
S. Zhou, S. Zhang, and G. Karypis (Eds.): ADMA 2012, LNAI 7713, pp. 539–551, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Automated Web Data Mining Using Semantic Analysis

Wenxiang Dou1 and Jinglu Hu

1 Graduate School of Information, Product and Systems, Waseda University
2-7 Hibikino, Wakamatsu, Kitakyushu-shi, Fukuoka, 808-0135, Japan

william@ruri.waseda.jp,
jinglu@waseda.jp

Abstract. This paper presents an automated approach to extracting product data
from commercial web pages. Our web mining method involves the following
two phrases: First, it analyzes the data information located at the leaf node of
DOM tree structure of the web page, generates the semantic information vector
for other nodes of the DOM tree and find maximum repeat semantic vector pat-
tern. Second, it identifies the product data region and data records, builds a
product object template by using semantic tree matching technique and uses it
to extract all product data from the web page. The main contribution of this
study is in developing a fully automated approach to extract product data from
the commercial sites without any user’s assistance. Experiment results show
that the proposed technique is highly effective.

Keywords: Web data extraction, product data mining, Web mining.

1 Introduction

With the information time coming, more and more companies manage their business
and services on the World Wide Web and thus these web sites have an explosive
growth. Huge amounts of product have been displayed in respective commercial web
sites using fixed templates. It has important meaning to extract these product data for
offering valuable services such as comparative shopping and meta-search, etc.

The early approaches use the information extraction technique called wrapper [1],
which is a program that extracts data from web pages based on a priori knowledge of
their format. The wrapper could either be generated by a human being (called
programming wrapper) or learned from labeled data (called wrapper induction). Pro-
gramming wrapper needs users to find patterns manually from the HTML code to
build a wrapper system. This is very labor intensive and time consuming. Systems
that use this approach include RAPIER[2], Wargo[5], WICCAP[12], etc. The wrapper
induction uses supervised learning to learn data extraction rules from a set of manual-
ly labeled examples. Example wrapper induction systems include Stalker[3], WL[6],
etc. These wrapper construction systems actually output extraction rules from training
examples provided by the designer of the wrapper. But, they have two major draw-
backs. Firstly, they require a previous knowledge of the data. Secondly, additional
work might be required to adapt the wrapper when the source changes.

540 W. Dou and J. Hu

To overcome these problems, some automatic extraction techniques were devel-
oped to mine knowledge or data from web pages [7], [10]. Embley et al. [4] uses a set
of heuristics and domain ontologies to automatically identify data record boundaries.
But the method requires users to predefine a detailed object-relationship model. Zhai
et al. [14] proposes an instance-based learning method, which performs extraction by
comparing each new instance to be extracted with labeled instances. This approach
also needs users to label pages when a new instance cannot be extracted. In [8], the
system IEPAD is proposed to find patterns from the HTML tag string of a page, and
then use the patterns to extract data items. However, the algorithm generates many
spurious patterns. Users have to manually select the correct one for extraction.

In [9], [11], [13], these automatic extraction techniques require multiple similar
pages from the same site to generate a template and extract data. The typical system is
RoadRunner [9], which infers union-free regular expressions from multiple pages
with the same template. It is a limitation for our opnion: not all web sites can find
several pages with the similar structure for every product.

In this paper, we proposed a novel technique to perform automatic data extraction.
There are three different features between our method and existing automatic
extraction techniques: First, we just need a single page with lists of product data. But
most existing methods require multiple pages. Second, our method is a fully automatic
extraction technique without any human’s labor. Third, existing methods execute tag
matching for finding repeated pattern based on whole page. There are two obstacles: 1)
The navigator and advertisement bar also contain many repeated structures. It is a
problem to accurately estimate which one is a correct repeated pattern for a page with
the complex structure. 2) For similar pages of the same site, they have almost the same
structure. The automatic extraction methods requiring multiple pages are prone to see a
whole page as a data record. So, most existing approaches have a low accuracy.
However, our method, firstly, extracts maximal repeated semantic information pattern
from a page. Then, it searches the product data region and finds product data in this
page by matching the extracted semantic pattern. Finally, it generates the correct
repeated pattern from the found product data and uses it to extract all product data from
the page. The maximal repeated semantic information pattern is more appropriate to
identifying data region than the repeated tag pattern on commercial web pages because
the product data with the rich semantic information assure the accuracy of the pattern.
So, our method can avoid above two obstacles. Experiment results show that our
system has higher accuracy than most existing automatic extraction methods.

The remaining of the paper is organized as follows. Section 2 presents the overall
procedure for extracting product data. Section 3 describes the algorithm for finding
product data region and extracting product data. We present and analyze experimental
results in Section 4. Section 6 concludes our study.

2 Our Approach: Mining Produce Data on the Web Sites

2.1 Product Data Representation Structure

There are three typical representation structures for product data from the view of the
page as shown in Fig. 1. However, on the DOM tree, these representations are written
in HTML by using following two structures: single data region or multiple data

 Automated Web Data Mining Using Semantic Analysis 541

regions structure as shown in Fig. 2. In fact, the data region is one of the sub-trees of
DOM tree and all product data are the child sub-trees of the data region. In here, we
have to explain two definitions about product data region.

Fig. 1. Typical representation of product data on the commercial web pages. (a) Tabular struc-
ture. (b) List structure. (c) Block structure.

Fig. 2. HTML structure of product data on DOM tree. (a) Single data region structure. (b) Mul-
tiple data regions structure.

Definition 1: Product data region is the minimum sub-tree which contains all product
data sub-trees in the DOM tree of a pag and Np is the root node of the sub-tree. In Fig.
2a, the Np node is the TABLE tag. But the TBODY tag is the Np node rather than the
TABLE tag in Fig. 2b because the TABLE tag does not contain all product data.

Definition 2: Direct product region is the sub-tree that contains product data sub-trees
directly in the DOM tree of a pag and Nd is the root of the sub-tree. In Fig. 2a and Fig.
2b, all the TABLE tags are the Nd node. The TBODY tag is not the Nd node because it
does not contain product data sub-trees directly.

So, the single data region structure means it just has a Np node and the Np node is also
a Nd node as shown in Fig. 2a. The multiple data regions structure means it has a Np
node and several Nd nodes, and the Np node is not a Nd node as shown in Fig. 2b.

From our experiments, we found that the pages containing the tabular structure Fig.
2a must be the single data region structure. Most pages containing the list structure
Fig. 2b are the single data region structure. On the contrary, most pages containing the
block structure Fig. 2c are the multiple data regions structure. These will be shown in
Section 4. Some pages may contain combinations of the above structures, such as a
block structure Fig. 2c embedded in an advertisement bar of a page with a list

542 W. Dou and J. Hu

structure Fig. 2b. It is difficult to mine all product data accurately from this page.
Fortunately, most pages use only one type of representation.

Therefore, our method will, firstly, find the Np node and then recognize the Nd node
under the Np node. Finally, we generate the product object template by aligning the
product data sub-trees under the Nd node and use the model to extract all product data
from the page. The detailed steps will be described in next phase.

2.2 Outline of Our Approach

The important step for structured data extraction is to find the correct repeated pat-
tern. We proposed a novel and effective technique (PDM) to find the boundary of
product data. It is based on the following two observations:

1. Product data have the diverse contents such as image, price, title, description, etc.
So, product data region has richer semantic information than any other regions
which always have the monotone content on the page. For example, the navigator
bar consists of links and the advertisement bar basically is dominated by images.

2. Among the product data, their contents are similar. For example as shown in Fig.
1, every phone product are decribed by the similar contents. The product data
region contains many such content model about the product. Therefore, the
repeated rich content informationis almost unique in most commercial web pages.

Based on the above observations, we devise the following workflow to identify prod-
uct data and extract them from a commercial web page:

1. We use the nekoHTML parser to preprocess the page and remove some useless
nodes and information for our work from the page such as javascript language,
etc. Then, we build the DOM tree of the page.

2. The semantic analyzer developed by us identifies the semantic type of the
information located at every leaf node of the DOM tree. Next, The semantic
information vector is built for every node from down to up on the DOM tree.

3. We align the semantic information vector of nodes in every level of the DOM
tree from the down to up and get the maximum repeated semantic vector pattern
(MRSV). Then, the pattern is used to find the product data region and Nd node.

4. In final, we build the product object template of the page by matching the product
data sub-trees under the Nd node and use this model to extract all product data.

The difference between our approaches with existing methods is that we use the novel
semantic analysis and align technique to identify the structured data. It is effective to
be applied in the product data extraction because the MRSV always reflects the cor-
rect product data region in most commercial sites. Especially, it also can achieve high
accuracy when it handles complicated pages from the commercial sites.

3 Product Data Identification

3.1 Semantic Analysis about the Information of the Page

We develop a semantic analyzer to identify the semantic type on the page. In our
work, all pair-tags (like <tr></tr>) on DOM tree are nodes and other tags and contents

 Automated Web Data Mining Using Semantic Analysis 543

under these pair-tags are the semantic information. We classify the semantic informa-
tion into seven semantic types: title (TIT), description (DES), price (PRI), number
(N U M) , i m a g e (I M A) , s i n g l e t a g (S _ T) a n d s p e c i a l (S P E) .

The semantic analyzer consists of several if-then rules. These rules are used to
match with the semantic information and the result deduced by the best matching rule
will be as semantic type of the information. The following show the rules:

Definition of Expressions
X: is variable. (X)1 denotes X has only one appearance, (X)? denotes X has only one or
no appearance, and (X)+ denotes X is larger than or equal one appearance. ¬X denotes
it is not X.

W: denotes a word.
CW: denotes the first letter capitalized word.
Tag: denotes a single tag such as
, <p>, etc.
Num: denotes the number.
Ȉ: is a alphabet {a, b, c, …}.
Ȉv: is a character set {$, ¥, £, …}. These characters are popular value expressions.
Img: The information could be an image. So, Img denotes an image tag .
Num(X): the function Num(X) denotes the number of the variable X.
X·Y: denotes the union between two variables X and Y.

Semantic Rule Pool
RTIT identifies the title type:

 If (W)+ & Num(CW) >=1/2 * Num(W) then TIT. (1)

RDES identifies the description type:

 If (W)+ & Num(CW) < 1/2 * Num(W) then DES. (2)

RIMG identifies the image type:

 If (Tag)
1
 & Img then IMG. (3)

RS_T identifies the single tag type:

 If (Tag)
1
 & ¬Img then S_T. (4)

RNUM identifies the number type including quantity, size, etc:

 If ((Num)+ & (W)?) | (Num·(x∈Ȉ))1 then NUM. (5)

RPRI identifies the price type:

 If ((x∈Ȉv)·Num)+ & (W)? then PRI. (6)

The information which cannot match any rules will be as special semantic type.

544 W. Dou and J. Hu

3.2 Building Semantic Information Tree

After obtaining the semantic types of leaf nodes, we start to generate semantic
information vectors (SIV) for all non-leaf nodes of the DOM tree. The SIV consists of
seven items and every item expresses a semantic type as shown in the follows:

SIV = [S_T, IMG, DES, TIT, NUM, PRI, SPE]

The SIV of the node is generated by adding up the value of the SIV of its all child
nodes as shown in Fig. 3. For example, the leaf node
 and in the lowest
level of the tree are tagged the semantic type as the S_T and IMG respectively by the
semantic analyzer. Then, the SIV of their parent node <td></td> is[1,1,0,0,0,0,0] by
adding up [1,0,0,0,0,0,0] and [0,1,0,0,0,0,0]. Final, the SIV [4,6,0,6,0,2,0] of the root
node <<body></body> can be generated by iterative computing from down to up.
From the DOM tree with semantic information vectors, we can see the distribution of
the information of the web page clearly. In the next phases, we will present how to
use the semantic information to find product data region and identify product data.

3.3 Maximum Repeated Semantic Vector

As we mentioned in the above, the biggest difference between our work and existing
methods is that we identify the data region by finding MRSV (maximum repeated
semantic vector) pattern of the page rather than repeated tag pattern. For some com-
plex commercial pages, many repeated tag patterns could be found and it is difficult
to find a correct one from them automatically. But, due to many products with rich
information contained by most pages, the MRSV always is the correct pattern of
product data. For obtaining the MRSV of a page, we need to generate the MRSV of
every non-leaf node of the DOM tree from down to up and the MRSV of the root
generated in the last will be the MRSV of this page. In the following, we explain how
to generate the MRSV of a node. There are two steps:

Fig. 3. The DOM tree with semantic information vectors

 Automated Web Data Mining Using Semantic Analysis 545

1. Findind all RSV patterns contained by the node.
Under a node, there could be several RSV patterns. There are two sources for them: 1)
the first source is the similar semantic vectors of several child nodes. It can be
detected by using vector similarity computation. We designed a new vector similarity
formula which can reflect the similarity of semantic types and the information
quantity between two SIVs (semantic information vectors). Let us see the definition 3.

Definition 3: Suppose v and w are two semanic information vectors, the similarity of
v and w is

m

1

(,)

((,) / (,))
, 0 o r 0

(,)

i i i i
i

i i
v w

S IM v w

m in x y m a x x y
x y

m a x n n
=

=

> >
¦ (7)

Here, xi ,yi denotes the value of the ith item of vector v and w respectively, and nv , nw
denotes the number of the items with values larger than zero in vector v and w respec-
tively. We use this formula to detect whether there are similar SIVs among child
nodes of the node. If the similarity of two SIVs is larger than a set threshold, then they
are similar. After finding similar SIVs, we get their average as the RSV. 2) The
second source is the MRSV patterns generated by child nodes of the node.

2. Selecting the maximum one from found RSV patterns.
After finding all RSV patterns contained by the node, we compare them and select the
maximum one as the MRSV of the node. So, we need to transform every RSV into a
measure value. Definition 4 shows the transforming formula.

Definition 4: Suppose w is a RSV and the information value of w is as follows

m

1

() i w w
i

V w y n r
=

= ⋅ ⋅¦ (8)

Here, yi denotes the value of the ith item of vector w, nw denotes the number of the
items with values larger than zero in w and rw denotes the repeated number of vector
w. Definition 4 means more semantic types, information quantity and repeated num-
ber the RSV has, larger value it can obtain. Therefore, the RSV with the maximum
value will be the MRSV of the node. Similarly, the MRSV of the Np node (root node
of the product data region sub-tree) with rich semantic information has the highest
probability to become the MRSV of the whole page.

For example, Fig. 4 shows the detailed searching process of the MRSV with the
similarity threshold 0.7. The three nodes <div></div>, <table></table> and
<div></div> in the second level of the tree obtain their MRSVs respectively. In the
table of the MRSV, n denotes the repeated number and v is the information value of
the MRSV. When the algorithm is implemented to the root <body></body>, it firstly
detects whether there are similar SIVs among its three child nodes. From the Fig. 4,
we can see the SIV [0,2,0,2,0,0,0] of the node <div></div> is similar with the SIV

546 W. Dou and J. Hu

[0,1,0,2,0,0,0] of another node <div></div> because the similarity is equal to 0.75.
So, there is a RSV pattern among child nodes of the root and we extract it by averag-
ing the two SIVs. So, the RSV is [0,1.5,0,2,0,0,0]. Second, the algorithm detects
whether the child nodes of the root have their MRSVs. In this example, all three child
nodes have their MRSVs. In final, there are four RSV patterns for the root. Through
comparing their information values, the RSV [2,2,0,2,0,1,0] with the maximum value
56 is the MRSV of the root. Therefore, it is also the MRSV of the whole page.

Fig. 4. The searching process of the MRSV pattern with the similarity threshold 0.7

3.4 Identifying the Boundary of the Product Data

In this phase, we will identify the product data using the MRSV. It is easy to identify
the product data region (the sub-tree whose root node is the Np node) because the
MRSVs of all nodes are same with the MRSV of the root on the pass from the root to
the Np node if the MRSV of the root is correct pattern of the product data region. But
for identifying product data (sub-trees under the Nd node), there are two situations:

1. The MRSV of the root reflects the semantic information of product data directly.
This situation means the Nd node is the lowest level node containing the MRSV of the
root node. So, it is simple to identify product data in this situation because the sub-
trees of product data are under the Nd node directly. Therefore, we firstly find the Nd
node, and then we align the SIV of every child node of the Nd node with the MRSV of
the root. If the SIV of some child node is similar with the MRSV, then all sub-trees
under the child node is the product data information. While, The Nd node can be found
by aligning the MRSV because it is the lowest level node whose MRSV is same with
the MRSV of the root. The page with a single data region structure belongs to this
situation because the Np node and the Nd node point to the same node.

2. The MRSV of the root reflects the semantic information of the sub data region.
This situation means the Np node is the lowest level node containing the MRSV
of the root rather than the Nd node. This situation often happens in the page with

 Automated Web Data Mining Using Semantic Analysis 547

multiple data regions becauses there are a Np node and several Nd nodes in this page
and the Np node is not the Nd node. When there are several sub data regions sharing
most product data averagely in the page, the SIVs of the Nd nodes of these sub data
regions will be the MRSV of the whole page. Fig. 5 shows the example about three
sub data regions sharing the product data of the page. The <table></table> with the
SIV [12,12,0,12,0,6,0] is the Np node and three <tr></tr> nodes with the SIV
[4,4,0,4,0,2,0] are the Nd nodes. If using the above searching algorithm, the three
sub data regions will be mistaken for the product data.

Fig. 5. Identifying the product data on the multiple regions

So, we need to check whether found product data sub-trees are correct. We com-
pare the SIV of the root of the found sub-tree with the product of its MRSV and the
repeated number of the MRSV because the SIV of the sub data region basically is
the sum of the SIVs of the product data contained by it. If they are similarity, then the
found sub-tree is the sub data region rather than product data. So, we continue to ex-
tract the real product data from these found sub data regions by aligning the MRSV of
them with the SIVs of their child nodes.

For example, let us see Fig.5 again. The three sub data regions with the SIV
[4,4,0,4,0,2,0] of the root, firstly, will be extracted and we select one among them to
compare its SIV [4,4,0,4,0,2,0] with the product of its MRSV [2,2,0,2,0,1,0] and
repeated number 2. Due to the product 2*[2,2,0,2,0,1,0] equal to [4,4,0,4,0,2,0], they
are similarity. So, they are not product data and we continue to extract real product
data under these sub data regions by comparing the SIVs of child nodes with their
MRSV. We can see all <table></table> nodes with the SIV [2,2,0,2,0,1,0] are the root
nodes of product data sub-trees.

Therefore, the MRSV information of nodes can help us to find product data region
and identify the boundary of the product data. In the last, we generate the product
object template from found product data and use it to find all product data.

548 W. Dou and J. Hu

4 Experiments

In this section, we evaluate our system, PDM (Product Data Mining), which imple-
ments the proposed techniques. The system is implemented in Eclipse and runs on a
1.66GHz Double Core with 512MB RAM.

The number of sites in our experiments is 154. The total number of pages is 209
and 85 pages from 30 sites are used to compare our system with RoadRunner system.
We use Google engine to select diverse commercial sites randomly from the Web.
The selection of pages is also based on the diversity of products and representation
structure. These pages are preprocessed by using the nekoHTML parser.

For our system, the selection of the threshold of the semantic vector similarity is
important. Therefore, we use four different similarity thresholds to run our system
respectively and compare their results for finding the most appropriate one.

Table 1 shows the results of PDM with the four different thresholds 0.65, 0.7, 0.75
and 0.8. The pages are divided into five categories according to the representation and
data region structure and are listed in the first and second column. The “L”, “T”,
and “B” denotes three representations List, Tabular and Block structure respectively,
and the “S” and “M” denotes single data region and multiple sub data regions. The
fourth column marked with “r” shows the number of the product data records and the
columns marked with “c” and “f” shows the number of correct product data records
extracted by our system and the number of found product data records.

From the values of recall and precision in the last two rows for each threshold, we
can see, when the threshold is smaller than 0.7, the recall is the lowest because the
product data are easy to be missed in the page with any structure. While, when the
threshold is larger than 0.7, the system did not perform better for handling the page
with multiple sub data regions. With the threshold be larger, the recall and precision
become more and more low. Therefore, the semantic vector similarity threshold with
the valueof 0.7 is the most appropriate for our system.

Table 1. Experimental Results

 Automated Web Data Mining Using Semantic Analysis 549

In the following experiment, Table 2 shows the comparing results between
RoadRunner and our PDM system with 0.7 threshold. The column 1 gives the
structure type of pages. The column 2 gives 30 commercial sites selected randomly
from the above 154 sites and column 3 shows the product type. The column 3 and 4
give the number of pages and the number of product data records in these pages. The
columns marked with “corr.” and “found” denote the number of correct product data
records extracted by the system and the number of found product data records.

The last two rows of the table give the total number of product data records in each
column, the recall and the precision of each system.

see p as a r: It means almost the whole page is extracted as a data record.
see dr as a r: It means sub data regions are extracted as data records and the

product data under these regions are viewed as their nest structure items.

Table 2. Comparison of Extraction Results of PDM and RoadRunner

n wrong: It means n incorrect data records are found.

550 W. Dou and J. Hu

The following summarizes the experimental results in Table 2.

1. Our system PDM gives perfect results for every site except for the last one.
For three pages of the site, all product data are not found because descriptions
of product data in these pages just have an image and a title and surrounding
other regions have much richer semantic information than the product data
region. From the last two rows, we can see that PDM has a 98.5% recall
and99.3% precision. While, RoadRunner just has a recall of 68.9%.

2. When the page has a complex structure, RoadRunner system often happens the
“see p as a r” error. While, our system will still perform better in these pages.

3. Many repeated patterns will be generated if aligning tag structure by using
several pages and the incorrect data records are extracted easily. Therefore, our
system has a higher precision than RoadRunner.

The experiment results show that our system has the good effectiveness and high
accuracy for mining product data in commercial pages

5 Conclusions

In this paper, we propose a novel and effective approach to extract product data from
web sites. Our work is related to the structured data extraction from web pages. Al-
though the problem has been studied by some researchers, existing techniques have
respective limitations and most automatic extraction methods have the low accuracy.
Our method is a fully automated extraction technique without any human’s assistance.
We use the novel semantic analysis and align technique to identify the structured data.
It is very effective to be applied in the product data extraction. Meanwhile, it also can
achieve high accuracy when it handles complicated pages from the commercial sites.
Experiments results using a large number of commercial pages showed the effective-
ness of the proposed technique.

References

1. Kushmerick, N., Weld, D., Doorenbos, R.: Wrapper induction for information extraction.
In: Proc. of the 15th IJCAI (1997)

2. Califf, M.E., Mooney, R.J.: Relational learning of pattern-match rules for information ex-
traction. In: Pro. of the AAAI 1999/IAAI 1999 Conf., pp. 328–334 (1999)

3. Muslea, I., Minton, S., Knoblock, C.: A hierarchical approach to wrapper induction. In:
Proc. of the 3th Annual AA Conf., pp. 190–197 (1999)

4. Embley, D.W., Campbell, D.M., et al.: Ontology-Based Extraction and Structuring of In-
formation from Data-Rich Unstructured Documents. In: Proc. CIKM, pp. 52–59 (1998)

5. Raposo, J., Pan, A., Alvarez, M., Hidalgo, J., Vina, A.: The Wargo System: Semi-
Automatic Wrapper Generation in Presence of Complex Data Access Modes. In: Proc. of
13th Int’l Workshop Database and Expert Systems Applications, pp. 313–320 (2002)

6. Cohen, W.W., Hurst, M., Jensen, L.S.: A Flexible Learning System for Wrapping Tables
and Lists in HTML Documents. In: Proc. 11th Int’l Conf. World Wide Web, pp. 232–241
(2002)

 Automated Web Data Mining Using Semantic Analysis 551

7. Embley, D., Jiang, Y., Ng, Y.-K.: Record-boundary discovery in Web documents. In: Proc.
of ACM SIGMOD 1999, pp. 467–478 (1999)

8. Chang, C., Lui, S.: IEPAD: Information Extraction Based on Pattern Discovery. In: Proc.
of the 2001 Intl. World Wide Web Conf., pp. 681–688 (2001)

9. Crescenzi, V., Mecca, G., Merialdo, P.: ROAD RUNNER: Towards Automatic Data Ex-
traction from Large Web Sites. In: Proc. of.the 2001 Intl. Conf. on Very Large Data Bases,
pp. 108–118 (2001)

10. Bar-Yossef, Z., Rajagopalan, S.: Template Detection via Data Mining and its Applications.
In: Proc. WWW, pp. 580–591 (2002)

11. Arasu, A., Garcia-Molina, H.: Extracting Structured Data from Web Pages. SIGMOD
(2003)

12. Zhao, L., Wee, N.K.: WICCAP: From Semi-Structured Data to Structured Data. In: Proc.
of 11th IEEE Int’l Conf. and Workshop Eng. of Computer-Based Systems (ECBS 2004),
p. 86 (2004)

13. Ye, S., Chua, T.S.: Learning Object Models from Semistructured Web Documents. IEEE
Transaction on Knowledge and Data Engineering 18(3), 334–349 (2006)

14. Zhai, Y., Liu, B.: Extracting Web Data Using Instance-Based Learning. In: Proc. Sixth
Int’l Conf. Web Information Systems Eng. (2005)

