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Abstract

Learning patterns of human behavior from sensor data is extremely
important for high-level activity inference. This paper describes how
to extract a person’s activities and significant places from traces
of GPS data. The system uses hierarchically structured conditional
random fields to generate a consistent model of a person’s activities
and places. In contrast to existing techniques, this approach takes
the high-level context into account in order to detect the significant
places of a person. Experiments show significant improvements over
existing techniques. Furthermore, they indicate that the proposed
system is able to robustly estimate a person’s activities using a model
that is trained from data collected by other persons.

KEY WORDS—activity recognition, conditional random
fields, belief propagation, maximum pseudo-likelihood

1. Introduction

The problem of learning patterns of human behavior from
sensor data arises in many applications, including intelligent
environments (Brumitt et al. 2000), surveillance (Bui et al.
2001; Dee and Hogg 2005), human robot interaction (Ben-
newitz et al. 2005), and assistive technology for the disabled
(Patterson et al. 2002). A focus of recent interest is the use
of data from wearable sensors, and in particular, GPS (global
positioning system) location data, to learn to recognize the
high-level activities in which a person is engaged over a pe-
riod of many weeks, and further, to determine the relation-
ship between activities and places that are important to the
user (Ashbrook and Starner 2003; Liao et al. 2004, 2005a,
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2005c; Gogate et al. 2005). The goal of this research is to seg-
ment a user’s day into everyday activities such as “working,”
“visiting,” or “travel,” and to recognize and label significant
places such as “workplace,” “friend’s house,” or “bus stop.”
However, previous approaches to automated activity and place
labeling suffer from design decisions that limit their accuracy
and flexibility:

Restricted activity models: Previous approaches to
location-based activity recognition have rather limited
models of a person’s activities. Ashbrook and col-
leagues (2003) only reason about moving between sig-
nificant places, without considering different types of
places or different routes between places. In the con-
text of indoor mobile robotics, Bennewitz et al. (2005)
showed how to learn different motion paths between
places. However, their approach does not model dif-
ferent types of places and does not estimate the user’s
activities when moving between places. In our previ-
ous work (Liao et al. 2004; Patterson et al. 2004) we
developed a hierarchical dynamic Bayesian network
model that can reason about different transportation
routines between significant places. Gogate and col-
leagues (2005) showed how to use deterministic con-
straints to more efficiently reason in such models. In
separate work, we developed an approach that can learn
to distinguish between different types of significant
places, such as workplace, home, or restaurant (Liao
2005c). However, this model is limited in that it is
not able to consider information about motion between
places and about activities occurring at each point in
time.

Inaccurate place detection: Virtually all previous ap-
proaches address the problem of determining a person’s
significant places by assuming that a geographic loca-
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tion is significant if and only if the user spends at least
θ minutes there, for some fixed threshold θ (Ashbrook
and Starner 2003; Liao et al. 2004, 2005c; Gogate et al.
2005; Bennewitz et al. 2005). In practice, unfortunately,
there is no threshold that leads to a satisfying detection
of all significant places. For instance, locations such as
the place where the user drops off his children at school
may be visited only briefly, and so would be excluded
when using a high threshold θ . A low threshold, on the
other hand, would include too many insignificant loca-
tions, for example, a street intersection where the user
waited at a traffic light. Such detection errors can only
be resolved by taking additional context information
into account, such as the user’s current activity.

In this paper we present a novel, unified approach to auto-
mated activity and place labeling which overcomes these lim-
itations. Key features of our system are:

• It achieves high accuracy in detecting significant places
by taking a user’s context into account when determin-
ing which places are significant. This is done by si-
multaneously estimating a person’s activities over time,
identifying places that correspond to significant activi-
ties, and labeling these places by their type. This estima-
tion is performed in a unified, discriminatively trained
graphical model (conditional random field). As a result,
our approach does not rely on arbitrary thresholds re-
garding the time spent at a location or on a pre-specified
number of significant places.

• It creates a rich interpretation of a user’s data, including
transportation activities as well as activities performed
at particular significant places. It allows different kinds
of activities to be performed at the same location, and
vice versa.

• This complex estimation task requires efficient, approx-
imate inference and learning algorithms. Our system
performs inference using loopy belief propagation, and
parameter learning is done using pseudo-likelihood. In
order to efficiently reason about aggregations, such as
how many different places are labeled as a person’s
home, we apply Fast Fourier Transforms to compute
aggregation messages within belief propagation.

This paper is organized as follows. We begin with an expla-
nation of the basic concepts in our activity model. We then
provide background on conditional random fields (CRFs) as
well as the inference and parameter learning algorithms in
CRFs. In Section 4, we show how to apply CRFs to the prob-
lem of location-based activity recognition. Finally, we present
experimental results on real-world data that demonstrate sig-
nificant improvement in coverage and accuracy over previous
work.

2. Hierarchical Activity Model

The basic concept underlying our activity model is shown in
Figure 1. Each circle in the model indicates an object such as
a GPS reading, an activity, or a significant place. The edges
illustrate probabilistic dependencies between these objects.

GPS readings are the input to our model—a typical trace
consists of approximately one GPS reading per second;
each reading is a point in 2D space. We segment a GPS
trace in order to generate a discrete sequence of activity
nodes at the next level of the model. This segmentation
is done spatially, that is, each activity node represents
a set of consecutive GPS readings that are within a cer-
tain area. If a street map is available, then we perform
the segmentation by associating the GPS readings to a
discretized version of the streets in the map (in our ex-
periments we used 10 m for discretization). This spatial
segmentation is very compact and convenient for esti-
mating high-level activities. For instance, our model
represents a 12 hour stay at a location by a single node.
Our model can also reason explicitly about the duration
of a stay, for which dynamic models such as standard
dynamic Bayesian networks or hidden Markov mod-
els have only limited support (Gopalratnam et al. 2005;
Pfeffer and Tai 2005).

Activities are estimated for each node in the spatially seg-
mented GPS trace, as illustrated in Figure 1. In other
words, our model labels a person’s activity whenever
she passes through or stays at a 10 m patch of the envi-
ronment. We distinguish two main groups of activities,
navigation activities and significant activities. Activi-
ties related to navigation include walking, driving car,
and riding bus. Significant activities are typically per-
formed while a user stays at a location, such as work,
leisure, sleep, visit, drop off/pickup, or when the user
switches transportation modes, such as getting on/off a
bus, or getting in/out of a car. To determine activities,
our model relies heavily on temporal features, such as
duration or time of day, and geographic information,
such as locations of restaurants, stores, and bus stops.

Significant places are those locations that play a significant
role in the activities of a person. Such places include a
person’s home and workplace, the bus stops and parking
lots the person typically uses, the homes of friends,
stores the person frequently shops in, and so on. Note
that our model allows different activities to occur at
the same significant place. Furthermore, due to signal
loss and noise in the GPS readings, the same significant
place can comprise multiple, different locations.

Our activity model poses two key problems for probabilis-
tic inference. First, the model can become rather complex,
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walk, drive, visit, sleep, pickup, get on bus
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Activity sequence

GPS trace
association to street map 
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Fig. 1. The concept hierarchy for location-based activity recognition. For each day of data collection, the lowest level typically
consists of several thousand GPS measurements, the next level contains around one thousand discrete activity cells, and the
place level contains around five places.

including thousands of probabilistic nodes with non-trivial
probabilistic constraints between them. Second, a person’s
significant places depend on his activities and it is therefore
not clear how to construct the model deterministically from
a GPS trace. We solve the first problem by building on and
extending approximate inference algorithms for conditional
random fields. The second problem is solved by constructing
the model as part of this inference. We do this by generat-
ing the highest level of the activity model (significant places)
based on the outcome of inference in the lower level (activity
sequence). Inference is then repeated using both levels con-
nected appropriately (see Section 4.3). Before we explain our
approach in detail, we will first give an overview of condi-
tional random fields.

3. Preliminaries: Conditional Random Fields

In this section, we will provide the background of conditional
random fields and the algorithms for inference and learning.

3.1. Overview

Our goal is to develop a probabilistic temporal model that can
extract high-level activities from sequences of GPS readings.
One possible approach is to use generative models such as hid-
den Markov models (HMM) (Rabiner 1989; Bui et al. 2001) or
dynamic Bayesian networks (Kanazawa et al. 1995; Murphy
2002, Liao et al. 2004). However, discriminative models such
as conditional random fields (CRF), have recently been shown
to outperform generative techniques in areas such as natural
language processing (Lafferty et al. 2001; Sha and Pereira
2003), information extraction (Peng and McCallum 2004;
Kristjannson et al. 2004), web page classification (Taskar et al.
2002), and computer vision (Kumar and Herbert 2003; Quat-
toni et al. 2004). We therefore decided to investigate the ap-
plicability of such models for activity recognition.

CRFs are undirected graphical models that were devel-
oped for labeling sequence data (Lafferty et al. 2001). In-
stead of relying on Bayes rule to estimate the distribution over

hidden states from observations, CRFs directly represent the
conditional distribution over hidden states given the obser-
vations. Unlike HMMs, which assume that observations are
independent given the hidden state, CRFs make no assump-
tions about the dependency structure between observations.
CRFs are thus especially suitable for classification tasks with
complex and overlapped attributes or observations.

Similar to HMMs and Markov random fields, the nodes in
CRFs represent a sequence of observations (e.g., GPS read-
ings), denoted as x = 〈x1, x2, . . . , xT 〉, and corresponding hid-
den states (e.g., activities), denoted as y = 〈y1, y2, . . . , yT 〉.
These nodes, along with the connectivity structure imposed
by undirected edges between them, define the conditional dis-
tribution p(y|x) over the hidden states y. The fully connected
sub-graphs of a CRF, called cliques, play a key role in the def-
inition of the conditional distribution represented by a CRF.
Let C be the set of all cliques in a given CRF. Then, a CRF
factorizes the conditional distribution into a product of clique
potentials φc(xc, yc), where every c ∈ C is a clique of the
graph and xc and yc are the observed and hidden nodes in
such a clique. Clique potentials are functions that map vari-
able configurations to non-negative numbers. Intuitively, a
potential captures the “compatibility” among the variables in
the clique: the larger the potential value, the more likely the
configuration. Using clique potentials, the conditional distri-
bution over the hidden state is written as

p(y | x) = 1

Z(x)

∏
c∈C

φc(xc, yc), (1)

where Z(x) = ∑
y

∏
c∈C φc(xc, yc) is the normalizing parti-

tion function. The computation of this partition function is
exponential in the size of y since it requires summation over
all possible configurations of hidden states y. Hence, exact
inference is possible for a limited class of CRF models only.

Without loss of generality, potentials φc(xc, yc) are de-
scribed by log-linear combinations of feature functions fc(),
i.e.,

φc(xc, yc) = exp
{
wT

c
· fc(xc, yc)

}
, (2)



122 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2007

where wT
c

is the transpose of a weight vector wc, and fc(xc, yc)

is a function that extracts a vector of features from the variable
values. The feature functions, which are often binary or real
valued, are typically designed by the user (combinations of
such functions can be learned from data (McCallum 2003)).
As we will show in Section 3.2, the weights are learned from
labeled training data. Intuitively, the weights represent the
importance of different features for correctly identifying the
hidden states. The log-linear feature representation (2) is very
compact and guarantees the non-negativeness of potential val-
ues. We can now rewrite the conditional distribution (1) as

p(y | x) = 1

Z(x)

∏
c∈C

exp
{
wT

c
· fc(xc, yc)

}
(3)

= 1

Z(x)
exp

{∑
c∈C

wT

c
· fc(xc, yc)

}
. (4)

(4) follows by moving the products into the exponent.

3.2. Inference

In this section we will explain the inference techniques for
CRFs. We will use x to denote observations and y to denote
hidden states. Given a set of observations, inference in a CRF
can have two tasks: to estimate the marginal distribution of
each hidden variable, or to estimate the most likely configu-
ration of the hidden variables (i.e., the maximum a posteriori,
or MAP, estimation). Both tasks can be solved under a frame-
work called belief propagation (BP), which works by send-
ing local messages through the graph structure of the model.
The BP algorithm was originally proposed in the context of
Bayesian networks (Pearl 1988) and was formulated equiv-
alently in models such as factor graphs (Kschischang et al.
2001) and Markov networks (including CRFs) (Yedidia et al.
2001). BP generates provably correct results if the graph has
no loops, such as trees or polytrees (Pearl 1988). If the graph
contains loops, in which case BP is called loopy BP, then the
algorithm is only approximate and might not converge to the
correct probability distribution (Murphy et al. 1999).

Without loss of generality, we only describe the BP algo-
rithm for pairwise CRFs, which are CRFs that only contain
cliques of size two. We will briefly discuss how to use BP
in non-pairwise CRFs in the last paragraph of this section.
Before running the inference algorithm in a pair-wise CRF, it
is possible to remove all observed nodes x by merging their
values into the corresponding potentials; that is, a potential
φ(x, y) can be written as φ(y) because x is fixed to one value.
Therefore, the only potentials in a pair-wise CRF are local
potentials, φ(yi), and pair-wise potentials, φ(yi, yj ). Corre-
sponding to the two types of inference problems, there are two
types of BP algorithms: sum-product for marginal estimation
and max-product for MAP estimation.

3.2.1. Sum-product for Marginal Estimation

In the BP algorithm, we introduce a “message” mij (yj ) for
each pair of neighbors yi and yj , which is a distribution (not
necessarily normalized) sent from node i to its neighbor j

about which state variable yj should be in. The messages
propagate through the CRF graph until they (possibly) con-
verge, and the marginal distributions can be estimated from
the stable messages. A complete BP algorithm defines how to
initialize messages, how to update messages, how to schedule
the message updates, and when to stop passing messages.

• Message initialization: All messages mij (yj ) are ini-
tialized as uniform distributions over yj .

• Message update rule: The message mij (yj ) sent from
node i to its neighbor j is updated based on local po-
tentials φ(yi), the pair-wise potential φ(yi, yj ), and all
the messages to i received from i’s neighbors other
than j (denoted as n(i)\j ). More specifically, for sum-
product, we have

mij (yj ) =
∑

yi

φ(yi)φ(yi, yj )
∏

k∈n(i)\j
mki(yi) (5)

• Message update order: The algorithm iterates the
message update rule until it (possibly) converges. Usu-
ally, at each iteration, it updates each message once, and
the specific order is not important (although it might af-
fect the convergence speed).

• Convergence conditions: To test whether the algo-
rithm converged, BP measures the difference between
the previous messages and the updated ones. The con-
vergence condition is met when all the differences are
below a given threshold ε. More formally, the condition
is

||mij (yj )
(k) − mij (yj )

(k−1)|| < ε, ∀i, and ∀j ∈ n(i) (6)

where mij (yj )
(k) and mij (yj )

(k−1) are the messages after
and before iteration k, respectively.

In the sum-product algorithm, after all messages are con-
verged, it is easy to calculate the marginals of each node and
each pair of neighboring nodes as

b(yi) ∝ φ(yi)
∏

j∈n(i)

mji(yi) (7)

b(yi, yj ) ∝ φ(yi)φ(yj )φ(yi, yj )
∏

k∈n(i)\j
mki(yi)

∏
l∈n(j)\i

mlj (yj )

(8)

The above algorithm can be applied to any topology of pair-
wise CRFs. When the network structure does not have a loop
(for example, when it is a tree), the obtained marginals are
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guaranteed to be exact. When the structure has loops, the BP
algorithm usually cannot obtain exact marginals, or it may
even not converge. Fortunately, empirical experiments show
that loopy belief propagation often converges to a good ap-
proximation of the correct posterior.

In practice, when the network structure does not have any
loops, we do not have to initialize all the messages as uni-
forms. Instead, we start BP with the nodes at the edge of the
graph (i.e., nodes with only one neighbor), and compute a
message mij (yj ) only when all the messages on the right side
of (5) are available. By doing this, the algorithm converges
by only computing each message once, and the results are
guaranteed to be exact.

3.2.2. Max-product for MAP Estimation

We denote the messages sent in the max-product algorithm as
mmax

ij
(yj ). The whole algorithm of max-product is very sim-

ilar to the sum-product, except that in the message update
rule summation is replaced by maximization. The new rule
becomes

mmax

ij
(yj ) = max

yi

φ(yi)φ(yi, yj )
∏

k∈n(i)\j
mmax

ki
(yi) (9)

We run the max-product algorithm in the same way as sum-
product.After the algorithm converges, we calculate the MAP
belief at each node yi as

b(yi) ∝ φ(yi)
∏

j∈n(i)

mmax

ji
(yi) (10)

Suppose there is a unique MAP configuration y∗. Then each
component of y∗ is simply the most likely value according to
the MAP belief:

y∗
i

= argmaxyi
b(yi) (11)

So far, we explained the two BP algorithms in the context
of pairwise CRFs. For non-pairwise CRFs, there is a stan-
dard way to convert them to pairwise ones (Yeddidia et al.
2001). Intuitively, this conversion generates a new node for
each clique of size greater than two. The state space of the
new node consists of the joint state of the nodes it was gen-
erated from. Thus, the complexity of belief propagation is
exponential in the number of nodes in the largest clique of the
CRF.

3.3. Parameter Learning

The goal of parameter learning is to determine the weights
of the feature functions used in the conditional likelihood (4).
CRFs learn these weights discriminatively, that is, the weights
are determined so as to maximize the conditional likelihood
p(y|x) of labeled training data. This is in contrast to generative
learning, which aims to learn a model of the joint probabil-
ity p(y, x). Ng and Jordan (2002) present a discussion and

comparison of these two learning regimes, concluding that
discriminative learning asymptotically reaches superior per-
formance but might require more training examples until its
performance converges. The reader may notice that discrim-
inative learning can also be performed for generative models
such as hidden Markov models (Collins 2002), Kalman fil-
ters (Abbeel et al. 2005), or Markov random fields (Anguelov
et al. 2005).

3.3.1. Maximum Likelihood (ML) Estimation

As can be seen in (4), given labeled training data (x, y), the
conditional likelihood p(y|x) only depends on the feature
weights wc. In the derivation of the learning algorithm it will
be convenient to re-write (4) as

p(y | x, w) = 1

Z(x)
exp

{∑
c∈C

wT

c
· fc(xc, yc)

}
(12)

= 1

Z(x, w)
exp

{
wT · f(x, y)

}
, (13)

where w and f are the vectors resulting from “stacking”
the weights and the feature functions for all cliques in the
CRF, respectively. In order to make the dependency on
w more explicit, we will write the conditional likelihood
from now on as p(y|x, w). A common parameter estimation
method is to search for the w that maximizes this likelihood,
or equivalently, that minimizes the negative log-likelihood,
− log p(y|x, w) (Lafferty et al. 2001; Taskar et al. 2002; Liao
et al. 2005c). To avoid overfitting, one typically imposes a
so-called shrinkage prior on the weights to keep them from
getting too large. More specifically, we define the objective
function to minimize as follows:

L(w) ≡ − log p(y | x, w) + wT w
2σ 2

(14)

= −wT · f(x, y) + log Z(x, w) + wT w
2σ 2

(15)

The rightmost term in (14) serves as a zero-mean, Gaussian
prior with variance σ 2 on each component of the weight vec-
tor. (15) follows directly from (14) and (13). While there is
no closed-form solution for maximizing (15), it can be shown
that (15) is convex relative to w. Thus, L has a global optimum
which can be found using numerical gradient algorithms. The
gradient of the objective function L(w) is given by

∇L(w) = −f(x, y) + ∇Z(x, w)

Z(x, w)
+ w

σ 2
(16)

= −f(x, y) +
∑

y′ exp{wT · f(x, y′)}f(x, y′)

Z(x, w)
+ w

σ 2

(17)

= −f(x, y) +
∑

y′
P(y′ | x, w)f(x, y′) + w

σ 2
(18)

= −f(x, y) + EP(y′ |x,w)[f(x, y′)] + w
σ 2

(19)
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where (17) follows from the definition of the partition func-
tion, Z(x, w) = ∑

y′ exp{wT · f(x, y′)}, (18) follows from the
definition of the conditional likelihood by putting Z(x, w)

inside the summation, and in (19), the second term is ex-
pressed as an expectation over the distribution P(y′ | x, w).
Therefore, the gradient is just the difference between the em-
pirical feature values f(x, y) and the expected feature values
EP(y′ |x,w)[f(x, y′)], plus a prior term. To compute the expecta-
tion over the feature values it is necessary to run inference in
the CRF using the current weights w. This can be done via
belief propagation as discussed in the previous section. Sha
and Pereira (2003) showed that straightforward gradient de-
scent often converges slowly during learning, but that modern
numerical optimization algorithms, such as conjugate gradi-
ent or quasi-Newton techniques (as used in our experiments),
can be much faster.

3.3.2. Maximum Pseudo-Likelihood (MPL) Estimation

Maximizing the likelihood requires running an inference pro-
cedure at each iteration of the optimization, which can be
very expensive. An alternative is to maximize the pseudo-
likelihood of the training data (Besag 1975), which is the fol-
lowing approximation to the conditional likelihood:

p(y | x, w) ≈
n∏

i=1

p(yi | MB(yi ), w) (20)

Here, MB(yi ) is the Markov blanket of variable yi , which con-
tains the immediate neighbors of yi in the CRF graph (note that
the value of each node is known during learning). Thus, the
pseudo-likelihood is the product of all the local likelihoods,
p(yi | MB(yi )). The pseudo-likelihood can be re-written as

n∏
i=1

p(yi | MB(yi ), w) =
n∏

i=1

1

Z(MB(yi ), w)
exp{wT · f(yi , MB(yi ))}, (21)

where f(yi, MB(yi )) is the local feature counts involving vari-
able yi , and Z(MB(yi ), w) = ∑

y′
i
exp{wT · f(y′

i
, MB(y′

i
))} is

the local normalizing function. Therefore, computing pseudo-
likelihood is much more efficient than computing likelihood
p(y|x, w), because pseudo-likelihood only requires comput-
ing local normalizing functions and avoids computing the
global partition function Z(x, w).

As with ML, in practice we minimize the negative log-
pseudo-likelihood and a shrinkage prior, and the objective
function becomes

PL(w) ≡ −
n∑

i=1

log p(yi | MB(yi ), w) + wT w
2σ 2

(22)

=
n∑

i=1

(−wT · f(yi , MB(yi ))

+ log Z(MB(yi ), w)) + wT w
2σ 2

(23)

Again, PL(w) is a convex function and it is possible to
use gradient-based algorithms to find the w that minimizes
PL(w). The gradient can be computed as

∇PL(w) =
n∑

i=1

(−f(yi , MB(yi ))

+E
P(y′

i
|MB(yi ),w)

[f(y′
i
, MB(yi ))]

)
+ w

σ 2
. (24)

As we can see, (24) can be expressed as the difference between
empirical feature values and expected feature values, similar
to (19). However, the key difference is that (24) can be eval-
uated very efficiently without running a complete inference
procedure. Learning by maximizing pseudo-likelihood has
been shown to perform very well in several domains (Kumar
and Herbert 2003; Richardson and Domingos 2004). In our
experiments we found that this type of learning is extremely
efficient and consistently achieves good results.

3.3.3. Parameter Sharing

The definition of the weight vector and its gradient described
above does not support parameter sharing, which requires
the learning algorithm to learn the same parameter values
(weights) for different cliques in the CRF. For instance, as
we will describe, the CRF in Section 4.1 only contains three
different weights, one for each type of feature (see eq. (26)).
Thus, the same weight wm is used for each clique containing
a street patch node st and a GPS reading node gt . Without
parameter sharing, a CRF would learn for each location/GPS
combination the weights that are best in classifying that spe-
cific location. However, we want to learn a generic model that
can take any GPS trace and classify the locations in that trace,
even if the trace is collected by a different person visiting very
different locations. Parameter sharing enforces learning such
kind of models since the parameters are independent of the
individual locations. Parameter sharing can be achieved by
making sure that all the weights belonging to a certain type of
feature are identical. As it turns out, the gradients with respect
to these shared weights are almost identical to the gradients
(19) and (24). The only difference lies in the fact that the
gradient for a shared weight is given by the sum of all the
gradients computed for the individual cliques in which this
weight occurs (Taskar et al. 2002; Liao et al. 2005c).
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Parameter sharing can be modeled conveniently using
probabilistic relational models such as relational Markov net-
works (Taskar et al 2002; Liao et al. 2005c). These techniques
allow the automatic specification and construction of CRF
models using so-called clique templates, which enable the
specification of parameter sharing for inference and learning.

4. Conditional Random Fields for Activity
Recognition

In this section, we will describe the application of CRFs to
activity recognition from location data. Specifically, we will
explain how we construct from raw GPS traces the CRFs that
encodes the hierarchical activity model, and how we simulta-
neously label all the types of activities and significant places.

4.1. GPS to Street Map Association

As mentioned above, we segment GPS traces by grouping
consecutive GPS readings based on their spatial relationship.
Without a street map, this segmentation can be performed by
simply combining all consecutive readings that are within a
certain distance from each other (10 m in our implementa-
tion). However, it might be desirable to associate GPS traces
to a street map, for example, in order to relate locations to
addresses in the map. Street maps are represented by directed
graphs, where a vertex typically is an intersection between
streets, and an edge usually represents a city block section of
a street and is associated with a direction either up or down
the street (Liao et al. 2004).

To jointly estimate the GPS to street association and the
trace segmentation, we associate each GPS measurement to
a 10 m patch on a street edge.1 As shown in Figure 5(a) in
Section 5, GPS traces can deviate significantly from the street
map, mostly because of measurement errors and inaccuracies
in street maps. One straightforward way to perform this asso-
ciation is to snap each GPS reading to the nearest street patch.
However, such an approach would clearly give wrong results
in situations such as the one shown in Figure 5(a). To gen-
erate a consistent association, we construct a CRF that takes
into account the spatial relationship between GPS readings.
The structure of this CRF is shown in Figure 2. The observed,
solid nodes correspond to GPS readings gt where the subscript
t indicates the index of time, and the white nodes represent
the street patches st , which correspond to the hidden state y in
Section 3. The values of each st range over the street patches in
the map that are within a certain distance of the GPS reading
gt . The lines in Figure 2 define the clique structure of the CRF.

1. In Liao et al. (2004) we showed how to perform such an association us-
ing Rao–Blackwellised particle filters with multiple Kalman filters moving
through the street graph. Since the focus of this work is on high level activities
and places rather than accurate tracking, we use this more straightforward
and efficient approach to trace segmentation.

We distinguish three types of cliques, for which potentials are
defined via the following feature functions:

• Measurement cliques (dark grey in Figure 2): GPS
noise and map uncertainty are considered by cliques
whose features measure the squared distance between
a GPS measurement and the center of the patch it is
associated with:

fmeas(gt , st ) = ||gt − st ||2

σ 2

where gt is the location of the t th GPS reading. With
slight abuse of notation, we denote by st the center of
one of the street patches in the vicinity of gt . σ is used
to control the scale of the distance (note that this fea-
ture function corresponds to a Gaussian noise model
for GPS measurements). Obviously, when combined
with a negative weight, this feature prefers associations
in which GPS readings are snapped to nearby patches.
The feature fmeas is used for the potential of all cliques
connecting GPS readings and their street patches.

• Consistency cliques (light grey in Figure 2): Temporal
consistency is ensured by four node cliques that com-
pare the spatial relationship between consecutive GPS
readings and the spatial relationship between their as-
sociated patches. The more similar these relationships,
the more consistent the association. This comparison is
done via a feature function that compares the vectors
between GPS readings and associated patches:

fcons(gt , gt+1, st , st+1) =
||(gt+1 − gt) − (st+1 − st )||2

σ 2

Here, st and st+1 are the centers of street patches asso-
ciated at two consecutive times.

• Smoothness cliques (medium grey in Figure 2): These
cliques prefer traces that do not switch frequently be-
tween different streets. For instance, it is very unlikely
that a person drives down a street and switches for
two seconds to another street at an intersection. To
model this information, we use binary features that test
whether consecutive patches are on the same street, on
neighboring streets, or in the same direction. For exam-
ple, the following binary feature examines if both street
blocks and directions are identical:

fsmooth(st , st+1) = δ(st .street, st+1.street)

· δ(st .direction, st+1.direction) (25)

where δ(u, v) is the indicator function which equals 1
if u = v and 0 otherwise.
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Fig. 2. CRF for associating GPS measurements to street patches. The shaded areas indicate different types of cliques.

During inference, the CRF uses these features to estimate
distributions over the association between the GPS trace and
street patches. Using the feature functions defined above, this
conditional distribution can be written as

p(s|g) = 1

Z(x)
exp

{
T∑

t=1

wm ·fmeas(gt , st )

+
T −1∑
t=1

(wc ·fcons(gt , gt+1, st , st+1)

+ws ·fsmooth(st , st+1))

}
, (26)

where wm, wc and ws are the corresponding feature function
weights. The reader may notice that the weights and feature
functions are independent of the time index, and this indepen-
dence is achieved using parameter sharing discussed in Sec-
tion 3.3.3. Figure 5(a) illustrates the maximum a posteriori
association of a GPS trace to a map. Intuitively, this sequence
corresponds to the MAP sequence that results from tracking a
person’s location on the discretized street map. Such an asso-
ciation also provides a unique segmentation of the GPS trace.
This is done by combining consecutive GPS readings that are
associated to the same street patch.

4.2. Inferring Activities and Types of Significant Places

Once a GPS trace is segmented, our system estimates the ac-
tivity performed at each segment and a person’s significant
places. To do so, it generates a new CRF that contains a hid-
den activity node for every segment extracted from the GPS
trace. This CRF consists of the two lower levels of the one
shown in Figure 3. Each activity node is connected to various
features, summarizing information resulting from the GPS
segmentation. These features include:

• Temporal information such as time of day, day of week,
and duration of the stay. These measures are discretized
in order to allow more flexible feature functions. For

example, time of day can be Morning, Noon, After-
noon, Evening, or Night. The feature functions for the
cliques connecting each activity node to one of the solid
nodes in the CRF shown in Figure 3 are binary indi-
cator functions, one for each possible combination of
temporal feature and activity. For instance, the follow-
ing function returns 1 if the activity is work and the
time of day is morning, and 0 otherwise: f(ai, di) =
δ(ai, Work) · δ(di, Morning).

• Average speed through a segment, which is important
for discriminating different transportation modes. The
speed value is also discretized and indicator features are
used, just as with temporal information. This discretiza-
tion has the advantage over a linear feature function that
it is straightforward to model multi-modal velocity dis-
tributions.

• Information extracted from geographic databases, such
as whether a patch is on a bus route, whether it is close to
a bus stop, and whether it is near a restaurant or grocery
store. Again, we use indicator features to incorporate
this information.

• Additionally, each activity node is connected to its
neighbors. These features measure compatibility be-
tween types of activities at neighboring nodes in the
trace. For instance, it is extremely unlikely that a person
will get on the bus at one location and drive a car at the
neighboring location right afterwards. The correspond-
ing feature function is f(ai, ai+1) = δ(ai, OnBus) ·
δ(ai+1, Car), where ai and ai+1 are specific activities at
two consecutive activity nodes. The weight of this fea-
ture should be a negative value after supervised learn-
ing, thereby giving a labeling that contains this combi-
nation a lower probability.

Our model also aims to determine those places that play a
significant role in the activities of a person, such as home,
workplace, friend’s home, grocery stores, restaurants, and bus
stops. The nodes representing such significant places com-
prise the upper level of the CRF shown in Figure 3. However,
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Fig. 3. CRF for labeling activities and places. Activity nodes ai range over activities, and place nodes pi range over types of
places. Each activity node is connected to E observed local evidence nodes e1

i
to eE

i
. Local evidence comprises information

such as time of day, duration, and motion velocity. Place nodes are generated based on the activities inferred at the activity
level. Each place is connected to all activity nodes that are within a certain range.

since these places are not known a priori, we must addition-
ally detect a person’s significant places. To incorporate place
detection into our system, we use an iterative algorithm that
re-estimates activities and places. Before we describe this al-
gorithm, let us first look at the features that are used to de-
termine the types of significant places under the assumption
that the number and locations of these places are known. In
order to infer place types, we use the following features for
the cliques connected to the place nodes pi in the CRF:

• The activities that occur at a place strongly indicate the
type of the place. For example, at grocery stores peo-
ple mainly do shopping, and at a friend’s home people
either visit or pick up/drop off someone. Our features
consider the weekly frequency of the different activi-
ties occurring at a place. This is done by generating a
clique for each place that contains all activity nodes in
its vicinity. For example, the nodes p1, a1, and aN−2 in
Figure 3 form such a clique. The model then counts the
different activities occurring at each place. In our ex-
periments, we discretize the counts into four categories:
count = 0, count = 1, 2 ≤ count ≤ 3, and count ≥ 4.
Then for each combination of type of place, type of
activity, and frequency category, we have an indicator
feature.

• A person usually has only a limited number of different
homes or workplaces. To use this knowledge to im-
prove labeling places, we add two additional summa-
tion cliques that count the number of different homes
and workplaces. These counts provide soft constraints
that bias the system to generate interpretations that
result in reasonable numbers of different homes and
workplaces. The features are simply the counts, which
make the likelihood of labellings decrease exponen-
tially as the counts increase.

Note that the above two types of features can generate very
large cliques in the CRF. This is because we must build a
clique for all the activities at a place to count the frequen-
cies of activities, and connect all the place nodes to count
the number of homes or workplaces. Standard belief propa-
gation would be intractable for such cliques. Fortunately, it is
possible to convert cliques generated for summation features
to tree-structured CRFs. In such structures, BP inference can
be done in polynomial time, and for sum-product it is even
possible to apply the Fast Fourier Transform (FFT) to further
speed up message passing (see Liao et al. 2005b for details).

4.3. Place Detection and Labelling Algorithm

The CRF discussed so far assumes that the number and loca-
tions of a person’s significant places are known in advance.
Since these places are not known, however, it is necessary to
infer the structure of the hierarchical CRF. Table 1 summa-
rizes our algorithm for efficiently constructing this CRF. The
algorithm takes as input a GPS trace. In Step 3, this trace is seg-
mented into activity nodes ai . Each such node is characterized
by local evidence e

j

i , which is extracted from the GPS readings
associated to it. As discussed above, segmentation of a trace is
performed by either clustering consecutive GPS readings that
are nearby or associating the GPS trace to a discretized street
map using the CRF shown in Figure 2. The activity nodes
and their evidence are then used in Step 4 to generate a CRF
such as the one shown in Figure 3. However, since significant
places are not yet known at this stage, CRF0 contains no place
nodes. Maximum a posteriori inference is then performed in
this restricted CRF so as to determine the MAP activity se-
quence a∗

0 , which consists of a sequence of locations and the
activity performed at that location (Step 5). Within each iter-
ation of the loop starting at Step 6, such an activity sequence
is used to extract a set of significant places. This is done by
classifying individual activities in the sequence according to
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Table 1. Algorithm for Jointly Detecting Significant Places and Inferring Activities and
Types of Places

1. Input: GPS trace 〈g1, g2, . . . , gT 〉
2. i := 0

3. // Generate activity segments and local evidence by grouping consecutive GPS readings(
〈a1, . . . , aN 〉, 〈e1

1, . . . , eE
1 , . . . , e1

N
, . . . , eE

N
〉
)

:= spatial_segmentation(〈g1, g2, . . . , gT 〉)
4. // Generate CRF containing activity and local evidence nodes (lower two levels in Figure 3)

CRF0 := instantiate_crf
(
〈 〉, 〈a1, . . . , aN 〉, 〈e1

1, . . . , eE
1 , . . . , e1

N
, . . . , eE

N
〉
)

5. // Determine MAP sequence of activities
a∗

0 := MAP_inference( CRF0)

6. do

7. i := i + 1

8. // Generate places by clustering significant activities
〈p1, . . . , pK 〉i := generate_places(a∗

i−1)

9. // Generate complete CRF with instantiated places

CRFi := instantiate_crf
(
〈p1, . . . , pK 〉i , 〈a1, . . . , aN 〉, 〈e1

1, . . . , eE
1 , . . . , e1

N
, . . . , eE

N
〉
)

10. // Perform MAP inference in complete CRF
〈a∗

i , p∗
i 〉 := MAP_inference( CRFi )

11. until a∗
i = a∗

i−1

12. return 〈a∗
i , p∗

i 〉

whether or not they belong to a significant place. For instance,
while walking, driving a car, or riding a bus is not associated
with significant places, working or getting on or off the bus
indicates a significant place. All instances at which a signif-
icant activity occurs generate a place node. Because a place
can be visited multiple times within a sequence, we perform
spatial clustering and merge duplicate places into the same
place node. This classification and clustering is performed
by the algorithm generate_places(), which returns a set of K

place nodes pj in Step 8. These places, along with the activity
nodes ai and their local evidence e

j

i are used to generate a
complete CRF. Step 10 performs MAP estimation in this new
CRF. Since this CRF has a different structure than the initial
CRF0, it might generate a different MAP activity sequence.
If this is the case, then the algorithm returns to Step 6 and
re-generates the set of places using this improved activity se-
quence. This process is repeated until the activity sequence
does not change, which is tested in Step 11. Finally, the al-
gorithm returns the MAP activity sequence along with the set
of places and their MAP types. In our experiments we ob-
served that this algorithm converges very quickly, typically
after three or four iterations.

Our experiments show that this algorithm is extremely effi-
cient and robust. We are currently investigating an alternative
approach that performs a search through the space of CRF

structures by replacing the MAP sequences generated in Steps
5 and 10 by multiple sequences generated from the posterior.
This can be done via MCMC sampling (Gilks et al. 1996)
or k-best algorithms for graphical models (Yanova and Weiss
2003). Each sample would correspond to a CRF structure,
which can then be evaluated according to the data likelihood.

5. Experimental Results

In our experiments we evaluate how well our system can ex-
tract and label a person’s activities and significant places.
Furthermore, we demonstrate that it is feasible to learn mod-
els from data collected by a set of people and to apply this
model to another person. That is, our system can recognize a
person’s activities without requiring any manual labeling of
that person’s data.

Specifically, we collected GPS data traces from four differ-
ent persons, approximately seven days of data per person. The
data from each person consisted of roughly 40,000 GPS mea-
surements, resulting in about 10,000 segments.We then manu-
ally labeled all activities and significant places in these traces.2

We used leave-one-out cross-validation for evaluation, that is,

2. Even though we performed the manual labeling as thoroughly as possible,
we might have “missed” some significant places and activities. This might
result in a slightly lower false negative rate in our experiments.
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learning was performed based on the data collected by three
persons and the learned model was evaluated on the fourth
person. We used maximum pseudo-likelihood for learning,
which took (on a 1.5 GHz PC) about one minute to converge
on the training data. Pseudo-likelihood converged in all our
experiments. We did not use maximum likelihood for learn-
ing since it did not always converge (even after several hours).
This is most likely due to the fact that the approximation of
the loopy BP inference is not good enough to provide accurate
gradients for learning. However, we successfully used loopy
BP as inference approach in all our evaluation runs. For each
evaluation, we used the algorithm described in Table 1, which
typically extracted the MAP activities and places from one
week’s trace within one minute of computation. When a street
map was used, the association between GPS trace and street
map performed in Step 3 of the algorithm took an additional
four minutes (see also Section 4.1).

5.1. Example Analysis

The different steps involved in the analysis of a GPS trace
are illustrated in Figure 4. The second panel (b) shows the
GPS trace snapped to 10 m patches on the street map. This
association is performed by Step 3 of the algorithm given in
Table 1, using the CRF discussed in Section 4.1. The visited
patches, along with local information such as time of day or
duration, are used to generate the activity CRF. This is done
by Step 4 in Table 1, generating the activity level of Figure 3.
MAP inference in this CRF determines one activity for each
patch visit, as shown in panel (c) of Figure 4 (Step 5 of the
algorithm). Note that this example analysis misses the get-
off-bus activity at the left end of the bus trip. The significant
activities in the MAP sequence are clustered and generate ad-
ditional place nodes in a new CRF (Steps 8 and 9 in Table 1).
MAP inference in this CRF provides labels for the detected
places, as shown in Figure 4(d). The algorithm repeats gener-
ation of the CRFs until the MAP activity sequence does not
change any more. In all experiments, this happens within the
first four iterations of the algorithm.

Figure 5(a) provides another example of the quality
achieved by our approach to snapping GPS traces to street
maps. Note how the complete trace is snapped consistently to
the street map. Table 2 shows a typical summary of a person’s
day provided by the MAP sequence of activities and visited
places. Note that the system determines where the significant
places are, how the person moves between them, and what
role the different places play for this person.

5.2. Extracting Significant Places

In this experiment we compare our system’s ability to detect
significant places to the results achieved with a widely-used
approach that applies a time threshold to determine whether
or not a location is significant (Ashbrook and Starner 2003;

Hariharan and Toyama 2004; Liao et al. 2004,2005c,Gogate
et al. 2005). Our approach was trained on data collected by
three people and tested on the fourth person. For the threshold
method, we generated results for different thresholds from 1
minute to 10 minutes. The data contained 51 different signif-
icant places. Figure 5(b) shows the false positive and false
negative rates achieved with the two approaches. As can seen,
our approach clearly outperforms the threshold method. Any
fixed threshold is not satisfactory: low thresholds have many
false negatives, and high thresholds result in many false pos-
itives. In contrast, our model performs much better: it only
generates 4 false positives and 3 false negatives.

5.3. Labeling Places and Activities using Models Learned
from Others

Table 3 through Table 5 summarize the results achieved with
our system on the cross-validation data. Table 3 shows ac-
tivity estimation results on the significant activities only. An
instance was considered a false positive (FP) if a significant
activity was detected when none occurred, and was consid-
ered false negative (FN) if a significant activity occurred but
was labeled as non-significant such as walking. The results
are given for models with and without taking the detected
places into account. More specifically, without places are re-
sults achieved by CRF0 generated by Step 5 of the algorithm
in Table 1, and results with places are those achieved after
model convergence. When the results of both approaches are
identical, only one number is given; otherwise, the first num-
ber gives results achieved with the complete model. The table
shows two main results. First, the accuracy of our approach is
quite high, especially when considering that the system was
evaluated on only one week of data and was trained on only
three weeks of data collected by different persons. Second,
performing joint inference over activities and places increases
the quality of inference. The reason for this is that a place node
connects all the activities occurring in its spatial area so that
these activities can be labeled in a more consistent way.

These results were generated when taking a street map into
account. We also performed an analysis of the system without
using the street map. In this case, the GPS trace was seg-
mented into 10 m segments solely based on the raw GPS val-
ues. We found that the results achieved without the street map
were consistently almost identical to those achieved when a
street map is available. Table 4 provides the activity inference
accuracy of the different evaluations. Again, we only show
significant activities, the system achieves above 90% accu-
racy for navigation activities such as car, walk, or bus. The
first two rows provide the accuracy values for the confusion
matrix shown in Table 3. The last row shows the values when
no street map is available (note that the number of activities
is slightly different, since the GPS trace is segmented dif-
ferently). As can be seen, our approach achieves above 85%
accuracy in estimating significant activities, both with and
without a street map.
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(a)

(b)

(c)
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Fig. 4. Illustration of inference on part of a GPS trace, which visited this 4 km x 2 km area several times. (a) The raw GPS
data has substantial variability due to sensor noise. (b) GPS trace snapped to 10 m street patches, multiple visits to the same
patch are plotted on top of each other. (c) Activities estimated for each patch. (d) Places generated by clustering significant
activities, followed by a determination of place types.
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Table 2. Summary of a Typical Day Based on the Inference Results

Time Activity and transportation

8:15am - 8:34am Drive from home1 to parking lot2, walk to workplace1;
8:34am - 5:44pm Work at workplace1;
5:44pm - 6:54pm Walk from workplace1 to parking lot2, drive to friend3’s place;
6:54pm - 6:56pm Pick up/drop off at friend3’s place;
6:56pm - 7:15pm Drive from friend3’s place to other place2;
7:15pm - 9:01pm Other activity at other place2;
9:01pm - 9:20pm Drive from other place2 to friend1’s place;
9:20pm - 9:21pm Pick up/drop off at friend1’s place;
9:21pm - 9:50pm Drive from friend1’s place to home1;
9:50pm - 8:22am Sleep at home1.
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Fig. 5. (a) GPS trace (gray circles) and the associated grid cells (black circles) on the street map (lines). (b) Accuracy of
extracting significant places.

Table 3. Activity Confusion Matrix of Cross-Validation Data With (Left Values) and Without
(Right Values) Considering Places for Activity Inference

Inferred labels
Truth Work Sleep Leisure Visit Pickup On/off car Other FN

Work 12 / 11 0 0 / 1 0 0 0 1 0
Sleep 0 21 1 2 0 0 0 0

Leisure 2 0 20 / 17 1 / 4 0 0 3 0
Visiting 0 0 0 / 2 7 / 5 0 0 2 0
Pickup 0 0 0 0 1 0 0 2

On/Off car 0 0 0 0 1 13 / 12 0 2 / 3
Other 0 0 0 0 0 0 37 1

FP 0 0 0 0 2 2 3 -

Table 4. Performance of Activity Estimation Using Different Variants of Our Approach

Experiment No. of activities Correctly labeled FP FN

Activities and places, with street map 129 111 (86.0 %) 7 5
Activities only, with street map 129 104 (80.6 %) 7 6

Activities and places, without street map 135 115 (85.2 %) 7 5
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Table 5. Place Confusion Matrix

Inferred labels
Truth Work Home Friend Parking Other FN

Work 5 0 0 0 0 0
Home 0 4 0 0 0 0
Friend 0 0 3 0 2 0
Parking 0 0 0 8 0 2
Other 0 0 0 0 28 1

FP 0 0 1 1 2 -

Finally, the confusion matrix shown in Table 5 summa-
rizes the results achieved on detecting and labeling significant
places. As can be seen, the approach commits zero errors in
labeling the home and work locations of the persons used for
testing. The overall accuracy in place detection and labeling
is 90.6%. The place detection results were identical with and
without using a street map.

6. Conclusions

We provide a novel approach to performing location-based
activity recognition. In contrast to existing techniques, our
approach uses one consistent framework for both low-level
inference and the extraction of a person’s significant places.
This is done by iteratively constructing a hierarchical condi-
tional random field, where the upper level is generated based
on MAP inference on the lower level. Once a complete model
is constructed, we perform joint inference in the complete
CRF. Discriminative learning using pseudo-likelihood and in-
ference using loopy belief propagation can be performed ex-
tremely efficiently in our model: The analysis of a GPS trace
collected over a week takes approximately one minute on a
standard desktop PC.

Our experiments based on traces of GPS data show that our
system significantly outperforms existing approaches. In ad-
dition to being able to learn a person’s significant locations, it
can infer low-level activities such as walking, working, or get-
ting into a bus. We demonstrate that the model can be trained
from a group of persons and then applied successfully to a
different person, achieving more than 85% accuracy in de-
termining low-level activities and above 90% accuracy in de-
tecting and labeling significant places. Our model achieves
virtually identical accuracy both with and without a street
map. The output of our system can also be used to generate
textual summaries of a person’s daily activities.

The system described here opens up various research direc-
tions. For instance, our algorithm constructs the hierarchical
CRF using MAP estimation. We are currently investigating

a technique that generates multiple models using an MCMC
or a k-best approach. The different models can then be eval-
uated based on their overall data likelihood. We expect this
more flexible model searching approach to generate better
results especially with more complex models. We are cur-
rently adding more types of sensors to our model, including
data collected by a wearable multi-sensor board (Lester et al.
2005; Raj et al. 2006). This sensor device collects measure-
ments such as 3-axis acceleration, audio signals, barometric
pressure, and light. Using the additional information provided
by these sensors, we will be able to perform extremely fine-
grained activity recognition.
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