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ABSTRACT
Trajectory similarity search studies the problem of finding
a trajectory from the database such the found trajectory
most similar to the query trajectory. Past research mainly
focused on two aspects: shape similarity search and seman-
tic similarity search, leaving personalized similarity search
untouched. In this paper, we propose a new query which
takes user’s preference into consideration to provide person-
alized searching. We define a new data model for this query
and identify the efficiency issue as the key challenge: given a
user specified trajectory, how to efficiently retrieve the most
similar trajectory from the database. By taking advantage
of the spatial localities, we develop a two-phase algorithm
to tame this challenge. Two optimized strategies are also
developed to speed up the query process. Both the theo-
retical analysis and the experiments demonstrate the high
efficiency of the proposed method.

1. INTRODUCTION
Trajectory similarity search is a hot research topic in re-
cent years due to its broad range of applications, such as
friend recommendations, trip planning, traffic analysis and
carpooling. It studies the problem of finding a trajectory
from the trajectory database such that the found trajectory
is most similar to the query trajectory. A fair amount of re-
search works were involved in the past decades on this topic,
some [1, 15, 11, 16, 9, 4, 3, 13] focused on shaped-based sim-
ilarity search, in which each trajectory consists of a sequence
of equally important sample points; while others [17, 10, 20,
19, 12, 14] focused on the semantic aspects, in which each
trajectory is represented as a sequence of meaningful enti-
ties, such as POIs, locations or regions.

The similarity for the shape-based search depends on how
many common parts the trajectories share, while for the
semantic-based search it depends on how many significant
common parts shared. Clearly, the second kind of similarity
is more reasonable as it considers more of those significant
parts instead of treating each part equally. To measure the
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second kind similarity, it employes variuos huristic methods
to identify which parts are important and meaningful and
this, inherently, has two disadvantages:

• Due to the quality of the training data or the imperfec-
tion of the mining method, it cannot gurantee to find
all of the important parts. Some significant places may
be missed.

• Among all those important parts, they are not equally
important to all users. In other words, this method
cannot provide personalized service to different users.

To overcome these disadvantages, we propose a new type of
query: user-oriented trajectory similarity search, in which
each user can specify the relative importance of each part
in the query trajectory. This new query has the advantages
that:

• It can provide personalized query without missing those
important parts, as whose importance have been des-
ignated by the user.

• It supports flexible and even highly complex query pat-
terns. For instance, the relative importance of all parts
in the query trajectory follows standard normal distri-
bution.

The key challenge here is the efficiency issue. More specif-
ically, given a user specified query, how to efficiently find
out the most similar trajectory from the trajectory database
which may contain huge number of trajectories.

Unfortunately, no existing solutions can readily be used to
conquer this challenge. Vlachos et al. in [13] explore dis-
covering similar multidimensional trajectories by building
a cluster-based hierarchical indexing tree. This method,
however, suffers from finding good clusters and representing
points to build the hierarchical indexing tree on which the
performance heavily depends. Besides, it considers shape
similarity allowing spatial shifting between trajectories, which
is totally different from our settings: no spatial shifting is
allowed. Chen et al. in [3] exploit edit distance to measure
trajectory similarity and provides three pruning techniques
to efficiently retrieve the most similar trajectory. But under
the user specified query in which the relative importance of
every sample points are considered, these pruning techniques
are no longer hold. A typical example is that one pruning
technique works by bounding the number of common Q-
grams for two sequences within edit distance k, where k is
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supposed to be an integer, while in our settings, due to the
relative importance involved, this condition is hard to be
guaranteed.

In this work, our major contributions are:

1. We propose a new type of trajectory similarity search
with the merits of considering users’ preferences and
supporting personalized query.

2. We carefully define a new data model for this query
and develop an efficient method to answer the similar-
ity query. Two optimized strategies are also developed
to speed up the query process.

3. We do theoretical analysis, carry out experiments on
real dataset and both demonstrate the high efficiency
of our method.

The remainder of this paper is organized as follows. In sec-
tion 2, we define the data model and the problem. We then
develop a two-phase algorithm and two optimized strategies
in Section 3. Theoretical analysis and the experiments are
conducted in Section 4 and Section 5, respectively. We dis-
cuss related work in section 6 and conclude this paper in
section 7.

2. DATA MODEL AND PROBLEM
With the advancement of the modern GPS technologies, it
is not unreasonable to assume that all trajectories in the
database have similar sampling rate. If not, we can interpo-
late the trajectory data to make them satisfied the assump-
tion condition.

Let T = {p1, p2, · · · , pn} be a data trajectory, where |T | de-
notes the size of sample points in T . Each sample point
pi = 〈loni, lati〉 is a pair of real values, where loni and
lati correspond to longitude and latitude respectively. A
user trajectory database is a set of data trajectories DB =
{T1, T2, · · · , TN}, where N is the number of trajectories in
DB. Let Q = {q1, q2, · · · , qm} be the query trajectory, in
which each sample point qi is a triple of real values, namely
〈loni, lati, wi〉, where wi ≥ 0 is the user assigned weight
indicating the importance of the sample point. We say
sample points qi and pj matched if |loni − lonj | ≤ ε and
|lati − latj | ≤ ε; here the ε is the matching threshold.

There are several methods to measure trajectory similar-
ity: Euclidean-based methods [1, 15, 11], DTW [16, 9, 4],
ERP [2], EDR [3] and LCSS [13]. Among these methods, the
first three (Euclidean-based methods, DTW and ERP) are
sensitive to noise; the EDR concerns more about the dissim-
ilarities between trajectories, as it only penalizes the gaps
while ignores their common parts; the LCSS, on the other
hand, is more robust to noise and more accurate to compute
the similar parts, because just like its name (Longest Com-
mon Subsequence), it measures how many common parts
two trajectories share and a larger value implies a better sim-
ilarity. Here in this paper we use the same idea behind LCSS
to measure the similarity between a data trajectory and
a query trajectory. Specifically, given the aforementioned
T and Q, we define the similarity measure Heaviest Com-
mon Subsequence (HCSS) between them as the weighted
sum of their longest common subsequence and denote it as

HCSS(T,Q). The specific value can be derived from the
following recursive computation:

0 if n = 0 or m = 0,
w1 +HCSS(Rest(T ), Rest(Q)) if p1, q1 are matched,

max

{
HCSS(Rest(T ), Q),
HCSS(T,Rest(Q))

otherwise

where Rest(.) denotes the rest part of a trajectory with the
first sample point removed.

Problem. Given a query trajectory Q, find T from the
trajectory database DB such that HCSS(T,Q) > 0 and

HCSS(T,Q) ≥ HCSS(T ′, Q),∀T ′ ∈ DB and T ′ 6= T.

In the extreme case that ∀T ∈ DB, HCSS(T,Q) = 0, we
would say no trajectory in the database is similar to the
query trajectory and therefore have no obligation to return
any trajectory.

3. QUERY PROCESSING
One naive solution for the problem is to compute the similar-
ity values with every trajectory in the database, then choose
the one with the largest HCSS value. The cost of this
method is prohibitively expensive simply because it has to
load every data trajectory from the external memory into in-
ternal memory in order to compute the HCSS value, which
would introduce tons of IOs, not mention the computation
cost is quadratic to trajectory length.

To reduce the IO as well as the computation cost, we have
the following observation.

Observation 1 Trajectories in the database are spatially
scattered and the query trajectory is only within some limited
area.

Based on this observation, instead of retrieving all trajecto-
ries from the external memory, we only need to retrieve those
trajectories having at least one sample point included by a
small range that covers the query trajectory as a candidate
set and it is highly likely that the candidate set contains the
most similar trajectory. The key issue here is how large the
covering range should be to make the candidate set surely
containing the most similar trajectory. If it is too large, it
may retrieve excessive number of trajectories at the price of
a fair amount unnecessary IOs; on the other hand, if it is
too small, it may miss the most similar trajectory as well.
Therefore a proper covering range should be provided so
that it dose not produce too many unnecessary IOs while at
the same time it can still guarantee the correctness of the
candidate set without introducing false dismissals.

Definition 1. (ε-buffer) Given a query trajectory Q, we
define its ε-buffer Bε(Q) as the union of rectangular areas
of all sample points, where the rectangular area of a sample
point qi is [(loni− ε, lati− ε), (loni + ε, lati + ε)] and ε is the
threshold (Figure 1).

Theorem 1. The ε-buffer of query trajectory Q can serve
as a covering range without introducing false dismissals.

Proof. Let T be the most similar trajectory. From the
problem definition we know HCSS(T,Q) > 0, which im-
plies T must have at least one its sample point included by
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Figure 1: Examples of rectangular area and Bε(Q)

the covering range Bε(Q) and therefore is included in the
returned candidate set.

Theorem 1 indicates us that we only need to search the query
trajectory’s ε-buffer to find the most similar trajectory, and
in terms IO cost, it is a dramatic improvement over the naive
method in which the correctness is achieved by searching the
whole data space. Inspired by the above analysis, we get our
first algorithm to find the most similar trajectory.

Before presenting the algorithm, we claim that every trajec-
tory T in the database has a unique id called tid, and each
sample point in T contains the tid information. If we get a
sample point, we then know which trajectory it belongs to.
Also we use an R-tree [7] to index all sample points in the
trajectory database; by doing this, we can conduct range
search on the R-tree and thus reduce the search cost.

Algorithm 1: MST(TR, Q, ε)

Input: R-tree root TR, query trajectory Q, threshold ε
Output: The unique id of the most similar trajectory

1 id←∞;
2 /* Filter phase */
3 ListC ← φ; // the candidate set
4 foreach qi in Q do
5 rect← [(loni − ε, lati − ε), (loni + ε, lati + ε)];
6 ListP ← TR.rangeSearch(rect);
7 foreach sample point p in ListP do
8 tid← p.getT id();
9 if ListC.contain(tid) is not ture then

10 ListC .add(tid);

11 /* Refinement phase */
12 distance← −∞;
13 foreach tid in ListC do
14 T ← retrieve the tidth trajectory from external

memory;
15 hcss← HCSS(T,Q);
16 if distance < hcss then
17 distance← hcss;
18 id← tid;

19 return id;

The algorithm adopts a two phases strategy: filter and re-
finement. In the filter phase (lines 2-10), we generate a can-
didate set based on R-tree range search (i.e., search the area
covered by Bε(Q)) without introducing false dismissals; in
the refinement phase (lines 11-19), we retrieve each trajec-
tory appearing in the candidate set from the external mem-
ory, compute the exact similarity values, choose the one with
the largest HCSS value and return it as the most similar

trajectory. The correctness of the algorithm is guaranteed
by Theorem 1.

3.1 Adaptive Filter Strategy
If we look carefully at the filter phase, we will find that
Algorithm 1 conducts range search for every sample point
in the query trajectory. This, however, may not necessary,
as indicated by the following observation.

Observation 2 The query trajectory consists of a series of
sequential sample points which are usually spatially close.

As a result, there are many overlaps between the range
searches conducted in Algorithm 1. In Figure 1(b), we can
clearly see the overlaps between consecutive range searches
(rectangular areas). The multiple searching of these over-
lapping areas is obviously undesired as it will introduce un-
necessary IO cost. To remedy this, we introduce the concept
of grouping consecutive query points.

Definition 2. (Grouped area) For any two consecutive
points qi, qi+1 in the query trajectory, let their correspond-
ing rectangular areas are [(loni,1, lati,1), (loni,2, lati,2)] and
[(loni+1,1, lati+1,1), (loni+1,2, lati+1,2)], respectively. We group
them together and define their grouped area G(qi, qi+1) is as
[(lon1, lat1), (lon2, lat2)], where

lon1 = min(loni,1, loni+1,1)

lat1 = min(lati,1, lati+1,1)

lon2 = max(loni,2, loni+1,2)

lat2 = max(lati,2, lati+1,2)

In the same way, we define grouped area for k+1 consecutive
points qi, qi+1, · · · , qi+k as G(qi, qi+k). Figure 2 shows an
example, in which two smaller rectangular areas are grouped
together to form the larger one with red dashed edges.

(lon11, lat11)

(lon12, lat12)

(lon21, lat21)

(lon22, lat22)

(min(lon11, lon21), min(lat11, lat21))

(max(lon12, lon22), max(lat12, lat22))

Figure 2: Grouped area G(q1, q2)

To overcome the drawback caused by redundant IOs, one
solution is to group certain number of consecutive points to-
gether so that we can have just one range search to cover
the union of their rectangular areas. As illustrated in Fig-
ure 3(a), instead of conducting 5 range searches, we group
the 5 query sample points together and only search once
the grouped area G(q1, q5) bounded by the black box. This
method works in the reason that it covers more than the
original searching area (i.e., the ε-buffer of the query trajec-
tory) and therefore guarantees no false dismissals, while the
cost saved from overlapping search is quite enough to com-
pensate the extra cost from searching new dead space (the
white space between the shaded area and the black bounding
box in Figure 3(a)).

105



q1 q2 q3 q4 q5

(a)

q4

q3

q2

q1

(b)

Figure 3: Points distribution vs. dead space

A problem with this solution is how many consecutive points
shall be grouped together so that the extra cost introduced
by searching new dead space will not cancel out the saved
cost. If we group too few points, although the extra cost is
small, it may not effective to reduce the redundant IO cost;
if we group too many points, although the saved cost may
be a lot, it may also introduce too much new dead space and
the search cost on which would turn back canceling out the
benefit earned from the saved cost. Therefore, in pursuit of
keeping the total range search cost as small as possible, a
proper grouping strategy shall be developed to ensure the
balance between saving redundant IO cost and introducing
new cost.

One strategy is simply grouping fixed number of consecutive
points. This method, however, has the risk of bringing in too
much dead space if the consecutive points are distributed
as Figure 3(b) showing. To get rid of the risk, we need
to take the grouping process under control and develop an
adaptive grouping strategy. More specifically, we need to
develop a bound for the search space so that after grouping,
the grouped area will not surpass the boundary, thereby
bounding the introduced dead space. Under this condition,
we can aggressively group those consecutive points.

Definition 3. (α-boundary) Given a polyline L = {p1, p2,
· · · , pn} and α ≥ 0, let every line segment (pi, pi+1) be
moved α distance along both directions that perpendicu-
lar to it to get the upper and lower lines, we define the area
between all upper and all lower lines plussing the two outer
half circles centered at the end points of L with radius α as
the α-boundary of L, or Dα(L), as illustrated in Figure 4.

A B

C

D E

α
α

α

α

α

α

Figure 4: L = {A,B,C,D,E} and Dα(L)

We can easily see that the ε-buffer of the query trajec-
tory Q are covered by Q’s

√
2ε-boundary, namely Bε(Q) ⊆

D√
2ε(Q), because the perpendicular distance from every

point in Bε(Q) to the polyline Q is less or equal than
√

2ε.
However, we cannot use this boundary as a bound to do
grouping work owning to the fact that it is too tight to
group any consecutive points. In other words, we need a
more looser boundary.

Line simplification technique like Douglas-Peucker [6] algo-
rithm may drop us a hint on this. Given a distance thresh-
old δ > 0 and a polyline specified by a sequence of n points
{q1, q2, · · · , qn}, the goal of Douglas-Peucker algorithm is to
derive a simplified polyline to which the perpendicular dis-

tance of every point in the original polyline is at most δ.
The algorithm initially constructs the line segment (q1, qn).
It then identifies the point qi furthest to the line. If this
point’s perpendicular distance to the line is within δ, it re-
turns (q1, qn) and terminates. Otherwise it recursively ap-
plies the same process on the two sub-polylines {q1, · · · , qi}
and {qi, · · · , qn}.

After simplification, the original polyline is completely lying
within the δ-boundary of the simplified polyline, and this
implies if query trajectory Q is the original polyline, then
Q’s ε-buffer is completely within the (

√
2ε+ δ)-boundary of

the simplified polyline Q′, or formally, Bε(Q) ⊆ D√
2ε+δ(Q

′).

D√
2ε+δ(Q

′) can thus serve as an acceptable boundary for
grouping work. In specific, for every simplified segment,
we start grouping all those consecutive points from its start
point aggressively until the next to be grouped area sur-
passes the boundary. After grouping, if there are still some
points between the simplified line segment left ungrouped,
we then start the next grouping process until all points end
up within their own grouped areas. Algorithm 2 shows this
adaptive grouping strategy.

Algorithm 2: generateGroupedAreas(Q, ε, δ)

Input: query trajectory Q, threshold ε, threshold δ
Output: A list of grouped areas

1 ListG ← φ;
2 Q′ ← DouglasPeucker(Q[1 : m], δ);
3 j ← 2;
4 rect← [(+∞,+∞), (−∞,−∞)];
5 for i← 1 to m− 1 do
6 if i < Q′[j].subscript then
7 /* Grouping in the same simplified segment*/
8 rectcurr ← rectangular area of Q[i];
9 recttemp ← grouped area of rectcurr and rect;

10 if recttemp within D√
2ε+δ(Q

′) then
11 rect← recttemp;
12 else
13 ListG .add(rect);
14 /* Start the next grouping process */
15 rect← rectangular area of Q[i];

16 else
17 ListG .add(rect);
18 /* Start grouping the next simplified segment */
19 j ← j + 1;
20 rect← rectangular area of Q[i];

21 ListG .add(rectangular area of Q[m]); // The last one
22 return ListG ;

In Algorithm 2, line 10 checks whether the next to be grouped
area recttemp is within the (

√
2ε + δ)-boundary of Q′. It

does so by checking whether the perpendicular distances of
the four vertices in recttemp to the current simplified line
segment (Q′[j−1], Q′[j]) are all within

√
2ε+ δ. If yes, then

it returns true; otherwise it returns false.

As an example, for Q = {q1, · · · , q9}, Figure 5 shows the
grouping results, namely G(q1, q5),G(q6, q8) and G(q9, q9),
represented by the three red-edged rectangles. Also, the
black line {q1, q6, q9} in the figure represents the simplified
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polyline Q′ while the black dashed boundary depicts the
corresponding (

√
2ε+ δ)-boundary.

q1
q2
q3
q4
q5

q6q7
q8

q9

Figure 5: An example of grouped areas

In the best case, we can group all points between a simpli-
fied line segment into one grouped area (such as the G(q1, q5)
in Figure 5); while in the worst case, we cannot group any
two consecutive points at all. Fortunately, the worst case is
rare due to the loose boundary derived from line simplifica-
tion. Overall, the grouping effectiveness is influenced by a
variety of factors, including consecutive points distribution,
underline trajectory data distribution, and in particular, the
value of the distance threshold. Heuristically, setting δ to
ε/2 achieves good grouping effectiveness as confirmed by the
experiments.

According to the result in Figure 5, we now only need to
conduct 3 times of range search instead of the originally 9
times to produce the no-false-dismissal candidate set. This,
obviously, greatly reduces the search cost as the introduced
dead space is much smaller than the repetitive searched over-
lapping areas. Since we solve the problem caused by over-
lapping search, we can slightly modify Algorithm 1 to adopt
the new adaptive filter strategy. Specifically, we call Algo-
rithm 2 between lines 3 and 4 to produce a list of grouped
areas ListG , replace line 4 with “foreach rect in ListG do”
and delete line 5 to get the new algorithm.

3.2 A Better Refinement Strategy
For the refinement phase in Algorithm 1, it simply retrieves
every candidate trajectory from the external memory and
conducts the quadratic HCSS computation w.r.t. Q to get
the most similar trajectory, which, in some extent, bears
heavy IO and computation cost. Also, comparing with the
original filter strategy, the adaptive filter strategy although
successfully reduces the overall range search cost, but it also
raises the chance to return more candidate trajectories ow-
ing to search the introduced dead space. This may further
increase the cost of the refinement phase. Is it possible to
reduce this cost?

Observation 3 Among the large number of returned can-
didate trajectories in filter phase, only one or a few trajec-
tories have the chance to be the most similar trajectory.

This observation suggests us designing a better refinement
strategy is not impossible. Such as if we develop an upper
bound for HCSS, we then can prune most of the unrelated
trajectories.

From the adaptive grouping strategy in previous section, af-
ter grouping, we know every point in the query trajectory
belongs to one and only one grouped area, although be-
tween grouped areas some small overlaps may exist. For one

grouped area, let k be the number of grouped consecutive
points, and let w be the largest weight among the k corre-
sponding weights. Then the product value k∗w is called the
group weight or denoted as W. Each grouped area carries
its own group weight. For example, the first grouped area
G(q1, q5) in Figure 5 grouped five points, if we assume the
largest weight among the five corresponding weights is 0.7,
then we have k = 5, w = 0.7, and G(q1, q5) carries the group
weight W = 5 ∗ 0.7 = 3.5.

Definition 4. (HGSS) For any T in the trajectory database,
givenQ and the corresponding grouped areas {G1,G2, · · · ,GK},
we define the Heaviest Grouped Subsequence between them

HGSS(T,Q) =

K∑
i=1

F (i)

where F (i) = Gi.W if T has at least one sample points in
grouped area Gi, otherwise F (i) = 0.

Lemma 1. HGSS is an upper bound of HCSS, that is,
HGSS(T,Q) ≥ HCSS(T,Q).

Proof. Let Q = {q1, q2, · · · , qm}, then HCSS(T,Q) =∑m
i=1 f(i), where f(i) = wi if during the computation pro-

cess qi contributes wi to the final HCSS value, otherwise
f(i) = 0. Consider any grouped area Gj(qs, qe), if T has one
sample point within this area, then

F (j) =

e∑
i=s

max{ws, ws+1, · · · , we} ≥
e∑
i=s

wi ≥
e∑
i=s

f(i)

otherwise F (j) = 0 =
∑e
i=s f(i). Thus, we have

∑K
i=1 F (i) ≥∑m

i=1 f(i).

Since the HGSS can be obtained in the filter phase with
negligible cost, we now can design a better strategy for the
refinement process.

As shown in Algorithm 3, in the refinement step, we sort
all returned candidate trajectories in descending order by
HGSS value (line 12), and then visit the first element and
compute the exact HCSS value (lines 15-16). If it no less
than the HGSS of the next unvisited trajectory (lines 20-
22), we return the one with largest HCSS value among all
visited trajectories as the most similar trajectory and then
terminate, as the HCSS values of the rest trajectories are no
larger than the current HCSS value; otherwise we continue
this process with the next unvisited trajectory.

Integrated with the adaptive filter strategy and the better
refinement strategy, Algorithm 3 is the final optimized algo-
rithm to our user oriented trajectory similarity search.

4. THEORETICAL ANALYSIS
Our upcoming experiments show that our method can ef-
ficiently handle the query process. In this section, we do
a theoretical analysis to demonstrate the complexity of the
proposed method.

Let the database contain N trajectories and every trajectory
on average has the length of n sample points. Let the query
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Algorithm 3: OptimizedMST(TR, Q, ε, δ)

Input: R-tree root TR, query trajectory Q, threshold ε,
threshold δ

Output: The unique id of the most similar trajectory
1 id←∞;
2 /* Filter phase */
3 ListC ← φ; // the candidate set
4 ListG ← generateGroupedAreas(Q, ε, δ);
5 foreach rect in ListG do
6 ListP ← TR.rangeSearch(rect);
7 foreach sample point p in ListP do
8 tid← p.getT id();
9 if ListC.contain(tid) is not ture then

10 ListC .add(tid);

11 /* Refinement phase */
12 Sort ListC in descending order by HGSS;
13 distance← −∞;
14 for i← 1 to ListC .length do
15 T ← retrieve the ListC [i].tidth trajectory from external

memory;
16 hcss← HCSS(T,Q);
17 if distance < hcss then
18 distance← hcss;
19 id← tid;

20 if hcss ≥ ListC [i+ 1].HGSS then
21 /* Prune the rest trajectories */
22 break;

23 return id;

trajectory have the length of m. Let the average cost retriev-
ing one trajectory from the database be C. As the similarity
value HCSS is derived in a dynamic programming manner,
its computation cost is O(mn). For the naive method, as
it has to retrieve every trajectory from the database and
compute the exact HCSS value, its complexity consists IO
cost O(NC) as well as computation cost O(Nmn), namely
O(N(C +mn)).

Let CR be the average range search cost on R-tree; let ξ1 be
the candidate trajectory rate. The complexity of Algorithm
1 consists two parts: filter cost O(mCR) and refinement cost
O(ξ1N(C +mn), therefore it is O(mCR + ξ1N(C +mn)).

Let ξ2 be the actually processed trajectory rate after prun-
ing; let m′ be the number of grouped areas. Obviously,
ξ2 < ξ1 and m′ < m. As in the adaptive filter strategy
we bound the introduced dead space, we expect the aver-
age range search in Algorithm 3 is almost the same with
CR, or at most constant times of CR, therefore the filter
cost of Algorithm 3 is O(m′CR), and the complexity of it is
O(m′CR + ξ2N(C +mn)).

To sum up, the complexities of the three algorithms are
shown in Table 1.

Generally, the range searching cost is far less than the cost
of retrieval all trajectories from database, i.e., mCR � NC,
and the rates ξ1 and ξ2 are also expected to be small, such as
less than 10%, then Algorithm 1 and 3 are far more efficient

Table 1: Algorithm complexity
Algorithm Complexity

Naive O(N(C +mn))
MST O(mCR + ξ1N(C +mn))
OptimizedMST O(m′CR + ξ2N(C +mn))

than the naive method, as confirmed by our experiments.

5. EXPERIMENTS
In this section, we refer Algorithm 1 as MST , Algorithm 3
as OMST , and the naive method as Naive. We then design
experiments to answer the following questions:

1. Compared with the Naive method, what are the per-
formance of our methods: MST , OMST?

2. In terms of saved IO cost, what is the performance of
the adaptive filter strategy?

3. In terms of saved cost (both IO and computation),
what is the performance of the better refinement strat-
egy?

We measure the IO cost in question 2 with the number of
disk blocks that the algorithm visits during the range search;
meanwhile, we measure the saved cost in question 3 with
the number of trajectories retrieved from disk and processed
during the refinement phase.

Since the matching threshold ε is application dependent [13],
we run several probing programs on each dataset and choose
the one close to human observations. Also, we set the dis-
tance threshold δ as ε/2.

5.1 Settings
Dataset: We use Beijing dataset for the experiment. The
dataset is a three-day taxi trajectory dataset whose distri-
bution is shown in Figure 6. After cleaning, the dataset
contains 6176841 sample points and consists of 30284 tra-
jectories with lengths varying from 20 to 1400.

Figure 6: The Beijing Dataset

To mimic the scenario that the dataset is too large to resi-
dent in main memory, we put the dataset in external mem-
ory and use an R-tree to index it. In the R-tree, we set the
page size 4096 bytes, the capacities and the fill factors (both
node and leaf) 100 and 70%, respectively.

The query trajectories are divided into six groups whose
lengths are 40, 80, 160, 320, 640, 1280, respectively. Each
group consists of 50 trajectories and the cost is obtained
from the average of the corresponding items. For each query
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trajectory, we use a random function to weight its sample
points.

Environments: All these algorithms are implemented in
Java and examined on a Windows XP platform with Intel
Core i7 CPU (2.93GHz) and 3.5GB memory.

5.2 Performance
Figure 7(a) shows the query time of the three algorithms
in histogram. From it we can see the Naive method takes
the longest time for each query. As a matter of fact, even
for queries as short as 40, it still takes about 20 seconds to
get the answer. While for our proposed method MST , the
answering time is significantly shorter. Even for the longest
queries, it only takes about 20 seconds to get the answer.
The optimized OMST algorithm is the most efficient algo-
rithm. Its answering time is significantly shorter than the
corresponding time of MST and drastically shorter than the
corresponding time of Naive.
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Figure 7: The query time

Figure 7(b) shows the query time in the real length scale.
As the computation cost of the similarity value is quadratic
to the query length, if we only count on the computation
cost, the query time should be quadratic to the length. But
the real time is nearly linear. This implies that the IO cost
plays an important part in the query process.
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Figure 8: Range query efficiency

Figure 8 illustrates the number of disk blocks that the two al-
gorithm visits during the filter phase with the range queries.
Since algorithm OMST adopts the adaptive filter strategy,
from the figure, we can see its IO cost is significantly smaller
than the corresponding cost in MST , which implies the
adaptive filter strategy is quite effective.

In Figure 9, the MST denotes the number of trajectories
in the candidate set in Algorithm 1 and also the number of
processed trajectories in the refinement phase; the OMST
denotes the number of trajectories in the candidate set with
the adaptive filter strategy in Algorithm 3 and the OMST -
prune denotes the number of actually processed trajectories
in the refinement phase after pruning. We can see the num-
ber of trajectories of OMST is significantly higher than that
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Figure 9: Processed trajectories

of MST due to the introduced dead space in the adaptive
filter strategy, while after pruning, the number of actually
processed trajectories is much smaller than that of MST
and OMST , which implies the pruning ability of the upper
bound is quite good.
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Figure 10: The prune power

Figure 10(a) shows the relative prune power of the prun-
ing techniques over MST and OMST . The relative prune
power is defined to be the fraction of candidate trajectories
being pruned in the refinement phase. We can see both the
relative pruning powers in MST and OMST are around
80%, which from another perspective demonstrates the ef-
fectiveness of our pruning techniques. Figure 10(b) shows
the absolute prune power of Algorithm 1 and Algorithm 3,
where the absolute prune power is the fraction of trajectories
being pruned in the refinement phase w.r.t. all trajectories
in the database. For Algorithm 1, the prune power is above
83%; while for Algorithm 3, the prune power is above 95%.
Having the ability to prune most trajectories in the database
is the main reason that Algorithm 1 and Algorithm 3 are far
more efficient than the Naive method.

6. RELATED WORK
Trajectory similarity search has been studied for decades.
From the earliest similarity measures like Euclidean-based
distance [1, 15, 11], Dynamic Time Warping (DTW) [16, 9,
4] to the more recently similarity measures like Edit Distance
on Real sequence (EDR) [3], Longest Common Subsequence
(LCSS) [13], a consider amount of methods have been pro-
posed. Among these methods, Euclidean-based distance and
DTW are sensitive to noise, while the EDR and LCSS are
more robust and accurate. However, none of these work con-
siders user oriented similarity search, which is exactly what
we study in this paper.

In [13] Vlachos et al. suggest using LCSS as the similarity
measure, which matches two sequences by allowing them to
stretch, without rearranging the sequence of elements but
allowing some elements to be unmatched. As a result, the
LCSS measure can efficiently handle outliers (or noise) that
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often exist in trajectories due to sensor failures, error in de-
tection techniques and disturbance signals. A cluster-based
indexing is proposed to improve the retrieval efficiency using
LCSS. The performance of this indexing method depends on
the clustering results. However, due to LCSS not following
triangle inequality, it is hard to find good clusters and rep-
resenting points in the data set [8]. Besides, [13] considers
shape similarity allowing spatial shifting between trajecto-
ries, which is quite different form our settings: the spatial
shifting is strictly prohibited.

Chen et al. in [3] propose EDR as a similarity measure
which considers spatial shifting as well as assigning penalties
according to the sizes of gaps in between similar shapes.
Three pruning techniques are also developed to speed up
the query process. But under the condition of user specified
query where the relative importance of each sample point is
considered, the pruning techniques are no longer hold.

In the query trajectory, if we set all the significant points as
weight 1, and other points as weight 0, then this work bears
some resemblance to [5] in which Chen et al. explore search-
ing trajectories by specifying a series locations. However,as
the number of specified locations may be a few, in our work,
we study a more general problem with arbitrary number of
sample points (theoretically) where each sample point may
pertain to arbitrary weight.

There are also some interesting work [20, 19, 18, 17, 10] us-
ing data mining techniques to find the semantic aspects of
trajectories. In these work, each trajectory is firstly trans-
formed into a semantic trajectory, then based on semantic
representing the system does friends recommendation. Dif-
ferent from these work, our work towards providing person-
alized recommendation in which the preference (or signifi-
cance) is designated by users.

7. CONCLUSION
In this paper, we study a new problem of user-oriented tra-
jectory similarity search, in which each user can specify their
own important parts in the query trajectory to get the per-
sonalized searching results. We identify the efficiency issue
as the key challenge and develop a two-phase algorithm tak-
ing advantage of the spatial localities to conquer this chal-
lenge. As we observe that there are some redundant IOs in
the filter phase and only few trajectories have the chance to
be returned in the refinement phase, we develop two opti-
mized strategies to speed up the query process. The theo-
retical analysis and the experiment results demonstrate the
effectiveness of the two optimized strategies and justify the
advantage of the proposed methods over the naive method
for at least an order of magnitude. Furthermore, the pro-
posed methods are easy to implement and incorporate into
trajectory databases.
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