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Abstract Nowadays, research on Intelligent Transportation System (ITS) has received
many attentions due to its broad applications, such as path planning, which has become a
common activity in our daily life. Besides, with the advances of Web 2.0 technologies, users
are willing to share their trajectories, thus providing good resources for ITS applications.
To the best of our knowledge, there is no study on the fastest path planning with multiple
destinations in the literature. In this paper, we develop a novel framework, called Trajec-
tory-based Path Finding (TPF), which is built upon a novel algorithm named Mining-based
Algorithm for Travel time Evaluation (MATE) for evaluating the travel time of a navigation
path and a novel index structure named Efficient Navigation Path Search Tree (ENS-Tree) for
efficiently retrieving the fastest path. With MATE and ENS-tree, an efficient fastest path find-
ing algorithm for single destination is derived. To find the path for multiple destinations, we
propose a novel strategy named Cluster-Based Approximation Strategy (CBAS), to determine
the fastest visiting order from specified multiple destinations. Through a comprehensive set
of experiments, we evaluate the proposed techniques employed in the design of TPF and
show that MATE, ENS-tree and CBAS produce excellent performance under various system
conditions.

Keywords Data mining · Intelligent transportation system · Trajectory · Path planning

1 Introduction

In recent years, research on Intelligent Transportation System (ITS) has received a lot
of attention due to its broad application base in our life. With the popularity of Global
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Positioning System (GPS)- based navigation devices, many applications have been
developed on GPS-based mobile devices [14], including GPS navigation systems, real-time
traffic information, park search systems, weather reports, and other location-based services
[19]. While many interesting and useful GPS-related applications and services are expected
to come to our life in the near future, path/route planning has become a common activity in
daily use of the GPS devices and thus deserves more research efforts.

Owing to the rapid advances of the Web 2.0 technology, many GPS device users are
willing to share their trajectories with others. For example, in [28,33,38,43,44], the authors
discuss how to collect and analyze user trajectories from GPS devices in road networks. From
the collected trajectories, advanced location-based services can be developed. For instance,
user behavior mined from the dataset under different context and locations can be taken
into account in development of context- and location-aware applications. Moreover, frequent
trajectory patterns discovered from the collected trajectory database can benefit many ITS
applications, e.g., traffic monitoring and control, traffic flow prediction, navigational path
planning and routing, etc.

In the above applications, mobile user trajectories are usually constrained by the road
network, which is composed of multiple edges (road segments) and nodes (intersections).
When mobile users move, their locations, positioned by their GPS devices, are uploaded and
stored in a centralized GPS trajectory database. In this database, a trajectory is composed
of a series of (time, location) tuples which denote a particular user trajectory, e.g., (08:00,
locationA), (08:10, locationB), . . ., and (17:00, locationZ), where locationA, locationB, and
locationZ are coordinates (latitudes and longitudes) of those locations.

The GPS trajectory database is valuable to many ITS applications since the huge amount
of trajectory data available from the users can best capture the traffic situations on the road
segments. For example, RAB is a road segment from intersection A to intersection B in the
city center. We can observe that most of users take a long time to move from A to B between
commuting hours (e.g., from 07:00AM to 08:00AM) by analyzing the GPS trajectory data-
base. Hence, a navigation path that avoids RAB may be faster than other routes that take RAB

during commuting hours. In this paper, we adopt data mining techniques to exploit valuable
traffic information in large and complex trajectory database for path planning.

A number of studies have discussed the issues of navigation path planning in the road
network environment. These planning strategies include the shortest travel distance path
[15,29,35], the least free-flow time path [6], the popular path [10], and the fastest travel
time path [4–6,11,18,25,34]. In these path planning studies, the planning are mostly based
on various static cost estimates of road segment, e.g., distance or maximum velocity con-
straint, etc. However, the traffic condition varies at different time. Deriving a time-varied
traffic model for conventional path planning techniques is very challenging and costly. Due
to the availability of trajectories enable by Web 2.0 technology, a new idea to address the
path planning problem is to employ trajectory mining techniques to capture variable traffic
conditions in finding the fastest paths. In this paper, we present our approach for supporting
path planning with multiple destinations. To the best of our knowledge, there is no prior study
on the fastest path planning with multiple destinations based on trajectory mining techniques
appeared in the literature.

In this paper, we develop a new system framework, called Trajectory-based Path Find-
ing (TPF), based on a data mining approach for finding the fastest navigation path with
multiple destinations. TPF is built upon a novel data mining algorithm, namely Mining-based
Algorithm for Travel time Evaluation (MATE), which estimates the travel time of a navigation
path and a novel index structure, called Efficient Navigation Path Search Tree (ENS-Tree),
for efficient retrieval of the fastest navigation path. With MATE and ENS-tree, an efficient
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fastest path finding algorithm for single destination is derived. To find the fastest path with
multiple destinations in TPF, we propose a novel strategy, namely Cluster-Based Approxi-
mation Strategy (CBAS), to find the fastest visiting order for specified destinations.

Our contributions in this research study are five-fold:

1. We propose the TPF framework, a new approach for path planning. The problems and
ideas in TPF have not been well explored in the research community.

2. We propose the MATE algorithm, a new technique for automatic capturing the traffic
conditions in GPS trajectory database. MATE addresses the missing data problem by
interpolation based on time segmentation.

3. We propose the ENS-Tree structure to significantly alleviate the computation cost and
memory overhead in the retrieval of the fastest navigation path.

4. We propose the CBAS approach for efficient and effective discovery of the fastest visiting
order for specified destinations.

5. Through a comprehensive empirical evaluation and sensitivity analysis, we show that
MATE, ENS-tree and CBAS produce excellent performance under various system con-
ditions.

The remaining of this paper is organized as follows. We briefly review the related work in
Sect. 2. We first describe the problem in Sect. 3 and then present the proposed CBAS strategy
in Sect. 4. We report the result of empirical performance evaluation in Sect. 5. Finally, we
conclude the paper and discuss the future work in Sect. 6.

2 Related work

In this section, we review previous studies, which can be classified into four aspects: (1) the
shortest path planning, (2) the fastest path planning, (3) traveling salesman problem, and (4)
data mining.

Most prior studies on navigation path discovery address the shortest path related prob-
lems. Dijkstra proposed an algorithm [13] to find the shortest distance path between two
nodes. The basic idea of Dijkstra’s algorithm is to consider the corresponding cost of each
neighboring node from the start node and choose the one with the least cost to expand.
The process is repeated recursively until the destination node is reached. Hart et al. pro-
posed the A* algorithm [22], which is a greedy best-first search algorithm. A* algorithm
uses a heuristic function to guide the search from the start location toward the destination
location. The heuristic function is divided into two functions: the path-cost function and
the heuristic estimate function. The path-cost function is the real cost from start location
to an intermediate location under examination, and the heuristic estimate function is the
estimation cost from examined intermediate location to the destination location. While the
efficiency of the search algorithm can be improved, the algorithm may fail to find the shortest
path. Lim et al. proposed a link-based shortest path algorithm [30] to generate dissimilar
paths for the travel information in real road network where exists turn prohibitions. The
authors observed that heavy traffic may concentrate on some specific paths, which may lead
to traffic oversaturation. Therefore, the authors used an overlap degree function to exclude
the overlapping alternatives. However, due to the dynamic traffic of the road network, the
shortest path is not necessarily the fastest one. In [6], Bekhor et al. evaluated a number
of path generation strategies that include the least distance path, the least free-flow time
path, and the least time path. The difference between various strategies is to plan naviga-
tion paths using different edge costs, e.g., the edge cost of the least distance path is the
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distance; the edge cost of the least free-flow time path is the distance divided by the max-
imum velocity constraint; and the edge cost of the least time path is the estimated travel
time.

The fastest path problem, an extension of the shortest path problem, changes the edge
costs from the road distance to incorporate time-related factors, including the travel time,
the maximal velocity constraint, and so on. In [4], Awasthi et al. proposed a rule-based
method for evaluating the fastest paths on urban networks. This paper used the traffic log
to build the statistical model for deciding the predictive fastest path. However, the model
does not consider the starting time. In other words, the fastest paths at different starting
time points may be different. In [25], Kanoulas et al. proposed the traffic speed pattern
named CAtegorized PiecewisE COnstant speeD (CapeCod) pattern to represent the velocity
of vehicle at different time points. This paper used A* algorithm to find the fastest path,
which considers the different starting time points. In [18], Gonzalez et al. considered some
environmental factors that may reflect the velocity influence of vehicle and use these factors
to build a decision tree. The velocity of vehicle is evaluated based on the current environ-
mental situations captured the decision tree. In [32], Vint et al. proposed the online learning
solutions for freeway travel time prediction. In [24], Jula et al. proposed the method to
predict travel times along the routes and estimate arrival times at the nodes of a stochastic
and dynamic network in real time. In [34], Lu et al. proposed a mining-based algorithm
PATE to predict the estimated travel time. This paper used the travel time evaluation table
to find the shortest path within a user-specified travel time constraint. In addition, a prefix-
tree-based structure, called NPST, was proposed to efficiently find the shortest navigation
path. However, all of the researches were focused on the path-finding problem with single
destination.

The Travelling Salesman Problem (TSP) [23] is one of the well-known problems in the
field of the combinatorial optimization. In TSP, let C = {c1, c2, . . . , cN } be a set of cities
and d(ci , c j ) be the distance of distinct cities {ci , c j }. The goal is to find an ordering π of
the cities, which minimizes the quantity �i=1 to N−1 d(cπ(i), cπ(i+1)) + d(cπ(N ), cπ(1)). The
complexity of TSP is O(N !), where N is the number of locations. Therefore, it is NP-hard
[17] and therefore a brute force algorithm for finding optimal combinations has a worst-case
running time that grows faster than any polynomial time complexity. Arora proposed polyno-
mial time approximation schemes for Euclidean traveling salesman problem [3]. A number
of researches look for heuristics that find near-optimal combinations with low time over-
head. The heuristic approaches to the TSP can be divided into two classes. (1) Construction
Heuristic Methods: Such heuristics build a solution by a growth process that terminates as
soon as a feasible solution is constructed. In [37], Rosenkrantz et al. proposed that the most
natural Greedy-based heuristic for TSP is the Nearest Neighbor algorithm (NN). In this algo-
rithm, the traveler always goes the nearest unvisited location. (2) Improvement Heuristic
Methods: Such algorithm is specified in terms of a class of operations that can be used to
convert one combination into another. In [36], Pepper et al. proposed a heuristic-based algo-
rithm to solve the TSP based on simulated annealing. In [39], Tsai et al. proposed a genetic
and evolutionary algorithm to solve the TSP. However, the computation cost of these methods
is too high to apply to the real- time navigation systems. Every TSP heuristic method can be
evaluated in terms of two key parameters: its running time and the quality of the combinations
which it produces [16].

In recent years, a number of studies use data mining techniques to discover useful pat-
terns from transaction database [1,2] and WWW [8,9]. In [1], Agrawal et al. proposed the
Apriori algorithm to efficiently discover the association patterns in the transaction database.
In [2], Agrawal et al. proposed the AprioriAll algorithm to mine the sequential patterns in
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the transaction database. In [8], Borges et al. proposed navigation pattern mining from web
navigation database to find a series of consecutive patterns which satisfy the user-specified
minimal support threshold. The algorithm is divided into three parts: (1) maximal forward
references, (2) large reference sequences, and (3) maximal reference sequences. The naviga-
tion pattern is defined as the consecutive and acyclic pattern. In [10], Cheong et al. proposed
techniques for popular path mining from navigation log to discover the consecutive pat-
terns which satisfy a minimal frequency threshold. In the data clustering techniques, the
most well-known clustering method is the k-Means algorithm [27], which is partition-based.
Other partition-based methods contain k-medoids [27], PAM [27] etc. These methods par-
tition the dataset into k clusters, based on similarities between data items, where k is a
parameter specified by the user. In [12], Denton et al. proposed pattern-based clustering
approach. In [7], Ben-Dor et al. proposed a novel and simple clustering heuristic, called
the Cluster Affinity Search Technique (CAST). The CAST requires an affinity threshold
t , where 0 < t < 1. The algorithm guarantees that the average similarity in each gener-
ated cluster is higher than the threshold t . Tseng and Kao proposed a novel non-parameter
clustering method, called the Smart Cluster Affinity Search Technique (Smart-CAST) [42].
The main ideas of the Smart-CAST are as follows. First, the method uses the CAST as the
basic clustering method. Second, the method uses a quality validation method, Hubert’s �

(gamma) statistic [40], to find the best clustering result. Furthermore, the method reduces
computations by eliminating unnecessary executions of clustering and by narrowing down
the range of the parameter affinity threshold t . In time segmentation researches, Halvey pro-
posed a notion of time segmentation [20] where time segments are predefined by the user.
For example, all of the days are divided into workdays and holidays. However, the defini-
tion of time segments is difficult. In [21], Halvey proposed an average time segmentation
method. The method needs the average value of series v and a user-specified range r . The
time segmenting positions are obtained by r +v and r −v. However, the user-specified range
r is still difficult to define. In [31], Lin proposed the Symbolic Aggregate Approximation
(SAX) for labeling the time series. SAX is the first symbolic representation for time series,
which allows for dimensionality reduction and indexing with a lower-bounding distance
measure.

3 Problem statement

In this section, we first define some terms used in discussion of our research work and
then specify our research goal. Table 1 summarizes the notations used in the paper.
Let s = 〈(t1, l1), (t2, l2), . . . , (tm, lm)〉 be a GPS trajectory sequence of a mobile user with
length equal to m, where (ti , li ) denotes that the mobile user is at the location li (latitude
and longitude) at time point ti and ti < ti+1,∀1 ≤ i ≤ m. The elements in a sequence
are in ascending order of the time. By stripping off the timestamps, the corresponding GPS
trajectory path of s is ptra = 〈l1, l2, . . . , lm〉.
Definition 1 Let p = 〈n1, n2, . . . , nu〉 be a navigation path generated from ptra = 〈l1,
l2, . . . , lm〉, u ≤ m. For each l in ptra, l can be transferred to p if l is very close to any
node (road intersection) in the road network, where ni denotes the node and ni and ni+1 are
connected, ∀1 ≤ i ≤ u.

Definition 2 A navigation path p′ = 〈n′
1, n′

2, . . . , n′
v〉 is a sub-path of another navigation

path p = 〈n1, n2, . . . , nu〉, denoted as p′ ⊂ p, if v ≤ u and there exists a strictly and
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Table 1 Notation table Notation Description

t, ts, te Time point

l Location

s GPS trajectory sequence

Ptra GPS trajectory path

D GPS trajectory database

n, d Node, destination node (road intersection)

p Navigation path

δ Support threshold

t t Estimative travel time

r Travel time sequence

T Travel time table

Q D A set of query destination nodes

consecutively increasing sequence (k1, k2, . . . , kv), where ki+1 = ki + 1,∀1 ≤ i ≤ v − 1,
such that for all j = 1, 2, . . . , v, n′

j = nk j . Here, p is called the super-path of p′. For
example, let p1 = 〈A, B, C, D〉 and p2 = 〈B, C〉 be two navigation paths, p2 is a sub-path
of p1 (denoted as p2 ⊂ p1).

Definition 3 Given a GPS trajectory database D = {s1, s2, . . . , sz} that contains z GPS
trajectory sequences and the corresponding navigation paths of D is P = {p1, p2, . . . , pz},
the support (sup) of the GPS navigation path p sup(p) is defined as (1).

sup(p) = |{pi ∈ P|p ⊂ pi , 1 ≤ i ≤ z}|
z

(1)

Definition 4 A navigation path p = 〈n1, n2, . . . , nu〉 is called a frequent navigation path if
sup(p) is greater than or equal to a specified support threshold δ.

Definition 5 A navigation path p = 〈n1, n2, . . . , nu〉 is called a popular navigation path if
p is a frequent navigation path and there is no frequent navigation path p′ such that p ⊂ p′.
For example, let p1 = 〈A, B, C, D〉 and p2 = 〈B, C〉 be two frequent navigation paths, p1

is a popular navigation path but p2 is not, since p2 ⊂ p1.

Definition 6 Let [ts, te] be a time segment during the time period from time point ts to te.

Definition 7 Let r = 〈ns → nd , [ts1, te1] : t t1, [ts2, te2] : t t2, . . ., [tsw, tew] : t tw〉 be a
travel time sequence of a road segment with length equal to w, where ns → nd indicates
the road segment from node ns to nd and [tsi , tei ] : t ti indicates the estimative travel time
during the starting time segment [tsi , tei ],∀1 ≤ i ≤ w. Besides, tei = tsi+1 − 1,∀1 ≤ i ≤
w − 1. For example, let r1 = 〈A → B, [0, 5] : 7, [6, 30] : 10, [31, 100] : 9〉 be a travel
time sequence of a road segment from node A to B. r1 contains three time segments, i.e.,
[0, 5], [6, 30], and [31, 100], and the corresponding estimative travel time are 7, 10, and 9,
respectively.

Definition 8 Let T = {r1, r2, . . . , rx } be a travel time table of all road segments that contains
x travel time sequences.

Definition 9 Let 〈n′
s, n′

d , t ′s〉 be a road segment, which is directly connected from node n′
s to

n′
d and the starting time point at node n′

s is t ′s . The estimative travel time (ett) of 〈n′
s, n′

d , t ′s〉, to
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be extracted from the travel time table T , is defined as (2), where r∗ indicates the travel time
sequence whose road segment is from node n′

s to n′
d . For example, let r1 = 〈A → B, [0, 5] :

7, [6, 30] : 10, [31, 100] : 9〉 be a travel time sequence. ett(A, B, 25, T ) = 10, since the
starting time point 25 is between the second time segment, i.e., [6, 30], the corresponding
estimative travel time is 10.

ett
(
n′

s, n′
d , t ′s, T

) = r∗ · t ti
where r∗ · ns = n′

s, r∗ · nd = n′
d , r∗ · tsi ≤ t ′s ≤ r∗ · tei , and r∗ ∈ T

(2)

Definition 10 Let p = 〈n1, n2, . . . , nu〉 be a navigation path produced by navigation sys-
tems with length equal to u and the starting time point at node n1 is ts , the estimative travel
time (ETT) of navigation path p from the travel time table T is defined a recursive function
as (3).

ETT (p, ts , T ) = ETT
(

p′, ts, T
) + ett

(
nu−1, nu, ETT

(
p′, ts, T

) + ts, T
)

where p′ = p − 〈nu〉 and ETT (〈l1〉, ts, T ) = 0 (3)

For example, let p = 〈A, B, C〉 be a navigation path and the starting time point at A is 25.
ETT(〈A, B, C〉, 25, T ) = ETT(〈A, B〉, 25, T ) + ett(B, C, ETT(〈A, B〉, 25, T ) + 25, T ),
in which ETT(〈A, B〉, 25, T ) = ETT(〈A〉, 25, T ) + ett(A, B, ETT(〈A〉, 25, T ) + 25, T ),
where ETT(〈A〉, 25, T ) = 0, hence ETT(〈A, B〉, 25, T ) = ett(A, B, 25, T ). Finally,
ETT(〈A, B, C〉, 25, T ) = ett(A, B, 25, T ) + ett(B, C, ett(A, B, 25, T ) + 25, T ).

Definition 11 A navigation path p = 〈n1, n2, . . ., nu〉 is called the fastest navigation path
from node n1 to nu and the starting time point at node n1 is ts if there is no navigation path
p′ = 〈n′

1, n′
2, . . ., n′

v〉 such that ETT(p′, ts, T ) < ETT(p, ts , T ), where n′
1 = n1, n′

v = nu ,
and T indicates the travel time table.

Definition 12 Let E = {e1, e2, . . ., eg} be a set of elements with amount equal to g, the
permutation set P(E) of E is defined as (4). For example, let E = {A, B, C} be a set of
elements. P(E) = {〈A, B, C〉, 〈A, C, B〉, 〈B, A, C〉, 〈B, C, A〉, 〈C, A, B〉, 〈C, B, A〉}.

P(E) =
{
〈e′

1, e′
2, . . . , e′

g〉|∃ f : ek ↔ e′
h

}

where f is a bijection function and 1 ≤ k ≤ g, 1 ≤ h ≤ g (4)

Definition 13 Let Q D = 〈d1, d2, . . ., dq〉 be a set of query destination nodes and the starting
node is ns . The starting time point at node ns is ts and the travel time table is T . The optimal
permutation O P of Q D is defined the as (5), which means that to find the permutation with
minimal estimative travel time from the permutation set P(Q D).

O P (ns, Q D, ts, T ) = argp∈P(Q D) min (ETT (ns + p, ts, T )) (5)

With the above definitions, the research problem we are targeting in this paper is formulated
as follows.

Problem Formulation. Given a GPS trajectory database D containing a large number of
GPS trajectory sequences of mobile users, our goal is to develop a solution, which takes a
set of query destinations Q D as the input, to discover the fastest navigation path with the
multiple destinations Q D. In this research, we propose TPF framework to solve this problem.
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4 Proposed method

In this section, we describe our system framework, namely, Trajectory-based Path Finding
(TPF), for a location-based service that finds the fastest navigation path with multiple desti-
nations. In this framework, three important research issues need to be addressed: (1) travel
time evaluation for all road segments; (2) popular navigation path mining and maintenance;
and (3) fastest navigation path planning. Correspondingly, we first propose a Mining-based
Algorithm for Travel time Evaluation (MATE) to estimate the travel time of all the road seg-
ments in the network. Next, we mine the popular navigation paths with a sequential pattern
mining algorithm and maintain the discovered popular paths in the proposed Efficient Naviga-
tion Path Search Tree (ENS-Tree). The ENS-Tree facilitates efficient retrieval of the possible
popular navigation paths. With MATE and ENS-tree, an efficient fastest path finding algo-
rithm for single destination is derived. Finally, we propose the Cluster-Based Approximation
Strategy (CBAS) to find the fastest visiting order for specified multiple destinations.

4.1 The TPF system framework

The design of proposed system framework TPF for the targeted location-based service is
illustrated in Fig. 1. The framework consists of three modules, including a road network
database, a data mining mechanism, and a path planning engine. In this design, in addi-
tion to the road network database that maintains the detailed road connectivity and related
information, our system has an “offline” mechanism for travel knowledge discovery and
an “online” mechanism for path planning. In the offline mechanism, the main function is
to precisely discover the traffic knowledge which is used to predict the future traffic trends.
When mobile users move within the road network, the movement information which includes
time and location will be detected by the GPS devices and be stored in the GPS trajectory
database. There are a lot of valuable information in this database, such as travel time costs
of road segments and movement behaviors of mobile users. Therefore, in the data mining
mechanism, we design two mining techniques to discover the information, respectively. First,
we propose MATE algorithm to discover the travel time table which is used to evaluate the

Fig. 1 System framework TPF
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future traffic trends. Second, we use an existing sequential pattern mining method to mine
the popular navigation paths as the candidate paths which are maintained by the proposed
ENS-Tree structure. This design can help the system to improve the performance of fastest
path planning. In the online planning engine, the main function is to efficiently find the fast-
est path with single or multiple destinations to users. To process these queries, we propose
CBAS strategy which is based on divide-and-conquer. When a mobile user specifies single
or multiple destinations to the system, the fastest navigation path contains these destinations
will be returned to the mobile user by CBAS strategy according to the mobile user’s current
starting location and time point. As mentioned earlier, the proposed system framework aims
to support path planning with multiple destinations efficiently and effectively.

4.2 GPS trajectory database

Before introducing the proposed methods, here we first discuss how a GPS trajectory can
be obtained and the processing needed to transform a trajectory into a “navigation paths”.
A lot of GPS devices can be used to collect GPS data [33,43,44]. Using these devices, loca-
tion points can be received every pre-setting timestamps. Figure 2a shows a GPS log that
is a collection of location points P = {p1, p2, . . ., pn}. Each location point pi ∈ P con-
tains latitude (pi .Lat), longitude (pi .Lngt), and timestamp (pi .T ). Note that the collected
trajectories, without considering characteristics of physical roads, cannot be used directly
for path planning and thus need to be transformed into navigation paths corresponding to
roads. Our approach is to present the navigation paths in terms of road intersections, the
coordinates of which can be easily obtained. Figure 2b shows a log of intersection nodes
N = {n1, n2, . . ., n p} for the road network shown in Fig. 2c. Each node ni ∈ N contains
identification (ni .I D), latitude (ni .Lat), and longitude (ni .Lngt). As shown in Fig. 2c, the
GPS location points form a GPS trajectory sequence based on their time sequences. If the
time interval between consecutive GPS location points exceeds a predefined threshold, this
trajectory can be divided into several trajectories. A GPS trajectory can be transformed into
a navigation path by location matching between this trajectory and the intersection nodes.
When any location point in the trajectory is very close to any node in the network, the
identification of this node is assigned to this location point. Therefore, all trajectories can
be transformed to navigation paths after finishing the matching procedures. For example,

Latitude Longitude Time

p1

p2

pn

………

Lat1

Lat2

Latn

Lngt1

Lngt2

Lngtn

T1

T2

Tn

(a) 

Latitude Longitude

n1

n2

np

………

Lat1

Lat2
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Lngt1

Lngt2
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ID1

ID2

IDp
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n3n2n1
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p6

p7p8p9

Fig. 2 The generation of GPS navigation database. a A GPS log; b a node log; c a GPS trajectory
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Table 2 An example of
navigation sequence database

Sequence ID Navigation sequence

1 (8, A), (21, B), (30, C), (48, N ), (68, Z), (90, E),

(105, F)

2 (5, J ), (15, B), (27, C), (60, G), (80, H), (85, N )

3 (9, H), (21, N ), (29, Z), (37, E), (51, F), (62, J )

4 (1, B), (9, C), (18, G), (26, K ), (45, N ), (60, Z)

the GPS trajectory sequence in Fig. 2c is {p1, p2, p3, p4, p5, p6, p7, p8, p9}. After location
matching, the corresponding navigation path is {n2, n3, n6, n9, n8, n7}.

Table 2 shows an example of navigation sequence database which contains four records. In
the database, a record represents a navigation path of a mobile user. For example, the sequence
1(8, A), (21, B), (23, C), (48, N ), (68, Z), (90, E), (105, F) in Table 2 represents the nav-
igation sequence which records the movement of the mobile user from node A to node F
during time period 8–105. At the beginning, the mobile user was at node A at time point 8,
and then he arrived at node B at time point 21. Therefore, we can obtain that the travel time
from node A to node B is 13 by analyzing the navigation sequence database when the starting
time point is 8.

4.3 MATE algorithm

With the availability of the navigation sequence database, the next task we have to tackle is
the estimation of traffic cost for road segments in the road network. One simple approach
to address this issue, called Basic, is to derive the average velocities for every road segment
in the network for every time point. However, this solution may require excessive memory
space because there exists a large number of possible time points. Noticing that the traffic
conditions on road segments usually exhibit incremental changing patterns, it is a good idea
to divide the time into time segments. To do so, a time segmentation strategy is to evenly
divide the time line into a pre-determined number of time segments and estimate the travel
time for each time segment. This approach, called Even Segmentation (EvenSeg), needs to
decide in advance the number of time segments which is difficult to decide. Therefore, in
this paper, we proposed a dynamic time segmentation technique, called MATE, to estimate
the travel time of road segments, which are stored as a travel time table for the network.

MATE algorithm consists of two main tasks: (1) Time segmentation for every road seg-
ment and (2) Discovery of travel time table. Even though the navigation sequence database
may have several navigation sequences with the same starting node and destination node,
their starting time points may be different. Take Table 2 as an example, the travel time costs of
the road segment BC which are calculated based on Sequence 4, Sequence 2, and Sequence
1 are 8, 12, and 9 at starting time 1, 15, and 21, respectively. In other words, the travel time
costs of the road segments vary at the different starting time points. The reason is that the
traffic conditions on a road segment are usually different at different time points. In this
subsection, we segment the starting time dimension into some time segments for each road
segment. The idea behind our proposed time segmentation approach is to make the travel
time costs are similar to each other in a time segment. The number of time segments and their
ranges for road segments are automatically obtained by analyzing the navigation sequence
database.

In the proposed time segmentation method, we first discuss the travel time distribution
of a road segment. Figure 3 shows the average travel time cost of the road segment from
node A to node B at the different starting time points. The horizontal axis represents the
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Fig. 3 The average travel time
distribution of road segment AB
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Fig. 4 The GetNTL algorithm

starting time point from node A, and the vertical axis represents the average travel time cost
of road segment AB. The dotted line represents the average travel time of road segment AB
is 150 at starting time 170. The average travel time cost for road segment AB is analyzed
from navigation sequence database by collecting and averaging the travel time costs of road
segment AB with the same starting time. A point particularly worth noting is that the travel
time cost is empty between starting time segment [15,20], indicating no historical data is
recorded from node A to node B at these starting time points.

After obtaining all travel time distributions for all road segments, the next step is to decide
the number of travel time levels NT L which is used to classify the travel time. We argue that
more travel time levels are needed to provide better precision when the travel time distribu-
tion shows a large variation. Therefore, the number of travel time levels NT L is defined as
(6), where C ′ indicates the set of non-empty travel time costs and N indicates the cardinality
of set C ′, and α is a control parameter ranging from 0 to 1. The number of travel time levels
increases when α increases. In our experiments, α is set as 0.3. Figure 4 shows the procedures
for GetNTL (Get the Number of Time Levels) algorithm. Inputs include the travel time cost
of a road segment and a control factor (line 01), where ci indicates the travel time at starting
time point i,∀1 ≤ i ≤ M . Output is the number of travel time levels (line 02). At first,
non-empty travel time costs are collected into a set C ′ (line 04). The average travel time cost
of C ′ is c (line 05). Finally, the number of travel time levels, NT L , is returned. Figure 5 shows
an example given that the number of travel time levels NT L is obtained as 3.

NT L =
√

1

N
×

∑

∀c′∈C ′
(c′ − c)2 × α (6)
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Fig. 5 a Time frequency
distribution. b Result of time
segmentation
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Fig. 6 The GetSP algorithm

After calculating the number of travel time levels NT L , the next step is to segment the start-
ing time dimension into a number of starting time segments. Our idea is to make the segmenta-
tion based on cumulative frequencies of the travel time. Take Fig. 5 as an example, where NT L

is 3. Figure 5a shows the frequency distribution of travel time f (t) = |{ri |ri = t,∀1<= i <= M}|
which is the number of travel time values are t , where ri indicates the travel time at starting
time point i and M indicates the total number of time points. We can obtain two segmenting
positions (S P)S P1 and S P2 of travel time frequency distribution by equally dividing the
total area A into three sub-areas, where A = � f (t) for every t from minimal travel time to
maximal travel time. Figure 6 shows the procedures for GetSP (Get Segmenting Position)
algorithm. Given the travel time cost of a road segment and the number of travel time levels,
the algorithm generates the set of segmenting positions. For example, two horizontal lines in
Fig. 5 represent two segmenting positions of travel time distribution.

Next, the starting time segmentation is performed using the segmenting positions of travel
time frequency distribution. Figure 7 shows the procedures for GetTS (Get Time Segment)
algorithm. Input data includes the travel time cost of a road segment and a set of segmenting
positions (line 01). Output data is the point set of time segments (line 02). At first, all non-
empty travel time costs in C are classified to a group set G according to the segmenting points
S P , respectively (line 04–line 14). When two neighbored elements in G are not the same, a
time segment point is generated immediately (line 16–line 20). Finally, the GetTS algorithm
returns all of the starting time segments (line 21–line 22). Take Fig. 5b as an example, the
vertical dotted lines represent the segmenting positions of starting time dimension. When the
segmenting positions of travel time frequency distribution cross through the travel time at
any starting time point, a starting time segment is generated. There exists 4 cross points. We
can obtain five starting time segments.

Finally, with the proper segmentation along the starting time, the travel time costs in the
corresponding starting time segments can be obtained by average. Figure 8 shows the GetTTS
(Get Travel Time Sequence) algorithm. Input data include the travel time cost of a road seg-
ment and the corresponding set of starting time segmenting points (line 01). Output data is the
travel time sequence of the road segment (line 02). For each starting time segment of the road
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Return TSP22
TSP ← {1} ∪ TSP ∪ {M}21
End For20

End If19

TSP TSP ∪ L’i+118

If gi gi+117
For i 1 to | G | - 1  /* | G | = | C’ | */16
End For15

End For14

End If13

Break12

G G ∪ {k}11

If c’i > SPk10

For k | SP | to 109
For i 1 to | C’ |08
SP {0} ∪ SP07
G ∅ /* G is the group of C’ */06
L’ {i | ci Empty, ∀ ci ∈ C} /* L’ is the location of C’ */05
C’ {ci ∈ C | ci Empty}04

GetTS (C, SP)03
Output: The points of time segments TSP02
Input: The travel time cost C = {c1, c2, …, cM} of a road and SP01

i

i

C’

i

, 

Fig. 7 The GetTS algorithm

Return S10
End For09

S S contacts <[TSPi, TSPi+1]: ett> /* Sequence contact */08

ett07

C’ {cj ∈ C | cj ≠ Empty, TSPi ≤ j ≤ TSPi+1}06
For i 1 to | TSP | - 105
S <the start location of road the destination of road>04

GetTTS (C, TSP)03
Output: The travel time sequence S of the road02

Input: The travel time cost C = {c1, c2, …, cM} of a road and the 
corresponding TSP

01

≠
For i 1 to | - 1

, 
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'c
C''c∑ ∈∀

Fig. 8 The GetTTS algorithm

segment (line 05 to line 09), the non-empty travel time costs are collected into a set C ′ (line
06). The estimated travel time in the time segment is calculated as the average travel time costs
of C ′ (line 07). The travel time sequence of the road segment is obtained by integrating the
starting location, the destination, and all of the estimated travel time costs (line 08). Figure 9
shows an example for the process of travel time evaluation on road segment AB. Time points
{70, 95, 190, 225} are time segmenting points, while 0 and 240 denote the starting and ending
time of a day. The estimated travel time in each time segment is calculated by averaging all
costs of travel time in the corresponding segment. The travel time sequence in this example
is 〈A → B, [0, 70] : 45, [70, 95] : 56, [95, 190] : 84, [190, 225] : 54, [225, 240] : 48〉.
Finally, the travel time table is obtained by collecting all of the travel time sequence. The
travel time table is used to evaluate the future travel time according to the starting time point.
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Fig. 9 An example of travel time
evaluation process
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Table 3 The travel time table A → B, [0–5]:7, [6–30]:10, [31–100]:9

A → D, [0–35]:20, [36–60]:15, [61–100]:23

B → C , [0–20]:15, [21–100]:18

C → A, [0–10]:21, [11–40]:10, [41–100]:26

C → D, [0–25]:30, [26–75]:40, [76–100]:25

.

.

.

Y → Z , [0–7]:3, [8–51]:4, [52–100]:3

Table 3 shows an example of the travel time table. In this table, we observe that the starting
time is divided into three time segments for the road segment AB and two time segments for
the road segment BC . The travel time sequence, A → B, [0–5]: 7, denotes that the travel
time from node A to node B during starting time segment [0–5] is 7.

4.4 Mining popular navigation paths

After obtaining the travel time table, an estimated fastest path can be computed with con-
ventional search algorithms such as breadth-first search (BFS). For example, by maintaining
all possible paths between all pairs of nodes, a Naïve algorithm can find the fastest path by
examining this candidate set. Although this Naïve approach may guarantee the fastest path
always found, its search performance is very poor due to anticipated huge size of the can-
didate set. Therefore, we reduce the size of candidate set by only considering popular paths
taken by many travelers. This strategy can efficiently reduce the memory cost and search
time. On the contrary, the strategy does not guarantee a path satisfying the given starting
node and the destination node to be found because the popular candidate set is only a part of
candidate set. In the TPF, our remedy to this issue is to adopt BFS when path planning result
is not returned for a given query.

Since the popular navigation path mining is an offline mechanism, the performance of
mining algorithm is not critical. We adopt the AprioriAll algorithm, which was proposed
by Agrawal et al. [2], to find the popular paths. Table 4 shows an example of the popular
navigation paths which are discovered by the AprioriAll algorithm. Hence, we focus on
reducing the memory cost for popular navigation path storage and retrieval. Here we propose
a prefix-tree-based structure, named ENS-Tree, to store the popular navigation paths. There
are two nice features provided by the proposed ENS-Tree structure: (1) compression of the
duplicate navigation nodes and (2) efficient search of the navigation path. Figure 10 shows
an example of the ENS-Tree structure which is constructed based on popular paths listed in
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Table 4 The popular navigation
paths

ID The popular navigation path

1 ABCD

2 BCAD

3 BCE

4 CDE

5 CEF

6 DF

Fig. 10 An example of the
ENS-Tree structure R

B CA D

B

C

D

C

D

E

D E F

Header Table

A

B

C

D

E

F

A E F

Table 4. In the ENS-Tree, node R indicates the root. At first, the popular paths ABC D and
BC AD are inserted under the root node. Moreover, the locations in these paths are linked by
corresponding location nodes in the header table. When the path BC E is inserted into the
tree, only the node E is generated under the path BC . Since the path BC has been stored
under the root node, paths with a prefix BC can be compressed in the existing tree path. After
inserting all the popular paths, the ENS-Tree is used to search for the fastest navigation path.
Figure 11 shows the ENS-Tree construction algorithm.

4.5 Planning the fastest navigation path

To find the fastest path to the desired destinations, one or multiple destinations are specified
in a search. For mobile user, we assume the start location and the starting time are automati-
cally detected by the GPS devices. Accordingly, the candidate navigation paths that satisfy
the starting location and the destination are first collected from the ENS-Tree. Then, the
travel time costs of these paths are evaluated based on the travel time table and the starting
time. Finally, the fastest one is returned to the users. In the following, we first discuss the
path finding problem with single destination and then we present our strategy for finding path
with multiple destinations.

Single Destination. The problem of single destination navigation path planning consists of
two steps: (1) Candidate navigation paths retrieval from ENS-Tree and (2) Travel time esti-
mation for candidate navigation paths. For the first step, the candidate paths satisfy starting
and destination locations will be found from ENS-Tree. Figure 12 shows the PathFinding
algorithm. At first, nodes in ENS-Tree whose label is the destination (called destination node)
can be obtained by traversing the linked list in the header table corresponding to the targeted
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Return ENS-Tree22
End For21

End For20
End If19

Temp N18
HTemp.next N17

HTemp HTemp.next16
While HTemp.next null15

/*Get the corresponding label FPi,j in header table*/
HTemp HT(FPi,j)

14

Temp.child Temp.child ∪ N13
Else12

Temp c, ∃! c ∈ Temp.child | c.id = FPi,j11
If N.id ∈ Temp.child.id10
Create a new node N and N.id FPi,j09

For j 1 to FPi .length08
Temp root07

For i 1 to FP.length06
Header table HT {all of the unique symbols in FP}05
Create the root of ENS-Tree and root.child ∅04

CreateTree (FP)03
Output: Efficient navigation path tree ENS-Tree02
Input: Popular navigation paths FP01

!

Fig. 11 The ENS-Tree construction algorithm

the ENS-Tree T, and the travel time evaluation table E.

Return P26
End For Each25

End If24
Tmin ETT(P, t s)23
P c22

/* The function ETT is defined in the Definition 10 */
If ETT(c, ts) < Tmin

21

For Each c ∈ CS20
Tmin ∞19
P ∅ /* The fastest path */18
End While17

nodeD nodeD.next16
End While15

nodeS nodeS.parent14
End If13

CS CS ∪ {cp}  /* cp is one of the candidate paths. */12
If nodeS.label = S and cp ∉ CS11
cp nodeS.label contacts cp /*Contact the label of nodeS.*/10

While nodeS root09
nodeS nodeD.parent08
cp nodeD.label /* Get the label of nodeD */07

While nodeD.next null06

/* Get the first corresponding node whose label is D in T. */
nodeD T.HT(D).next /* T.HT indicates the header table of T. */

05

CS ∅ /* The set of candidate navigation paths. */04
PathFinding (S, D, ts, T, E)03
Output: The fastest navigation path P 02

Input: A start location S, a destination D, a starting time ts,01
T .

t

Fig. 12 The PathFinding algorithm
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Fig. 13 A query scenario of
multiple destinations
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destination. Then, if a tree path from any destination node can be back-traced up to a node
corresponding to the given starting location (called start node), the sub-path from the start
node to the destination node are included in the candidate navigation path set (line 06–line
17). Note that, while the search process may traverse the ENS-tree from the start nodes down
to the destination nodes, it has to search every sub-tree under every start node till all desti-
nation nodes are found. The search cost of the strategy is anticipated to incur a much higher
cost than the back-tracking approach. Finally, the travel time costs for all candidate paths are
evaluated using travel time table in accordance with the starting time (line 18–line 25). The
fastest one is returned to the user (line 26).

For example, Table 3 shows the travel time table and Fig. 10 shows the ENS-Tree. A user
requests the fastest path from B to D at starting time 15. At first, two paths BC D and BC AD
which satisfy the start and destination are obtained via the link D in header table. Then, we
evaluate the travel time of these candidate paths. For the path BC D, the starting time at B
is 15. The travel time from B to C at time point 15 is 15, thus, the arrived time at C is 30.
The travel time from C to D at time point 30 is 40, thus, the arrived time at D is 70. That is
to say the travel time of path BC D is 55 (subtract 15 from 70). Likewise, the travel time of
path BC AD is 40. Finally, the fastest path BC AD is returned to the user, even though the
distance of path BC D is shorter than the distance of path BC AD.

Multiple Destinations. In our daily life, planning of the fastest navigation path with multiple
destinations is a desirable function. The problem of path finding with single destination can
be generalized to multiple destinations. This is a combinatorial optimization problem, where
the objective is to minimize the cost of combinatorial solution. After the order of destina-
tions is decided, the cost can be evaluated by iterating the PathFinding algorithm on each
combination. The most intuitive strategy, called BruteForce, is to evaluate all possible com-
binations of destinations and return the fastest one to users. Obviously, when the number
of destinations increases, the computation cost of BruteForce increases exponentially. In an
online navigation system, the response time of navigation path query is a critical requirement.
The second strategy, called Greedy, is to select the nearest unvisited destination repeatedly.
This approach is efficient in finding a destination order but only producing a local optimal
solution. Therefore, the quality of this result may not be good.

In order to meet both the quality and efficiency requirements, we propose a novel algorithm,
namely, Cluster-Based Approximation Strategy (CBAS), to efficiently plan an approximately
fastest path. CBAS takes the evaluated travel time between destination nodes into account.
As Fig. 13 shows, there are five destinations A, B, C, D, and, E . We can cluster these desti-
nations into two clusters in accordance with their evaluated travel time. When the user moves
to destination A, CBAS only checks destination combinations in cluster1, because destina-
tions D and E are far away from destination A in terms of evaluated travel time. Obviously,
visiting destination A followed by visiting destination D or E is not a high quality solution.
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Return P27
End While26

End For Each25
S o24
D D \ {o}23
ts ts + ETT(PathFinding(S, o, ts, T, E), ts)22
P P ∪ PathFinding(S, o, ts, T, E)21

For Each o ∈ O20
O OP(S, c’ \ {d’}, ts, T)  /* See Definition 13 */19
c' The cluster c belongs to C and contains d’18
S d’17
D D \ {d’}16
ts ts + ETT(PathFinding(S, d’, ts, T, E), ts)15
P P ∪ PathFinding(S, d’, ts, T, E)14

d' argd∈Dmin(ETT(PathFinding(S, d, ts, T, E), ts))
/* See Definition 10 */

13

While D ≠ ∅12
P ∅ /* The fastest path */11

/* C = {c1, c2, …, cm} be a partition of D */
C Smart-CAST(M)  /* Clustering the destinations */

10

End For09
End For08

Mij 1 / ETT(PathFinding(di, dj, ts, T, E), ts)07
For j 1 to n06

For i 1 to n05
Create a n by n similarity matrix M04

CBAS (S, D, ts, T, E)03
Output: The fastest navigation path P02

Input: A start location S, several destinations D = {d1, d2, …, dn}, 
a starting time ts, the ENS-Tree T, and the travel time table E.
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Fig. 14 The CBAS algorithm

Therefore, we not only reduce computation costs but also achieve high quality in terms of
destination order by integrating the strength of BruteForce strategy and Greedy strategy.

CBAS consists of three steps: (1) Destination clustering, (2) Local optimal search, and
(3) Global path generation. Figure 14 shows the CBAS algorithm. When a mobile user wants
to visit several destinations from the starting time point ts , CBAS is employed to find the
fastest path. In the first step, we use the non-parametric clustering algorithm Smart-CAST
algorithm [42] to cluster the destinations into several destination clusters (line 04–line 10).
Before executing the method Smart-CAST, we have to generate a similarity matrix M , based
on the travel time costs. The entry Mi j in matrix M indicates the inverse of travel time
cost which is evaluated by the single destination procedure between the destinations i and
j in the road network, with the degrees in range of [0, 1] (line 04–line 09). After obtaining
the similarity matrix M , the destination cluster can be built by the Smart-CAST method
(line 10). In the second step, we first choose the destination node d ′, whose travel time is the
minimum from the start location at the starting time point ts , as the node to visit firstly (line
13–line 17). Then, the local optimal path for all destination nodes in the same cluster with
the node d ′ would be generated by the BruteForce strategy (line 18–line 25). In the third step,
the same procedure is repeated until all of the destinations have been visited (line 12–line
26). In this way, the fastest path solution is obtained. The corresponding fastest navigation
path is returned to the mobile user (line 27). CBAS may suffer the problem of exponential
time complexity when the cluster contains many destination nodes. To solve this problem, we
can cluster again the cluster contains too many destination nodes based on the computation
capability of mobile device.
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Table 5 Major parameters of
simulation model

Parameter Description Default
Value

Ns N∗
s Ns road network 10 km

Nn The number of nodes in the road network 100

Ne The number of connected nodes for each node 3

λ The load of traffic congestion 20

Nt The length of time points 240

PE The event probability of user’s behaviors 0.5

NL The size of GPS trajectory database 100 k

Tavg Average travel time of GPS trajectory database 100

Nd The number of destinations of a query 5

α The control parameter 0.3

5 Experimental evaluation

We have conducted a series of experiments to evaluate the performance for the proposed
MATE algorithm, ENS-Tree structure, and CBAS algorithm under various system condi-
tions. Experiments can be divided into three parts, (1) precision of MATE algorithm, (2)
performance of ENS-Tree structure, and (3) performance of CBAS strategy. All of the exper-
iments were implemented in Java JDK 1.5 on an Intel Pentium 4 CPU 3.00 GHz machine
with 1GB of memory running Microsoft Windows XP.

5.1 Simulation model

To evaluate the practicability of the TPF framework, we consider a real-time traffic infor-
mation data in Kaohsiung city [26], which was collected by Kaohsiung government during
the period of September 27, 2008 and May 27, 2009. This data contains a road map of
Kaohsiung city and a traffic condition database. The area of Kaohsiung city is 153 km2. The
number of nodes (intersection) is 112 and the number of edges (roads) is 203. The Kaohsiung
government sets up vehicle detectors on each road to detect how many cars passing by this
road and to calculate their average speed on this road. The traffic conditions are reported to a
central database server every 5 min. However, due to the lack of vehicle ID in this dataset, we
simulate the vehicle trajectories based on the real traffic conditions collected in the dataset.
Furthermore, to evaluate the impact of the TPF framework under various road network sizes
and traffic conditions, we develop a simulation model based on [11] to generate the road
network, the traffic condition, and the moving trajectory.

Table 5 lists the major parameters used in the simulation model with default settings. In
the base experiment model, the network is modeled as a road network with size N∗

s Ns . There
are Nn nodes in this network. The location including longitude and latitude of each node is
determined based on uniform distribution within a given range Ns . All edges between two
nodes are generated according to their distance. The shorter a distance between two nodes,
the higher probability an edge is generated between them. For every node, the number of
connected nodes is determined from a normal distribution with the mean equals to Ne. Edge
attributes in the simulator include distance, maximum velocity constraint, least free-flow
time, capacity, and scale. The time length of one day is divided into Nt timestamps, i.e., a
timestamp is 1,440/Nt min.

The interarrival time of moving objects are used to control the traffic load on the network.
The interarrival time represents the time between the arrival of a moving object and that of
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the next moving object at a given starting node. The interarrival time is determined from an
exponential distribution with mean equal to 1/λ which represents the severity of the network
congestion [11]. The larger the mean of exponential distribution, the more congested the
network. For one day, there are about 50,000 moving objects generated in the network under
λ sets as 20. Each moving object is generated at a random start node and it may move by
adhering to a certain moving strategy with probability PE or randomly [41]. The default
moving strategies include the shortest distance path strategy, the major road strategy, the
least free-flow time strategy, and the direction strategy [34]. After finishing the simulation
of traffic congestion, we can obtain the moving object distribution for each time slot in the
network. As the number of moving objects in a road segment increases, the average speed of
the moving objects decreases. Therefore, all the number of moving objects in a road segment
from the moving object distribution can be transformed to the average speed according to
the road capacity. Finally, the traffic congestions for everyday can be simulated.

To generate the navigation database, we simulate the user movement in the network. There
are NL users in this network. Each user is generated at a random start node and a random
starting time point, and it may move by adhering to a certain moving strategy with probability
PE or randomly. The average travel time of each user is determined from a normal distri-
bution with mean equal to Tavg . Each user randomly selects one or several destinations to
travel. The number of destinations of a user’s query is determined from a normal distribution
with mean equal to Nd . Finally, we can obtain the navigation database contains NL moving
records for everyday.

In the following, we list the main measurements used in the experimental evaluation; (1)
Mean Absolute Error (MAE) represents a quantity used to measure how close predictions are
to the truths. (2) Travel Time represents the actual time cost of the recommended navigation
path. (3) Travel Distance represents the distance cost of the recommended navigation path.
(4) Memory represents the size of memory cost. (5) Latency represents the search time for
finding and evaluating all the candidate paths which satisfy the start location and destina-
tion. (6) Execution Time represents the execution time cost for obtaining the combinatorial
solution. For CBAS, the execution time includes the clustering of destinations.

For single destination experiments, we compare the proposed MATE method with another
three path planning strategies: (1) the shortest distance path strategy (called DIS). The edge
cost of this strategy is the road distance. (2) The least free-flow time path strategy (called
LFT). The edge cost of this strategy is the road distance divided by the maximal velocity con-
straint. (3) The CAtegorized PiecewisE COnstant speeD (called CapeCod). The edge cost of
this strategy is estimated by CapeCod pattern [25] which is discussed in Sect. 2. For multiple
destination experiments, we compare the proposed CBAS with another two approaches: (1)
BruteForce, which finds the best solution from all of the possible destination combinations.
(2) Greedy, which always chooses the nearest location from the current location and repeats
the same procedure until all of the destinations is visited. For the synthetic data generated by
our data generator, 70% of the navigation data are used for training to obtain the travel time
table and the popular navigation paths, and the rest 30% are for prediction.

5.2 Impact of the control parameter α

This experiment analyzes the MAE when the control parameter α of (6) is varied. As Fig. 15
shows, we observed that the MAE decreases by increasing α, because the number of time
segments increases when α increases. The estimative travel time in each time segment is
more precise if the time segment is smaller. Hence, the MAE is better when α increases.
However, the memory storage cost of estimative travel time table is also increasing when the
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Fig. 15 MAE under various
values of α
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Fig. 16 MAE and memory storage under various strategies

number of time segments increases. A large α may bring the memory cost problem. In the
following experiments, we choose 0.3 as the default value of α, since the MAEs are close to
each other when α is larger than 0.3.

5.3 Comparison of various time segmentations

This experiment analyzes the MAE and memory storage under various time segmentation
strategies. In this experiment, we first generate 25 various traffic logs and their corresponding
navigation databases by the simulator. Then, we compare the error rate of estimated travel
time costs and real traffic log under the three time segmentation strategies. In order to let the
number of time segments of EvenSeg strategy be the same as MATE algorithm, we first exe-
cute MATE algorithm to dynamically obtain the number of time segments and then execute
EvenSeg strategy using the same number. As Fig. 16a and b shows, we observed that (1)
although the MAE of Basic strategy is the minimum, the memory cost is significant higher
than segmentation-based strategies in terms of EvenSeg and MATE. This is because that the
Basic strategy stores a large amount of estimated travel time information. Consequently, the
estimated travel time is close to real travel time. However, the Basic strategy needs a large
memory to store all the information that is a critical resource in mobile devices. (2) Under
the same memory cost, the MAE of MATE outperforms that of EvenSeg, because MATE
considers the variation of travel time. Therefore, MATE can obtain a more precise travel time
table than the EvenSeg strategy. Overall, MATE algorithm was shown to have a better result.

5.4 Comparison of various traffic cost estimations

This experiment analyzes the travel time and travel distance under various traffic cost esti-
mation strategies. Figure 17a and b represent the evaluated results under real dataset, i.e.,
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Fig. 17 Travel time and travel distance under various strategies

Kaohsiung city, and Fig. 17c and d represent the evaluated results under simulation dataset.
In this experiment, we first randomly select 10,000 pairs of start location and destination.
Then, we compare the actual travel time costs under four kinds of methods. The travel time
of OPT represents the actual fastest travel time as the baseline solution. As the experimental
result shows, we observed that (1) although the travel distance of DIS strategy is the mini-
mum, the shortest path is not the fastest path. This is because of the traffic congestions in the
network are always different. (2) The LFT strategy outperforms the DIS strategy, because
the LFT strategy considers not only the distance information but also the maximal velocity
constraints of road segments. The LFT strategy can obtain the fastest path, if there is no vehi-
cle object in the network. However, in a real road network, the vehicle flows in the network
are not always very low. (3) The travel time estimated by MATE is more precise than that by
CapeCod since the planned travel time of MATE is better than that of CapeCod. This is
because that CapeCod does not consider dynamic time segmentation, the estimated travel
time in each time segment may not be correct, but MATE does. (4) The travel time of navi-
gation path obtained by MATE algorithm has the best result because the future traffic trends
are precisely predicted by MATE algorithm to search the estimative fastest path. Overall, the
MATE algorithm was shown to have excellent result.

5.5 Comparison of various storage structures

This experiment analyzes the latency and memory storage under various storage structures
for popular paths. In this experiment, we compare the proposed ENS-Tree structure to three
kinds of structures, i.e., Naïve, Popular, and NPST, respectively. Naïve structure stores all
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Fig. 18 Latency and memory storage under various strategies

possible navigation paths for all pairs of nodes using an array structure. Popular structure
stores all popular navigation paths using an array structure. NPST structure stores all popular
navigation paths using the Prefix-Tree structure was proposed in [34]. As Fig. 18a and b
shows, we observed that (1) the latency and memory storage are significantly improved by
the methods based on popular path mining, i.e., Popular, NPST, and ENS-Tree, because these
strategies reduce the size of candidate navigation paths. (2) The latency and memory storage
are improved by tree-based structures, i.e., NPST and ENS-Tree, because the paths whose
prefix paths are the same in the tree structure can be compressed into a path. Therefore,
not only the memory storage but also search efficiency can be improved. (3) Although the
memory storage of ENS-Tree is slightly larger than that of NPST, the latency of ENS-Tree
outperforms that of NPST. The reason is that ENS-Tree incurs an additional memory over-
head for the header table and its link lists. The header table is a good tradeoff that helps
the search procedure to improve the search efficiency. Overall, ENS-Tree has shown to have
excellent search efficiency and low memory cost.

5.6 Comparison of various event probabilities PE

This experiment analyzes the travel time and execution time when the event probability var-
ies. In this experiment, the travel time of OPT represents the actual fastest travel time as
the optimal baseline solution. As Fig. 19a,b shows, CBAS outperforms Greedy in terms of
travel time. Although the travel time of CBAS can not achieve that of BruteForce, the exe-
cution time of CBAS is significantly faster than that of BruteForce. We observe that both
of the travel time and execution time decrease with the increase in event probability. This
is because, by increasing the event probability, the movement behaviors of mobile users in
the road network are more regular. In other words, the traffic prediction is becoming more
precise. Therefore, the travel time shows a decreasing trend.

5.7 Comparison of various traffic congestions λ

This experiment analyzes the travel time and execution time when the traffic congestion
parameter lambda varies. In this experiment, the travel time of OPT represents the actual
fastest travel time as the optimal baseline solution. As Fig. 20a and b shows, CBAS outper-
forms Greedy in terms of travel time. Although the travel time of CBAS can not achieve that
of BruteForce, the execution time of CBAS is significantly faster than that of BruteForce.
We observe that the travel time increases with the decrease in the traffic congestion λ. This
is because that the traffic condition is crowded when the value of traffic congestion λ is low.
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Fig. 19 Travel time and execution time with event probability varied
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Fig. 20 Travel time and execution time with traffic congestion varied

Table 6 Settings of network
scales

Network scale 1 2 3 4 5

Size (km) 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14

# Nodes 60 80 100 120 140

# Edges 120 160 200 240 280

The average travel time increases when the traffic congestion increases. Therefore, the travel
time shows a decreasing trend.

5.8 Comparison of various network scales

This experiment analyzes the travel time and execution time when the network scale varies.
Table 6 shows the settings of network size, number of nodes, and number of edges in various
road network scales. In this experiment, the travel time of OPT represents the actual fastest
travel time as the optimal baseline solution. As Fig. 21a and b shows, CBAS outperforms
Greedy in terms of travel time. Although the travel time of CBAS can not achieve that of
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Fig. 21 Travel time and execution time with network scale varied
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Fig. 22 Travel time and execution time with #destinations varied

BruteForce, the execution time of CBAS is significantly faster than that of BruteForce. We
observe that the travel time increases by enlarging the network scale. The reason is that
when the network scale enlarges, the number of nodes and the distance between two nodes
also increase. Therefore, the average travel time is increasing with the increase in network
scale.

5.9 Comparison of various number of destinations

This experiment analyzes the travel time and execution time when the number of destinations
varies. Figure 22a represents the evaluated results under real dataset, i.e., Kaohsiung city, and
Fig. 22b and c represent the evaluated results under simulation dataset. In this experiment,
the travel time of OPT represents the actual fastest travel time as the optimal baseline solu-
tion. As the experimental result shows, CBAS outperforms Greedy in terms of travel time.
Although the travel time of CBAS cannot achieve that of BruteForce, the execution time of
CBAS is significantly faster than that of BruteForce. We observe that the travel time and exe-
cution time significantly increase as the number of destinations increase. The reason is that
when the number of destinations increases, the complexity of combinatorial discovery also
increase exponentially. Therefore, the average travel time increases along with the number
of destinations. The execution time shows the same trend.
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6 Conclusions and future work

In this paper, we have developed a new system framework, called Trajectory-based Path
Finding (TPF), based on a data mining approach, for finding the fastest navigation path
with multiple destinations. In TPF, a novel data mining algorithm, namely Mining-based
Algorithm for Travel time Evaluation (MATE), is proposed for estimating the travel time of
a navigation path. Besides, a novel index structure, called Efficient Navigation Path Search
Tree (ENS-Tree), is proposed for efficient retrieval of the fastest navigation path. With MATE
and ENS-tree, an efficient fastest path finding algorithm for single destination is derived. To
find the fastest path for multiple destinations, we have proposed a novel method, known as
Cluster-Based Approximation Strategy (CBAS), for efficiently and precisely discovering the
fastest navigation path with multiple destinations. Although a number of studies exist in the
literature to explore various approaches for navigation path planning, few consider the issue
of path finding with multiple destinations using data mining techniques to analyze the tra-
jectories. To the best knowledge of the authors, this is the first work on fastest path planning
for multiple destinations based on trajectory mining.

To evaluate the performance of the proposed framework TPF, we collect a real dataset
and design a simulation model to conduct a series of experiments, which can be classified as
follows: (1) precision of MATE algorithm, (2) performance of ENS-Tree structure, and (3)
performance of CBAS algorithm. For the experiments for MATE algorithm, the results show
that the proposed MATE achieves high quality planning results in terms of travel time. For the
experiments for ENS-Tree structure, we show that our proposed ENS-Tree structure is very
efficient. It not only reduces the memory cost but also improves the search performance. For
performance of multiple destinations planning, we observed that CBAS outperforms Greedy
in terms of travel time. Although the travel time of CBAS does not match up with that of
BruteForce, the execution time of CBAS is significantly faster than that of BruteForce. The
experimental results demonstrate that our proposed methods are efficient and accurate.

As for the future work, we plan to collect real data for further analysis and testing of
the proposed TPF. In addition, we plan to extend the ideas in TPF to other applications
such as public vehicle scheduling, aiming to enhance the quality of new applications in road
networks.
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