
Summarizing Trajectories into k -Primary Corridors:
A Summary of Results

Michael R. Evans, Dev Oliver
Shashi Shekhar

Computer Science and Engineering
University of Minnesota
Minneapolis, MN, USA

{mevans,oliver,shekhar}@cs.umn.edu

Francis Harvey
Geography

University of Minnesota
Minneapolis, MN, USA

fharvey@umn.edu

ABSTRACT
Given a set of GPS trajectories on a road network, the goal
of the k-Primary Corridors (k-PC) problem is to summarize
trajectories into k groups, each represented by its most cen-
tral trajectory. This problem is important to a variety of
domains, such as transportation services interested in find-
ing primary corridors for public transportation or greener
travel (e.g., bicycling) by leveraging emerging GPS trajec-
tory datasets. Related trajectory mining approaches, e.g.,
density or frequency based hot-routes, focus on anomaly de-
tection rather than summarization and may not be effective
for the k-PC problem. The k-PC problem is challenging
due to the computational cost of creating the track simi-
larity matrix. A näıve graph-based approach to compute a
single element of this track similarity matrix requires mul-
tiple invocations of common shortest-path algorithms (e.g.,
Dijkstra). To reduce the computational cost of creating this
track similarity matrix, we propose a novel algorithm that
switches from a graph-based view to a matrix-based view,
computing each element in the matrix with a single invo-
cation of a shortest-path algorithm. Experimental results
show that these ideas substantially reduce computational
cost without altering the results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
(Spatial Databases and GIS)

General Terms
Algorithms, Performance, Experimentation

Keywords
Trajectory Summarization, Spatial Data Mining, GPS

1. INTRODUCTION
Problem: Given a set of trajectories on a road network,

the goal of the k-Primary Corridors problem is to summarize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November, 6-9 2012. Redondo Beach, CA,
USA
Copyright c© 2012 ACM ISBN 978-1-4503-1691-0/12/11 ...$15.00.

trajectories into k groups, each represented by its most cen-
tral trajectory. Figure 1(a) shows a real-world GPS dataset
of a number of trips taken by bicyclists in Minneapolis, MN.
The darkness indicates the usage levels of each road segment.
The computational problem is summarizing this set of tra-
jectories into a set of k-Primary Corridors. One potential
solution is shown in Figure 1(b) for k=8. Each identified
primary corridor represents a subset of bike tracks from the
original dataset. Note that the output of the k-PC problem
is distinct from that of hot or frequent routes, as it is a sum-
mary of all the given trajectories partitioned into k primary
corridors.

Motivation: The k-Primary Corridor problem is impor-
tant due to a number of societal applications, such as city-
wide bus route modification or bicycle corridor selection,
among other urban development applications. Let us con-
sider the problem of determining primary bicycle corridors
through a city to facilitate safe and efficient bicycle travel.
By selecting representative trajectories for a given group of
commuters, the overall alteration to commuters routes is
minimized, encouraging use. Facilitating commuter bicycle
traffic has shown in the past to have numerous societal ben-
efits, such as reduced greenhouse gas emissions and health-
care costs [11].

Related Work: Graph-based trajectory clustering in ex-
isting literature is focused on ‘hot’ trajectories, e.g., popular
tracks found via different approaches (e.g., trajectory pat-
tern mining [4,13,15], computational geometry [1], frequent
subgraphs [8], density clustering [2,7,9,10], hierarchical clus-
tering [5, 12, 14]). Note that these ‘hot’ route techniques
traditionally focus on track anomalies (e.g., high-frequency
tracks), as compared to summarizing the dataset as a whole.

To address these limitations, our work focuses on centroid-
based (prototype) clustering, namely the summarization of
a group of objects represented by a set of centroid objects.
Each primary corridor we identify can be considered a repre-
sentative track of a cluster of tracks, where the actual track
identified attempts to minimize the overall distance to each
other track within its cluster (as compared to finding ‘hot’,
or frequently traveled tracks).

Challenges: Summarizing tracks into k-primary corri-
dors is challenging primarily due to the extensive number of
shortest-path network distance calculations needed to com-
pute similarities between tracks (the track similarity ma-
trix (TSM)). For example, given two tracks consisting of 10
nodes each, a näıve graph-based algorithm to measure sim-
ilarity would need to calculate the distance of each node to

454

(a) Recorded GPS points from bicyclists in Min-
neapolis, MN. Intensity indicates number of points.

(b) Set of 8 -Primary Corridors identified from Bike
GPS traces in Minneapolis, MN. (Best in color)

Figure 1: Example Input and Output of the k-
Primary Corridor problem.

the closest node in the other track via a shortest-path algo-
rithm, e.g., Dijkstra. In the worst case, that will require at
least 10 shortest-path distance calculations to find the near-
est node in the other track (one for each node). Doing this
for both tracks would result in 90 shortest-path computa-
tions (10 * 10 - 10 self joins) on a directed graph, 45 on an
undirected graph.

Table 1: Runtime comparison of steps in the k-
Primary Corridor problem (100 nodes/tracks, k=5)

Steps of k-PC Runtime Percentage

Track Similarity Matrix 46.56 sec 94.1%
Partitioning / Clustering 2.96 sec 5.9%

Total 49.52 sec 100%

Contributions: This paper makes the following contri-
bution claims: (1) we introduce the k-Primary Corridor (k-
PC) problem, (2), we propose two algorithms for comput-
ing the track similarity matrix along with an algorithm for
computing k-Primary Corridors, and (3) experimental eval-
uation of the proposed algorithms.

2. PROBLEM FORMULATION
In this section, we describe the basic concepts required

to describe the k-primary corridor problem. We provide an
example dataset and finally a formal problem statement.

2.1 Basic Concepts
We begin with a review of digital road maps and GPS

tracks, and then introduce primary corridors and our pro-
posed track similarity measure.

A road network can be represented as a graph, with
nodes representing road intersections and edges represent-
ing the segments of roads connecting adjacent road intersec-
tions. Edges in these graphs can have weights, or distance
values, indicating the length of the road segment.

A track in this paper represents a trajectory of a bicyclist
across a road network. The original GPS trace of the indi-
vidual is pre-processed to be map-matched into a series of
nodes and edges creating a track through the road network
graph. Figure 2 contains three tracks, color-coded as shown
in the Legend.

Network distance is the sum of the length of edges re-
quired to traverse the graph between two specific nodes.
A number of well-known algorithms compute shortest-path
network distance, for simplicity we will use the commonly-
used Dijkstra algorithm [3].

To measure the similarity of two tracks, we define a track
similarity function, in essence measuring the average mini-
mum distance from any node in one track to any node in the
other track. When computing the overall average minimum
distance, we use the following equation:

s(ti, tj) =
1

|ti|
∑
n∈ti

min
m∈tj

(ShortestPath(n, m))

In this formulation, the similarity measure is computing
the average minimum distance from any node in Track i to
any node in Track j. Variables n and m represent nodes in
the input tracks i and j, respectively.

To compute the track similarity of Track 1 to Track 3,
we first find the distance from each node in Track 1 to the
closest node in Track 3. We then sum those distances and
normalize them by the length (number of nodes) of Track 1,
resulting in a track similarity score of 3.

Track 1

1 1 1

11111

11111

1 1 1 1 1

1 1

1 1

11

0 0 0 0 00

Legend

Track 2

Track 3

Node

128 9 10 11

13 14 18 19

17

16

15

7

1 2 3 4 5 6

virtual

Figure 2: Road network represented as an undi-
rected graph with three tracks.

We define a primary corridor representative as a track
that summarizes a group of other tracks via a track sim-
ilarity function. The chosen track minimizes the distance
from all other tracks within it’s represented group. These
primary corridors are meant to semantically represent key
paths through the road network to summarizing the overall
dataset. An example of a primary corridor is Track 2 in
Figure 2, as it has the lowest distance from the other tracks.

455

Table 2: Track Similarity Matrix for Figure 2.

Track 1 Track 2 Track 3 Row Sum
Track 1 0 1.16 3 4.16
Track 2 1.16 0 2 3.16
Track 3 3 2 0 5

2.2 Problem Statement
The k-Primary Corridor problem can be formulated as

follows:
Given:

• Road Network: G = {V ,E}
• Collection of Tracks: T

• Number of Primary Corridors: k

Find:

• k Primary Corridors

Objective:

• Minimize(
∑

t∈T track-similarity(t, t’s assigned pri-
mary corridor representative track))

Constraints:

• Each primary corridor is represented by a track ∈ T

• G is a connected graph with nonnegative edge weights

Example: Using the example dataset in Figure 2, we
explain the components of the formal problem statement
shown above. The given road network is the set of nodes and
edges represented by circles and lines, respectively. Tracks
1, 2, and 3 are the collection of input tracks T . Lastly, for
this example, we will choose 1 primary corridor (k=1). We
are therefore to find 1 representative track to summarize
the entire set T . To do this, we will choose a track that
minimizes the intra-cluster pairwise distance between tracks,
where the distance is provided in the track similarity matrix
shown in Table 2. The choice is Track 2 as illustrated in the
last column of Table 2.

3. PROPOSED APPROACH
The k-Primary Corridor problem can be solved via a two-

step process. First the track similarity matrix for all pairs of
tracks is computed. As described above, this requires mea-
suring the similarity of each pair of tracks in the dataset, and
within that, each pair of nodes in each track, resulting in a
large number of network distance computations. Once the
track similarity matrix has been created, a k-medoid clus-
tering algorithm can be applied to find the k-Primary Cor-
ridors. In the näıve approach, we use the well known Parti-
tioning Around Medoids (PAM) [6] algorithm to summarize
the tracks and choose representative tracks as medoids based
on the similarity matrix we computed in the first step. In
this section, we propose a novel algorithm for reducing the
computational cost of computing the track similarity matrix,
followed by a proposed solution to the k-Primary Corridor
problem.

3.1 Computing the Track Similarity Matrix
In this section, we introduce two algorithms for computing

the track similarity matrix, the dominant computational ex-
pense in the k-Primary Corridor problem. The first retains a
graph-based view, requiring pairwise node to node shortest-
path network distance calculations within each track. The

second uses a matrix-based view, computing elements of the
track similarity matrix one at a time, resulting in a single
network distance computation per element.

Graph-Node Track Similarity (GNTS): To generate
the Track Similarity Matrix M , we compute the network dis-
tance between each pair of nodes within each pair of tracks.
This näıve Graph-Node Track Similarity (GNTS) algorithm
is intuitive, essentially invoking a shortest-path computa-
tion for each combination of nodes within each track pair.
For example, in Figure 2, to compute the similarity between
Track 1 and Track 3, starting from Node 1, a shortest-path
invocation would occur for each node in Track 3 (13, 14,
15, 16, 18, 19). This repeats for each node in Track 1 to
compute one element in the row of the track similarity ma-
trix s(t1, t3). This may be repeated over all ordered pairs
of tracks to compute the entire matrix, such as the one in
Table 2.

Matrix-Element Track Similarity (METS): While
the proposed GNTS approach in the previous section pro-
duces the correct output, a careful examination reveals a
major computational bottleneck as illustrated in Table 1:
multiple invocations of shortest-path algorithms for each el-
ement in the track similarity matrix. Using a matrix-based
view, we introduce a novel algorithm for computing each ele-
ment in the track similarity matrix with a single invocation
of a shortest-path algorithm called Matrix-Element Track
Similarity (METS).

Algorithm 1 Matrix-Element Track Similarity (METS)

Input:
• Road Network G = {V, E}
• Tracks T : Set of tracks

Output:
• Track Similarity Matrix MT×T

1: for all tracks i in T do
2: for all tracks j in T do
3: if i ≡ j then
4: M [i][j]← 0
5: else
6: Create virtual node vSource
7: G← vSource
8: for all nodes n in i do
9: Create 0-length edge from vSource to n

10: end for
11: for all nodes m in j do
12: sinks← m
13: end for
14: dists[] = Dijkstra(vSource, sinks)
15: Remove vSource from G
16: sum = 0
17: for all nodes m in j do
18: sum← sum + dists[m]
19: end for
20: M [i][j]← sum/|i|
21: end if
22: end for
23: end for
24: return MT×T

Execution Trace of METS: Given a road network G
and a set of tracks T , we calculate the Track Similarity Ma-

456

trix M in Algorithm 1. Using the same dataset as above,
Figure 2, we enumerate through each pair of tracks with two
for loops shown on Lines 1 and 2. We will describe one pass
through this algorithm using Track 1 as i and Track 3 as j.
We first attach a virtual node with edge distance values of
0 to all the nodes in Track 1 in Line 9. In Line 12 we are
setting the sink (destination) nodes for the Dijkstra com-
putation. We then initiate a Dijkstra single-source distance
computation from the virtual node to all the nodes in the
sinks set (the nodes in Track 3). That returns the distance
from each node in Track 3 to the virtual node vSource, es-
sentially returning the distance from each node in Track 3 to
its closest node in Track 1 (as the distances from the nodes
in Track 1 and vSource are all 0). This allows us to compute
our track similarity metric in Lines 17 - 20. We then do that
for all pairs of tracks to create M .

4. EXPERIMENTAL EVALUATION
In this section, we present our experimental validation

for the k-Primary Corridor problem and our proposed solu-
tion. In this preliminary work, we explored the impact of the
number of nodes in the road network on the computational
cost of the various track similarity algorithms. The experi-
ments in this section were performed on synthetic datasets.
We generated the underlying roadmap (planar graph), along
with suitable tracks.

 10

 100

 1000

 10000

 100000

 200 300 400 500 600 700 800 900 1000

R
u

n
ti
m

e
 i
n

 S
e

c
o

n
d

s
 (

L
o

g
a

ri
th

m
ic

 S
c
a

le
)

Number of Tracks

Varying Number of Tracks, 500 Nodes, k=5

GNTS
METS

Figure 3: Varying Tracks

In the experiment shown in Figure 3, we created a road
network with 500 nodes, an average track length of 25 nodes
and a k of 5. The x axis shows the number of tracks given as
input, the y axis shows the runtime in seconds on a logarith-
mic scale. The figure shows all three algorithms varying over
the given numbers of tracks, and as is clear, GNTS quickly
becomes prohibitive even with this small dataset size.

5. CONCLUSION AND FUTURE WORK
Discovering k-Primary Corridors is important for identi-

fying potential avenues for enhancing pedestrian and bicy-
clist access, as well as potential applications for determining
metro bus corridors and light rail systems. While related
work primarily focuses on finding frequently- and densely-
traveled routes, the proposed k-primary corridor problem
focuses on summarizing the overall dataset, finding primary
corridors to represent groups of tracks. Comparing thou-
sands of tracks on large spatial networks is computationally
expensive due to a large number of shortest-path network

distance computations required to measure similarity be-
tween tracks. We proposed a novel matrix-based view and
associated algorithms for computing the track similarity ma-
trix, a key bottleneck in the k-Primary Corridor problem.
We demonstrated the computational scalability of our al-
gorithms via synthetic dataset experiments. In our future
work, we will explore centroid-based corridor generation.

6. ACKNOWLEDGEMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 1029711, III-
CXT IIS-0713214, IGERT DGE-0504195, CRI:IAD CNS-
0708604, and USDOD under Grant No. HM1582-08-1-0017,
HM1582-07-1-2035, and W9132V-09-C-0009.

7. REFERENCES
[1] K. Buchin, M. Buchin, M. van Kreveld, and J. Luo. Finding

long and similar parts of trajectories. Computational
Geometry: Theory and Applications, 44(9):465–476, 2011.

[2] Z. Chen, H. Shen, and X. Zhou. Discovering popular routes
from trajectories. In Data Engineering (ICDE), 2011 IEEE
27th International Conference on, pages 900–911. IEEE,
2011.

[3] T. Cormen. Introduction to algorithms. The MIT press,
2001.

[4] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi.
Trajectory pattern mining. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 330–339. ACM, 2007.

[5] D. Guo, S. Liu, and H. Jin. A graph-based approach to
vehicle trajectory analysis. Journal of Location Based
Services, 4(3-4):183–199, 2010.

[6] L. Kaufman, P. Rousseeuw, et al. Finding groups in data:
an introduction to cluster analysis, volume 39. Wiley
Online Library, 1990.

[7] A. Kharrat, I. Popa, K. Zeitouni, and S. Faiz. Clustering
algorithm for network constraint trajectories. Headway in
Spatial Data Handling, pages 631–647, 2008.

[8] A. Lee, Y. Chen, and W. Ip. Mining frequent trajectory
patterns in spatial-temporal databases. Information
Sciences, 179(13):2218–2231, 2009.

[9] J. Lee, J. Han, and K. Whang. Trajectory clustering: a
partition-and-group framework. In Proceedings of the 2007
ACM SIGMOD international conference on Management
of data, pages 593–604. ACM, 2007.

[10] X. Li, J. Han, J. Lee, and H. Gonzalez. Traffic
density-based discovery of hot routes in road networks.
Advances in Spatial and Temporal Databases, pages
441–459, 2007.

[11] J. Marcotty. Federal Funding for Bike Routes Pays Off in
Twin Cities. http://www.startribune.com/local/
minneapolis/150105625.html.

[12] G. Roh and S. Hwang. Nncluster: An efficient clustering
algorithm for road network trajectories. In Database
Systems for Advanced Applications, pages 47–61. Springer,
2010.

[13] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere,
M. Potamias, K. Mouratidis, and T. Sellis. On-line
discovery of hot motion paths. In Proceedings of the 11th
international conference on Extending database technology:
Advances in database technology, pages 392–403. ACM,
2008.

[14] J. Won, S. Kim, J. Baek, and J. Lee. Trajectory clustering
in road network environment. In Computational
Intelligence and Data Mining, 2009. CIDM’09. IEEE
Symposium on, pages 299–305. IEEE, 2009.

[15] Y. Zheng and X. Zhou. Computing with spatial trajectories.
Springer-Verlag New York Inc, 2011.

457

