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Abstract. We develop and test algorithms for assessing the similarity of a person’s days based 
on location traces recorded from GPS. An accurate similarity measure could be used to find 

anomalous behavior, to cluster similar days, and to predict future travel. We gathered an aver-
age of 46 days of GPS traces from 30 volunteer subjects. Each subject was shown random pairs 
of days and asked to assess their similarity. We tested eight different similarity algorithms in an 
effort to accurately reproduce our subjects’ assessments, and our statistical tests found two 
algorithms that performed better than the rest. We also successfully applied one of our similari-
ty algorithms to clustering days using location traces. 
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1 Introduction 

Both consumers and corporations recognize the value of location traces for under-

standing daily habits and anticipating occasional needs, and the proliferation of GPS-

equipped smart phones is making them ever easier to collect. These traces can help in 

understanding our daily activities; in particular, we can use location traces to find 

anomalous days and to cluster similar days, leading to a better understanding of our 

daily routines. Both of these tasks require a way to compare days to one another. 

This paper develops and tests algorithms to measure the similarity of days repre-

sented by location traces, tested against similarity assessments from real users. With a 

reliable way to measure similarity we can find days that stand out from the rest as 

anomalies, which may indicate confusion (an important phenomenon to detect among 

populations of users with cognitive impairments [3]) or a change of habits. We can 

also make sensible clusters of days that belong together to assess variety and make 

predictions about how a day will evolve, providing useful basic knowledge for future 

adaptive systems to leverage. We believe this is the first effort aimed at measuring the 

similarity of days using location traces in a way that reflects human assessments. 

A variety of sensors could be used to characterize a day, such as activity measured 

on a person’s mobile phone, desktop computer, vehicle, social networking sites, bio-

metric sensors, etc.  Our work is aimed at location traces, usually measured with GPS. 

One advantage of this is that location is a constantly existent state (if not always 

measurable) as opposed to event-based activities, such as texting events, that only 

happen occasionally. Location is also dynamic for most people and easy to measure 



outdoors with GPS. These characteristics make location a convenient variable to use 

for measuring the similarity between a person’s days. 

The GIS community has looked extensively at location trace similarity, e.g. [1], but 

these efforts are aimed primarily at machine processing. We are interested in match-

ing human assessments of similarity, which appears more commonly in research for 

anomaly detection. In [2], Ma detects anomalies from GPS traces by first representing 

a normal trace as a sequence of rectangles on the ground. An anomaly is declared if a 

new trace’s rectangles are sufficiently different from those of the normal trace. Here 

the similarity measure is explicit in that it depends on a quantity measuring the geo-

graphic difference between the normal trip and the query trip. It also ignores time. In 

[3], Patterson et al. detect anomalous behavior based on GPS tracking. They train a 

dynamic, probabilistic model from a person’s historical GPS traces. If the uncertainty 

of the trained model exceeds the uncertainty of a general prior model of human mo-

tion, then the system declares an anomaly. This is an example of an implicit similarity 

measure. Both [2] and [3] are aimed at detecting anomalies in the lives of the cogni-

tively impaired. The system of Giroux et al. [4] has the same goal, only they use sen-

sors in a home to detect anomalies in predefined daily routines, like making coffee. 

An anomaly is declared if the normal sequence of events is violated or if the timing of 

the sequence is sufficiently different from normal. Researchers have also detected 

anomalies in video, such as Xian and Gong [5], whose system automatically builds 

models of normality from training video. 

All of these techniques depend on learning a model of normal behavior from ob-

servation, which means they must be trained anew for new subjects. One of our goals 

is to find a single similarity measure that works well for multiple people, without 

requiring any training. In addition, previous techniques detect dissimilar behavior 

based on an algorithm or threshold designed by the researcher. Instead, another of our 

goals is to find a similarity measure that approximates what a human subject would 

say about their own data. Achieving these goals will allow us to provide future adap-

tive systems with a way to accurately reproduce human assessments of day similarity 

that works well for the general population, and requires no training time; perhaps 

helping to mitigate the cold-start problem in relevant applications. Toward this end, 

we gathered GPS data from 30 volunteer subjects and then asked them to assess the 

similarity of their own days. Armed with this ground truth data, we tested various 

similarity measures and were able to find two that reproduced the assessments from 

our subjects quite well. We begin by describing how we gathered the data for our 

experiment. 

2 GPS Data and Preprocessing 

In order to perform our experiments for assessing day similarity based on location 

traces, we gathered GPS data from the vehicles of volunteers. This section describes 

our data logging and preprocessing for the experiment described in Section 3. 

 



2.1 GPS Data from Volunteers 

We logged GPS data from 30 volun-

teers (8 female). Each volunteer 

borrowed a RoyalTek RBT-2300 

GPS logger and placed it in their 

main vehicle, powered by the ciga-

rette lighter. All our subjects were 

employees of Microsoft Corporation 

in Redmond, WA, USA, and most 

were compensated with a US$ 30 

cafeteria spending card. A few sub-

jects agreed to participate without 

any compensation. Our goal was to 

collect at least six weeks of data 

from each subject. In the end we 

obtained GPS data for an average of 

46 days from each subject, varying from 20 to 60 days, where the majority of the 

recorded drives consisted of simple weekday home/work commute trips and weekend 

drives in the local community; a dataset we believe generalizes well to the larger pop-

ulation of people with regular work routines. Each subject was in possession of the 

GPS logger for at least six weeks, but some did not drive every day. In order to reach 

30 subjects, we started logging with 39 subjects, but later found that 9 did not provide 

suitable data due to mysterious stoppages in logging, a late refusal to log, frequent 

sharing of their vehicle (which violated our survey criteria), and two unexpected de-

partures. We also ignored two subjects who had only 14 and 18 days of logging. 

The loggers were set to record a time-stamped coordinate pair (latitude, longitude) 

every 10 seconds. Figure 1 shows a short sequence of GPS points from one of our 

subjects with 10-second sampling. Since we ran our loggers without their rechargea-

ble batteries, they logged only when the vehicle’s cigarette lighter was powered. For 

some vehicles, this happens only when the vehicle is turned on, and for others the 

cigarette lighter is powered continuously. In our preprocessing, detailed below, we 

filled in gaps corresponding to these and other limitations of the recorded GPS 

stream. 

2.2 GPS Data Preprocessing 

In order to attach some semantic information to the raw GPS data, our first prepro-

cessing step was to automatically detect the time and location of all stops in the raw 

traces. For our purposes, a stop is defined as any location in the GPS data where we 

detect that the subject/vehicle remained within a 300-meter (radius) circular region for 

5 minutes or more. These parameters were chosen based on a training dataset, whose 

subjects were not included in our final evaluation. 

In order to produce an initial set of candidate stops, we first made a linear time-

ordered pass through the GPS trace data and marked those locations that met our stop 

 
Figure 1: A short sequence of GPS points 
sampled at an interval of 10 seconds. 

 



criterion, defined above. Because a stop location that was visited more than once dur-

ing the course of the recorded GPS trace would have > 1 stop representation in our 

data, we then collapsed those redundant representations into one final stop. Doing so 

allowed us to associate a set of aggregate knowledge with the actual stop location. For 

example, consider the case of a subject’s work location; over the course of a typical 

work-week their trace data will initially represent “work” with five separate stop rep-

resentations (one for each day). By collapsing these five representations into one, we 

obtain one stop location that represents the aggregate knowledge of the original five 

(i.e., days of the week the location was visited, times the subject arrived/departed, 

etc.), which is significantly more useful than five disparate time/location observations. 

In order to collapse the stops, we applied agglomerative clustering [6] to the candidate 

stops using the same 300-meter distance threshold (as above) as the criterion for 

merging. 

Once we determined the final set of stops, we then leveraged the aggregate infor-

mation contained therein to apply semantic labels to certain stops. Specifically, we 

used data from the American Time Use Survey (ATUS) [7] to classify the most-likely 

pair of stops as either Home or Work locations. Since our final stops contained 

knowledge of the days and times of arrival/departure, length of stay, and frequency of 

visits, we built and trained a classifier to perform probabilistic Home/Work labeling 

based entirely on these criteria. Since Home/Work stops occur very frequently in 

many subjects’ GPS datasets, it was important to be able to distinguish them for our 

subjects’ later assessment of their data. Specifically, having these labels helped our 

subjects orient themselves quickly and easily to the type of days they were observing 

(e.g., weekday/weekend), and distinguish between regular and anomalous days more 

easily. 

Finally, as one last preprocessing step, we created a symbolized stop representation 

of each day of data from the raw GPS traces (where a day is defined from 4:00am – 

3:59am). Specifically, for each location in the raw GPS data, we replaced its coordi-

nate pair with its associated Stop ID (a unique identifier associated with each stop), 

and interpolated in time for those vehicles that logged only when they were turned on. 

If a given coordinate pair was not associated with (i.e., located at) a stop location, it 

was replaced with a From Stop ID-To Stop ID pair, denoting travel between stops. 

Simplifying the raw trace data into a series of symbols denoting time spent at (and 

traveling between) stops not only provides us with a more compact representation of 

the trace data, but also a more abstract representation for use with evaluation algo-

rithms that aren’t geographically-aware (see Section 4). 

3 Human Assessment of Day Similarity 

Our goal is to find an algorithm that can assess the similarity of days in a way that 

matches human assessment. Toward this end, we asked each of our subjects to make 

similarity assessments of their own location data. Guided by one of the authors, each 

of our 30 subjects was invited to run a custom program that displayed, and asked 

them to make similarity assessments on their own recently recorded data. The 



program started by displaying a calendar indicating the days for which we had GPS 

data available for the subject. For a selected day, the program showed that day’s loca-

tion traces in three different ways: 

1. Map - An interactive map, shown in Figure 2(a), displayed the stops we found (as 

described in Section 2.2), each with its unique ID number. It also showed the GPS 

traces between the stops. This visualization emphasized the spatial layout of the 

day’s trips and stops. 

2. Graph – An interactive graph, as in Figure 2(b), showed the subject’s stops as 

nodes and their trips as straight edges. Thicker edges indicated more trips between 

their connected stops. The Home and Work stops were labeled if we found them, 

otherwise stops were labeled with only their unique ID number that matched the 

numbers on the map. Clicking on a node or edge in the graph highlighted the corre-

sponding stop or GPS trace on the map, making for convenient exploration. This 

visualization emphasized the number of stops and the transitions between them. 

 

 
Figure 3: Timeline view of a day, showing stops as blocks of color and trips between 

stops as narrower bands of black. 

 

  
(a) An interactive map for viewing a 
day's GPS data. 

(b) A graph view of a day's GPS data, show-
ing stops and the trips between them. 

Figure 2: Two visualizations of a day for our subjects. 

 

 



3. Timeline - A timeline, as in Figure 3, displayed each stop in a different color 

block, laid out along a horizontal timeline. The time periods denoting trips between 

stops were colored black. This gave a temporal view of the day that was lacking in 

the other two visualizations. 

After starting the program, we asked each of our subjects to familiarize themselves 

with the visualizations by picking a day and briefly describing it to us using the visu-

alizations. 

The main part of our user study came next: each subject was asked to assess the 

relative similarity of pairs of pairs of their days. That is, each subject was shown four 

randomly selected days simultaneously, using the visualizations described above, and 

as shown in Figure 4. We then asked the subject to indicate which of the two pairs 

was most similar. For instance, if the two pairs of days were A & B and C & D, we 

asked the subject to indicate if A & B were more similar to each other than C & D, or 

vice-versa. We chose this simple assessment after first piloting a different survey that 

asked subjects to give a numerical similarity rating to a pair of days. This proved too 

difficult, so we reverted to this simpler question about the relative similarity of pairs 

of days. The example shown in Figure 4 is a good representation of the complexity of 

the typical comparison problem presented to our subjects; with an average of 5 stops 

per day, the left-most pair of days represents a simpler case, and the right-most pair a 

more complex case. Each subject rated 30 pairs of pairs, which took approximately 30 

minutes in total for each subject. 

With these partial rankings, we next experimented with several different algo-

rithms for assessing day similarity that we hoped would accurately reproduce the 

assessments of our subjects. 

 
Figure 4: The main part of our user study, where we asked subjects to indicate which 
pair of days was most similar to each other. 

 



4 Algorithms for Assessing Day Similarity 

To find an algorithm that computes a numerical similarity (or “distance” score) be-

tween pairs of days that matches the similarity rankings of our subjects, we imple-

mented and evaluated four trajectory similarity algorithms in both standard and modi-

fied forms. The standard form of each algorithm is that given by its original defini-

tion, described in the following sub-sections. The modified form of each algorithm 

consisted of its original definition being adapted to use Dynamic Time Warping 

(DTW) [8], a technique which allows us to relax the assumption that activities be-

tween pairs of days be aligned in time. For example, consider two days A and B con-

sisting of the same simple “Home → Work → Home” activity pattern. On Day A, the 

subject leaves home at 8:30am, arrives at work at 9am, departs work at 6pm, and 

returns home at 6:30pm. On Day B, the subject leaves home at 8am, arrives at work at 

8:30am, departs work at 5:30pm, and returns home at 6pm. Since days A and B both 

consist of a 9-hour work-day with a 30-minute commute from/to home, subjectively 

speaking they are virtually identical. However, because of the 30-minute time-shift 

between them, they will necessarily incur a penalty from any objective similarity 

measure. Therefore, our motivation behind evaluating a DTW-modified version of 

each algorithm was to establish whether our subjects ignore these shifts in time, and if 

so, to more accurately capture and reproduce the subjective nature of their evalua-

tions. 

Formally speaking, in the modified implementation of each algorithm we measured 

the DTW-distance (DTW) by bootstrapping the corresponding distance function de-

fined by each algorithm. The DTW-distance between days A and B is computed as 

follows, where A = 〈          〉, Head(A) =   , Tail(A) = 〈       〉, and each    
corresponds to either a Stop ID or coordinate pair depending on the algorithm being 

modified (and, similarly for B): 

 

   (   )   

{
 
 

 
 

           ( )              ( )   

           ( )             ( )   

        (    ( )     ( ))     {

   (      ( ))

   (    ( )  )

   (    ( )     ( ))

 

 

In effect, dynamic time warping warps the time axes of the two sequences so they 

match optimally. Below we describe the four standard trajectory similarity algo-

rithms. 

4.1 Edit Distance 

Edit distance measures the number of edit operations needed to transform one string 

of symbols into another. In our case, this algorithm operates on the symbolized stop 

representation of our trace data (as discussed in Section 2.2), and therefore the sym-

bols referred to here correspond to Stop IDs and From Stop ID-To Stop ID pairs. 



Valid edit operations include: insertion, deletion, and substitution. In our evalua-

tion, we used the canonical Levenshtein [9] implementation of this algorithm, where a 

unit cost is assigned to each of these operations. The result of this evaluation metric, 

in both its standard (denoted “without dynamic time warping”) and modified (denoted 

“with dynamic time warping”) form can be seen in Figure 5. 

4.2 Distance Sensitive Edit Distance 

The standard edit distance algorithm (described in Section 4.1 above) operates entire-

ly on the symbolized stop representation of a given day, without taking into consider-

ation the stops’ geographic locations. In order to account for the geographic location 

of stops we modified the standard Levenshtein algorithm [9] to use great-circle dis-

tance, measured using the Haversine formula [10], as its cost function for each of the 

edit operations. This means, for example, that the cost of performing the substitution 

operation for two Stops #60 and #157 is no longer 1, but rather the distance in meters 

between Stops #60 and #157 according to their coordinate locations. The results of 

this evaluation metric can be seen in Figure 5. 

4.3 Stop Type Distance 

The symbolized stop representation of a subject’s days requires an exact correspond-

ence between IDs to be considered a match. Because this definition can be overly 

restrictive, we generalized the representation of each stop by classifying its location 

type. In order to perform this classification, we provided the coordinates of each stop 

to Bing Local Search, which returned a list of categorized businesses and their dis-

tances from our stop within a radius of 250 meters. Example business types include 

“Restaurant,” “Grocery & Food Stores” and “Banks & Credit Unions,” among many 

others. Using this data we then built a location-type probability distribution for each 

stop, based on the proportion of returned business types and weighted by their dis-

tance from the original stop location. 

Replacing each Stop ID with its corresponding location-type probability distribu-

tion, we then computed the distance between days as the sum of the KL-divergence 

[11] scores between their probability distributions. The results of this evaluation met-

ric can be seen in Figure 5. 

4.4 Sum of Pairs Distance 

This metric [12] computes the distance between days based on their raw location trac-

es, rather than the symbolized stop representations used above. As a result, this metric 

does not take into account any of the related semantic information. 

Sum of pairs distance measures the sum of the great-circle distance between every 

pair of trace locations (coordinate pairs). Since this metric requires that the traces for 

days A and B be of equal length, we first perform simple linear interpolation and then 

compute their distance. The results of this evaluation metric can be seen in Figure 5. 



5 Results 

We evaluated our similarity algorithms both on the task of matching our subjects’ 

similarity assessments and on a clustering task. 

5.1 Matching Subjects’ Similarity Assessments 

We ran our eight similarity algorithms on the data from our 30 subjects. Recall that 

each subject was shown 30 sets of 4 days each. Each set of four days was split into 

two pairs, and the subject chose which pair was most similar. We gave these same 

sets of days to our similarity algorithms and recorded their assessment of which days 

were most similar. The accuracy results we report show the proportion of human de-

cisions our algorithms were able to correctly reproduce. 

The accuracy results are shown in Figure 5. Ignoring statistical significance, the 

best performing algorithm was Sum of Pairs Distance with Dynamic Time Warping 

(w/DTW), with a mean accuracy of 75.5% (SD=10.4%). This algorithm looks at the 

great circle distance between points in the two location traces, with local adjustments 

for time shifts. In second place was Distance Sensitive Edit Distance w/DTW with an 

overall mean accuracy of 74.2% (SD=9.3%). The fact that our two best-performing 

algorithms both base their distance metric on actual geographic distance is telling; 

clearly our subjects associate day similarity with geographic proximity. 

Since we computed the accuracy for each subject, this provided 30 sample accura-

cies for each algorithm, allowing for a statistical analysis. We began with a one-way, 

repeated-measures ANOVA test, which resulted in  (    )               
     . This is evidence that the choice of algorithm has a statistically significant ef-

fect on accuracy. We next performed one-tailed, paired-sample t-tests of the means 

between each pair of algorithms, with a Holm-Bonferroni [13] correction to account 

 
Figure 5: Accuracy results for our eight similarity algorithms. Error bars show +/- 1 
standard deviation over all 30 test subjects. 
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for the multiple t-tests. Of the 28 possible pairs of algorithms, 16 pairs had statistical-

ly significant mean accuracy differences at the        level. Table 1 tallies the 

wins and losses of each algorithm. The algorithm with the best performance record is 

Distance Sensitive Edit Distance w/DTW, with five wins and no losses. The next best 

algorithm is Sum of Pairs Distance w/DTW, with four wins and no losses. There was 

no statistically significant difference in performance between these two algorithms. 

Of these two, Sum of Pairs Distance w/DTW is easier to implement, since it does not 

require the identification of stops in the location traces. While the two best-

performing algorithms both used DTW, it produced a statistically significant perfor-

mance improvement for only the Distance Sensitive Edit Distance algorithm, over its 

non-DTW counterpart. 

Overall, for accuracy and ease of implementation, we are inclined to recommend 

Sum of Pairs Distance w/DTW as the best algorithm we tested for assessing the simi-

larity of days. 

5.2 Application to Clustering 

One application of our similarity measure is clustering, where we can find groups of 

similar days. We tested this by having our 30 subjects assess clusterings of their own 

days. We clustered days with a spectral clustering algorithm (eigenvectors of random 

walk Laplacian, with k-means [14]). We computed clusters using the Edit Distance 

w/o DTW algorithm as our distance metric. Edit Distance w/o DTW had a mean accu-

racy of 66.2% (SD=12.5%), slightly lower than the best accuracy of 75.5% for Sum of 

Pairs Distance w/DTW. We used Edit Distance w/o DTW for our survey, because at 

the time we conducted our study we hadn’t yet been able to test for the best perform-

ing algorithm. 

For the clustering portion of the survey, we asked each subject to increment 

through the number of clusters, k, starting at two. For each k, the program displayed 

the clustered days in groups using the same visualizations described in Section 3. An 

example of a timeline showing three clusters is depicted in Figure 6, where the day-

groupings are indicated by the colored labels on the left-hand side of each row. 

Table 1: Number of statistically significant wins and losses for our similarity algo-
rithms. 

Algorithm Wins Losses 

Edit Distance w/o DTW 0 3 

Edit Distance w/DTW 0 1 

Distance Sensitive Edit Distance w/o DTW 2 2 

Distance Sensitive Edit Distance w/DTW 5 0 

Stops Categories Distance w/o DTW 0 4 

Stops Categories Distance w/DTW 0 4 

Sum of Pairs Distance w/o DTW 3 0 

Sum of Pairs Distance w/DTW 4 0 

 



Each subject was asked to pick the best k and 

then to rate the clustering on a Likert scale by indi-

cating their level of agreement with the statement, 

“My days have been accurately separated into 

sensible groups.” The results of this question are 

shown in Figure 7, where we see that 20 out of 30 

subjects answered either “Agree” or “Strongly 

agree”, indicating that the clustering was generally 

successful. This, in turn, further supports the asser-

tion that our Edit Distance w/o DTW similarity 

algorithm comes close to matching human simi-

larity assessments. We would expect Sum of Pairs 

Distance w/DTW to work even better, since it was 

the most accurate algorithm based on our analysis 

in Section 5.1. 

6 Conclusions 

Based on a survey of 30 subjects, we assessed the 

accuracy of 8 different similarity algorithms on 

their location traces. We found that two algo-

rithms, Sum of Pairs Distance w/DTW and Dis-

tance Sensitive Edit Distance w/DTW, worked best 

at matching human assessments of day similarity. 

We also showed that one of our similarity algo-

rithms worked well for clustering days of location 

traces, based on an evaluation from our subjects. 

In addition to clustering, these similarity algo-

rithms can potentially be used to find anomalies 

and help predict behavior. None of our algorithms 

depend on training, so they are generic across all 

users, and therefore relatively easy to use. 

 
Figure 6: These are three 

clusters shown on a timeline. 

Each row is one day. The 

single day in the top cluster is 

an outlier. The main central 

cluster shows 32 work days, 

and the bottom cluster shows 
19 non-work days. 

 
Figure 7: Most of our subjects were happy with the clustering results. 
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We envision future work in this area may explore other similarity algorithms as 

well as experiments to detect anomalies. We would expect anomaly detection to work 

well because of the good performance shown here by our algorithms at matching 

human assessments of the similarity of days. 
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