest structure items. 

Table 2. Comparison of Extraction Results of PDM and RoadRunner 

 
n wrong: It means n incorrect data records are found. 
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The following summarizes the experimental results in Table 2. 

1. Our system PDM gives perfect results for every site except for the last one. 
For three pages of the site, all product data are not found because descriptions 
of product data in these pages just have an image and a title and surrounding 
other regions have much richer semantic information than the product data 
region. From the last two rows, we can see that PDM has a 98.5% recall 
and99.3% precision. While, RoadRunner just has a recall of 68.9%. 

2. When the page has a complex structure, RoadRunner system often happens the 
“see p as a r” error. While, our system will still perform better in these pages. 

3. Many repeated patterns will be generated if aligning tag structure by using 
several pages and the incorrect data records are extracted easily. Therefore, our 
system has a higher precision than RoadRunner. 

The experiment results show that our system has the good effectiveness and high 
accuracy for mining product data in commercial pages 

5 Conclusions 

In this paper, we propose a novel and effective approach to extract product data from 
web sites. Our work is related to the structured data extraction from web pages. Al-
though the problem has been studied by some researchers, existing techniques have 
respective limitations and most automatic extraction methods have the low accuracy. 
Our method is a fully automated extraction technique without any human’s assistance. 
We use the novel semantic analysis and align technique to identify the structured data. 
It is very effective to be applied in the product data extraction. Meanwhile, it also can 
achieve high accuracy when it handles complicated pages from the commercial sites. 
Experiments results using a large number of commercial pages showed the effective-
ness of the proposed technique. 
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