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ViDE: A Vision-based Approach for Deep Web
Data Extraction
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Abstract—Deep web contents are accessed by queries submitted to web databases and the returned data records are enwrapped
in dynamically generated web pages (they will be called deep web pages in this paper). Extracting structured data from deep web
pages is a challenging problem due to the underlying intricate structures of such pages. Until now, a large number of techniques have
been proposed to address this problem, but all of them have inherent limitations because they are web page programming language
dependent. As the popular two-dimensional media, the contents on web pages are always displayed regularly for users to browse.
This motivates us to seek a different way for deep web data extraction to overcome the limitations of previous works by utilizing some
interesting common visual features on the deep web pages. In this paper, a novel vision-based approach that is web page programming
language independent is proposed. This approach primarily utilizes the visual features on the deep web pages to implement deep web
data extraction, including data record extraction and data item extraction. We also propose a new evaluation measure revision to
capture the amount of human effort needed to produce perfect extraction. Our experiments on a large set of web databases show that
the proposed vision-based approach is highly effective for deep web data extraction.

Index Terms—Web mining, web data extraction, visual features of deep web pages, wrapper generation.
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1 INTRODUCTION

THE World Wide web has more and more online
web databases which can be searched through their

web query interfaces. The number of web databases has
reached 25 millions according to a recent survey [21]. All
the web databases make up the deep web (hidden web
or invisible web). Often the retrieved information (query
results) is enwrapped in web pages in the form of data
records. These special web pages are generated dynami-
cally and are hard to index by traditional crawler-based
search engines, such as Google and Yahoo. In this paper,
we call this kind of special web pages deep web pages.
Each data record on the deep web pages corresponds
to an object. For instance, Fig. 1 shows a typical deep
web page from Amazon.com. On this page, the books
are presented in the form of data records, and each data
record contains some data items such as title, author,
etc. In order to ease the consumption by human users,
most web databases display data records and data items
regularly on web browsers.

However, to make the data records and data items
in them machine processable, which is needed in many
applications such as deep web crawling and meta-
searching, the structured data need to be extracted from
the deep web pages. In this paper, we study the problem
of automatically extracting the structured data, including
data records and data items, from the deep web pages.
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Fig. 1. An example deep web page from Amazon.com

The problem of web data extraction has received a lot
of attention in recent years and most of the proposed
solutions are based on analyzing the HTML source code
or the tag trees of the web pages (please see Section
II for a review of these works). These solutions have
the following main limitations: First, they are web page
programming language dependent, or more precisely,
HTML dependent. As most web pages are written in
HTML, it is not surprising that all previous solutions
are based on analyzing the HTML source code of web
pages. However, HTML itself is still evolving (from
version 2.0 to the current version 4.01, and version 5.0
is being drafted [14]) and when new versions or new
tags are introduced, the previous works will have to be
amended repeatedly to adapt to new versions or new
tags. Furthermore, HTML is no longer the exclusive web
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page programming language, and other languages have
been introduced, such as XHTML and XML (combined
with XSLT and CSS). The previous solutions now face the
following dilemma: should they be significantly revised
or even abandoned? Or should other approaches be pro-
posed to accommodate the new languages? Second, they
are incapable of handling the ever-increasing complexity
of HTML source code of web pages. Most previous
works have not considered the scripts, such as JavaScript
and CSS, in the HTML files. In order to make web pages
vivid and colorful, web page designers are using more
and more complex JavaScript and CSS. Based on our
observation from a large number of real web pages,
especially deep web pages, the underlying structure of
current web pages is more complicated than ever and is
far different from their layouts on web browsers. The
makes it more difficult for existing solutions to infer
the regularity of the structure of web pages by only
analyzing the tag structures.

Meanwhile, to ease human users’ consumption of the
information retrieved from search engines, good tem-
plate designers of deep web pages always arrange the
data records and the data items with visual regularity to
meet the reading habits of human beings. For example,
all the data records in Fig. 1 are clearly separated, and
the data items of the same semantic in different data
records are similar on layout and font.

In this paper, we explore the visual regularity of the
data records and data items on deep web pages and
propose a novel vision-based approach, ViDE (Vision-
based Data Extractor), to extract structured results from
deep web pages automatically. ViDE is primarily based
on the visual features human users can capture on
the deep web pages while also utilizing some simple
non-visual information such as data types and frequent
symbols to make the solution more robust. ViDE consists
of two main components, ViDRE (Vision-based Data
Record extractor) and ViDIE (Vision-based Data Item
extractor). By using visual features for data extraction,
ViDE avoids the limitations of those solutions that need
to analyze complex web page source files.

Our approach employs a four-step strategy. First,
given a sample deep web page from a web database,
obtain its visual representation and transform it into a
Visual Block tree which will be introduced later; second,
extract data records from the Visual Block tree; third,
partition extracted data records into data items and align
the data items of the same semantic together; fourth,
generate visual wrappers (a set of visual extraction rules)
for the web database based on sample deep web pages
such that both data record extraction and data item
extraction for new deep web pages that are from the
same web database can be carried out more efficiently
using the visual wrappers.

To our best knowledge, although there are already
some works [3][4][23][26][28] that pay attention to the
visual information on web pages, our work is the first to
perform deep web data extraction using primarily visual

features. Our approach is independent of any specific
web page programming language. Although our current
implementation uses the VIPS algorithm [4] to obtain a
deep web page’s Visual Block tree and VIPS needs to
analyze the HTML source code of the page, our solution
is independent of any specific method used to obtain
the Visual Block tree in the sense that any tool that can
segment the web pages into a tree structure based on the
visual information, not HTML source code, can be used
to replace VIPS in the implementation of ViDE.

In this paper, we also propose a new measure, revision,
to evaluate the performance of web data extraction tools.
It is the percentage of the web databases whose data
records or data items cannot be perfectly extracted (i.e.,
at least one of the precision and recall is not 100%). For
these web databases, manual revision of the extraction
rules is needed to achieve perfect extraction.

In summary, this paper has the following contribu-
tions. (1) A novel technique is proposed to perform
data extraction from deep web pages using primarily
visual features. We open a promising research direction
where the visual features are utilized to extract deep
web data automatically. (2) A new performance measure,
revision, is proposed to evaluate web data extraction
tools. This measure reflects how likely a tool will fail
to generate a perfect wrapper for a site. (3) A large data
set consisting of 1,000 web databases across 42 domains
is used in our experimental study. In contrast, the data
sets used in previous works seldom had more than 100
web databases. Our experimental results indicate that
our approach is very effective.

The rest of the paper is organized as follows. Related
works are reviewed in Section 2. Visual representation
of deep web pages and visual features on deep web
pages are introduced in Section 3. Our solutions to data
record extraction and data item extraction are described
in Sections 4 and 5, respectively. Wrapper generation is
discussed in Section 6. Experimental results are reported
in Section 7. Finally, concluding remarks are given in
Section 8.

2 RELATED WORK
A number of approaches have been reported in the liter-
ature for extracting information from web pages. Good
surveys about previous works on web data extraction
can be found in [16] and [5]. In this section, we briefly re-
view previous works based on the degree of automation
in web data extraction, and compare our approach with
fully automated solutions since our approach belongs to
this category.

2.1 Manual Approaches

The earliest approaches are the manual approaches in
which languages were designed to assist programmer
in constructing wrappers to identify and extract all the
desired data items/fields. Some of the best-known tools
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that adopt manual approaches are Minerva [7], TSIM-
MIS [11] and Web-OQL [1]. Obviously, they have low
efficiency and are not scalable.

2.2 Semi-automatic Approaches
Semi-automatic techniques can be classified into
sequence-based and tree-based. The former, such as
WIEN [15], Soft-Mealy [12] and Stalker [22], represent
documents as sequences of tokens or characters, and
generate delimiter-based extraction rules through a set
of training examples. The latter, such as W4F [24] and
XWrap [19], parse the document into a hierarchical tree
(DOM tree), based on which they perform the extraction
process. These approaches require manual efforts, for
example, labeling some sample pages, which is labor
intensive and time consuming.

2.3 Automatic Approaches
In order to improve the efficiency and reduce man-
ual efforts, most recent researches focus on automatic
approaches instead of manual or semi-automatic ones.
Some representative automatic approaches are Omini [2],
RoadRunner [8], IEPAD [6], MDR [17], DEPTA [29], and
the method in [9]. Some of these approaches perform
only data record extraction but not data item extraction,
such as Omini and the method in [9]. RoadRunner,
IEPAD, MDR, DEPTA, Omini and the method in [9]
do not generate wrappers, i.e., they identify patterns
and perform extraction for each web page directly
without using previously derived extraction rules. The
techniques of these works have been discussed and
compared in [5], and we do not discuss them any
further here. Note that all of them mainly depend on
analyzing the source code of Web pages. As a result,
they cannot avoid the inherent limitations described in
the introduction. In addition, there are several works
(DeLa [27], DEPTA and the method in [20]) on data
item extraction, which is a preparation step for holistic
data annotation, i.e., assigning meaningful labels to data
items. DeLa utilizes HTML tag information to construct
regular expression wrapper and extract data items into
a table. Similar to DeLa, DEPTA also operates on HTML
tag tree structures to first align data items in a pair
of data records that can be matched with certainty.
The remaining data items are then incrementally added.
However, both data alignment techniques are mainly
based on HTML tag tree structures, not visual infor-
mation. The automatic data alignment method in [20]
proposes a clustering approach to perform alignment
based on five features of data items, including font of
text. However, this approach is primarily text based and
tag structure based while our method is primarily visual
information based.

The only works that we are aware of that utilize some
visual information to extract web data are ViNTS [30],
ViPERS [25], HCRF [32], and VENTex [10]. ViNTs uses
the visual content features on the query result pages to

capture content regularities denoted as Content Lines,
and then utilizes the HTML tag structures to combine
them. ViPER also incorporates visual information on a
web page for data records extraction with the help of a
global multiple sequence alignment technique. However,
in the two approaches, tag structures are still the primary
information utilized while visual information plays a
small role. In addition, both of them only focus on
data record extraction, without considering data item
extraction. HCRF is a probabilistic model for both data
record extraction and attribute labeling. Compared to
our solution, it also uses VIPS algorithm [4] to represent
web pages, but the tag information is still an important
feature in HCRF. And furthermore, it is implemented
under an ideal assumption that every record corresponds
to one block in the Visual Block tree, but this assumption
is not always correct according to our observation to the
real web pages (about 20% of deep web pages do not
meet this assumption). VENTex implements the infor-
mation extraction from web tables based on a variation
of the CSS2 visual box model. So it can be regarded as
the only related work using pure visual features. The
main difference between our approach and VENTex is
their objectives. VENTex aims to extract various forms
of tables that are embedded in common pages whereas
our approach focuses on extracting regularly arranged
data records and data items from deep web pages.

3 VISUAL BLOCK TREE AND VISUAL
FEATURES
Before the main techniques of our approach are pre-
sented, we describe the basic concepts and visual fea-
tures that our approach needs.

3.1 Visual Information of Web Pages

The information on web pages consists of both texts
and images (static pictures, flash, video, etc.). The visual
information of web pages used in this paper includes
mostly information related to web page layout (location
and size) and font.

3.1.1 Web page layout
A coordinate system can be built for every web page. The
origin locates at the top left corner of the web page. The
X-axis is horizontal left-right, and the Y-axis is vertical
top-down. Suppose each text/image is contained in a
minimum bounding rectangle with sides parallel to the
axes. Then, a text/image can have an exact coordinate
(x, y) on the web page. Here x refers to the horizontal
distance between the origin and the left side of its
corresponding rectangle, while y refers to the vertical
distance between the origin and the upper side of its
corresponding box. The size of a text/image is its height
and width.

The coordinates and sizes of texts/images on the web
page make up the web page layout.
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Font factor ExampleFont factorExample

Size AunderlineA (10pt)

AitalicA(Sans Serif)

color AweightA (red)

strikethrough AframeA 

Table 1.
Font attributes and examples

3.1.2 Font

The fonts of the texts on a web page are also very use-
ful visual information, which are determined by many
attributes as shown in Table 1. Two fonts are considered
to be the same only if they have the same value under
each attribute.

3.2 Deep Web Page Representation

The visual information of web pages, which has been
introduced above, can be obtained through the program-
ming interface provided by web browsers (i.e. IE). In this
paper, we employ the VIPS algorithm [4] to transform a
deep web page into a Visual Block tree and to extract
the visual information. A Visual Block tree is actually a
segmentation of a web page. The root block represents
the whole page, and each block in the tree corresponds
to a rectangular region on the web page. The leaf blocks
are the blocks that cannot be segmented further, and
they represent the minimum semantic units, such as
continuous texts or images. Fig. 2(a) shows a popular
presentation structure of deep web pages and Fig. 2(b)
gives its corresponding Visual Block tree. The technical
details of building Visual Block trees can be found in
[4]. An actual Visual Block tree of a deep web page may
contain hundreds even thousands of blocks.

Visual Block tree has three interesting properties. First,
block a contains block b if a is an ancestor of b. Second,
a and b do not overlap if they do not satisfy property
one. Third, the blocks with the same parent are arranged
in the tree according to the order of the corresponding
nodes appearing on the page. These three properties
are illustrated by the example in Fig. 2. The formal
representations for internal blocks and leaf blocks in
our approach are given below. Each internal block a is
represented as a = (CS, P, S, FS, IS), where CS is the set
containing its child blocks (note that, the order of blocks
is also kept), P is the position of a (its coordinates on
the web page), S is its size (height and width), FS is the
set of the fonts appearing in a, and IS is the number of
images in a. Each leaf block b is represented as b = (P, S,
F, L, I, C), where the meanings of P and S are the same
as those of an inner block, F is the font it uses, L denotes
whether it is a hyperlink text, I denotes whether it is an
image, and C is its content if it is a text.

b1_1

b1_2

b2_1

b2_2

b3_2

b3_3

b3_4

b3_5

b3_1

b3_6

b1

b2
b3

(a)

Deep web page

b1 b2 b3

b1_1 b1_2 b2_1 b2_2

b3_1 b3_2 b3_3 b3_4 b3_5 b3_6

(b)

Fig. 2. The presentation structure (a) and its Visual Block
tree (b)

3.3 Visual Features of Deep Web Pages

Web pages are used to publish information to users,
similar to other kinds of media, such as newspaper
and TV. The designers often associate different types
of information with distinct visual characteristics (such
as font, position, etc.) to make the information on web
pages easy to understand. As a result, visual features
are important for identifying special information on web
pages. Deep web pages are special web pages that con-
tain data records retrieved from web databases, and we
hypothesize that there are some distinct visual features
for data records and data items. Our observation based
on a large number of deep web pages is consistent with
this hypothesis. We describe the main visual features in
this section, and show the statistics about the accuracy
of these features at the end of this Subsection 3.3.

Position Features (PF): These features indicate the
location of the data region on a deep web page.

PF1: Data regions are always centered horizontally.
PF2: The size of the data region is usually large relative

to the area size of the whole page.
Since the data records are the contents in focus on deep

web pages, web page designers always have the region
containing the data records centrally and conspicuously
placed on pages to capture the user’s attention. By
investigating a large number of deep web pages, we
found two interesting facts. First, data regions are always
located in the middle section horizontally on deep web
pages. Second, the size of a data region is usually large
when there are enough data records in the data region.
The actual size of a data region may change greatly
because it is not only influenced by the number of
data records retrieved but also by what information is
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Fig. 3. Layout models of data records on deep web pages
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Table 2
Relevant visual information about the top five 

data records in Fig. 1

included in each data record. Therefore, our approach
uses the ratio of the size of the data region to the size of
whole deep web page instead of the actual size. In our
experiments in Section 7, the threshold of the ratio is set
at 0.4, that is, if the ratio of the horizontally centered
region is greater than or equal to 0.4, then the region is
recognized as the data region.

Layout Features (LF): These features indicate how the
data records in the data region are typically arranged.

LF1: The data records are usually aligned flush left in
the data region.

LF2: All data records are adjoining.
LF3: Adjoining data records do not overlap, and the

space between any two adjoining records is the same.
Data records are usually presented in one of the two

layout models shown in Fig. 3. In Model 1, the data
records are arranged in a single column evenly, though
they may be different in width and height. LF1 implies
that the data records have the same distance to the left
boundary of the data region. In Model 2, data records
are arranged in multiple columns, and the data records
in the same column have the same distance to the left
boundary of the data region. Because most deep web
pages follow the first model, we only focus on the
first model in this paper, and the second model can
be addressed with minor implementation expansion to
our current approach. In addition, data records do not
overlap, which means that the regions of different data
records can be separated.

Appearance Features (AF): These features capture the
visual features within data records.

AF1: Data records are very similar in their appear-

Fig. 4. Illustrating visual features of deep web pages

ances, and the similarity includes the sizes of the images
they contain and the fonts they use.

AF2: The data items of the same semantic in different
data records have similar presentations with respect to
position, size (image data item) and font (text data item).

AF3: The neighboring text data items of different
semantics often (not always) use distinguishable fonts.

AF1 describes the visual similarity at the data record
level. Generally, there are three types of data contents in
data records, i.e. images, plain texts (the texts without
hyperlinks) and link texts (the texts with hyperlinks).
Table 2 shows the information on the three aspects for
the data records in Fig. 1. We can see that these five data
records are very close on the three aspects. AF2 and AF3
describe the visual similarity at the data item level. The
text data items of the same semantic always use the same
font, and the image data items of the same semantic
are often similar in size. The positions of data items in
their respective data records can be classified into two
kinds: absolute position and relative position. The former
means that the positions of the data items of certain
semantic are fixed in the line they belong to, while the
latter refers to the position of a data item relative to the
data item ahead of it. Furthermore, the items of the same
semantic from different data records share the same kind
of position. AF3 indicates that the neighboring text data
items of different semantics often use distinguishable
fonts. However, AF3 is not a robust feature because
some neighboring data items may use the same font.
Neighboring data items with the same font are treated
as a composite data item. Composite data items have very
simple string patterns and the real data items in them
can often be separated by a limited number of symbols,
such as ”,”, ”/” etc. In addition, the composite data items
of the same semantics share the same string pattern.
Hence it’s easy to break composite data items into real
data items using some predefined separating symbols.
For example, in Fig. 4, four data items, publisher, pub-
lishing date, edition and ISBN, form a composite data
item, and they are separated by commas. According to
our observation to deep web pages, the granularity of the
data items extracted is not larger than what HTML tags
can separate, because a composite data item is always
included in one leaf node in the tag tree.

Content Feature (CF): These features hint the regular-
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Feature type Statistics StatisticsFeature type

Position 
Features

Layout 
Features

PF1

PF2

AF1

AF2

AF3

Appearance 
Features

CF1

CF2

CF3

Content 
Features

LF1

LF2

LF3

99.9%

99.9%

99.3%

100%

100%

99.5%

100%

100%

100%

6.5%

Table 3
The statistics on the visual features

ity of the contents in data records.
CF1: The first data item in each data record is always

of a mandatory type.
CF2: The presentation of data items in data records

follows a fixed order.
CF3: There are often some fixed static texts in

data records, which are not from the underlying web
database.

The data records correspond to the entities in real
world, and they consist of data items with different
semantics that describe the attribute values of the en-
tities. The data items can be classified into two kinds:
mandatory and optional. Mandatory data items appear in
all data records. For example, if every data record must
have a title, then titles are mandatory data items. In
contrast, optional items may be missing in some data
records. For example, ”discounted price” for products is
likely an optional unit. The order of different types of
data items from the same web database is always fixed
in data records. For example, the order of attributes of
data records from Bookpool.com in Fig. 4 is ”title”, ”au-
thor”, ”publisher”, ”publish time”, ”edition”, ”ISBN”,
”discount price”, ”save money”, ”availability”, etc. Fixed
static texts refer to the texts that appear in every data
record. Most of them are meaningful labels that can help
users understand the semantics of data items, such as
”Buy new” in Fig. 4. We call these static texts static items,
which are part of the record template.

Our deep web data extraction solution is developed
mainly based on the above four types of visual features.
PF is used to locate the region containing all the data
records on a deep web page; LF and AF are combined
together to extract the data records and data items.

Statistics on the Visual Features

To verify the robustness of these visual features we
observed, we examined these features on 1,000 deep web
pages of different web databases from the General Data
Set (GDS) used in our experiments (see Section 7 for
more information about GDS). The results are shown in
Table 3. For most features (except AF3 and CF3), their
corresponding statistics are the percentages of the deep
web pages that satisfy them. For example, the statistics
of 99.9% for PF1 means that for 99.9% of the deep web

Special complementary 
information

Remarks

Same text
Given two texts, we can determine 
whether or not they are the same.

Frequent symbol

Given the deep web pages of a web database, 

if some symbols/words (e.g., ISBN, $) 

appear in all the data items of an attribute, 

they are called frequent symbols.

Data type
They are predefined, including image, 
text, number, date, price, email, etc

Table 4
Non-visual Information Used

pages, PF1 feature ”data regions are always centered
horizontally” is true. From the statistics we can conclude
that these visual features are very robust and can be
reliably applied to general deep web pages. For AF3,
92.8% is the percentage of the data items that have
different font from their following data items. For CF3,
6.5% is the percentage of the static data items over all
data items.

We should point out that when a feature is not satis-
fied by a page, it does not mean that ViDE will fail to
process this page. For example, our experiments using
the datasets to be described in Section 7 show that
among the pages that violate LF3, 71.4% can still be
processed successfully by ViDE, and among the pages
that violate AF1, 80% can still be correctly processed.

3.4 Special supplementary information
Several types of simple non-visual information are also
used in our approach in this paper. They are same text,
frequent symbol, and data type, as explained in Table 4.

Obviously, the above information is very useful to
determine whether the data items in different data
records from the same web database belong to the same
semantic. The above information can be captured easily
from the web pages using some simple heuristic rules
without the need to analyze the HTML source code or
the tag trees of the web pages. Furthermore, they are
specific language (i.e. English, French, etc) independent.

4 DATA RECORDS EXTRACTION
Data record extraction aims to discover the boundary of
data records and extract them from the deep web pages.
An ideal record extractor should achieve the following:
(1) all data records in the data region are extracted; (2)
for each extracted data record, no data item is missed
and no incorrect data item is included.

Instead of extracting data records from the deep web
page directly, we first locate the data region, and then
extract data records from the data region. PF1 and PF2
indicate that the data records are the primary content
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b1

b2

b3

b4

b5

b6

b7

b8

b9

Data Region

b1 b2 b3 b4 b5 b6 b7 b8 b9

Data record 1 Data record 2 Data record 3

Fig. 5. A general case of data region

on the deep web pages and the data region is centrally
located on these pages. The data region corresponds
to a block in the Visual Block tree. We locate the data
region by finding the block that satisfies the two position
features. Each feature can be considered as a rule or a
requirement. The first rule can be applied directly, while
the second rule can be represented by (areab/areapage) >
Tregion, where areab is the area of block b, areapage is
the area of the whole deep web page, and Tregion is a
threshold. The threshold is trained from sample deep
web pages. If more than one block satisfies both rules,
we select the block with the smallest area. Though very
simple, this method can find the data region in the Visual
Block tree accurately and efficiently.

Each data record corresponds to one or more sub-trees
in the Visual Block tree, which are just the child blocks
of the data region, as Fig. 5 shows. So we only need to
focus on the child blocks of the data region. In order to
extract data records from the data region accurately, two
facts must be considered. First, there may be blocks that
do not belong to any data record, such as the statistical
information (e.g., about 2,038 matching results for java)
and annotation about data records (e.g., 1 2 3 4 5 [Next]).
These blocks are called noise blocks in this paper. Noise
blocks may appear in the data region because they are
often close to the data records. According to LF2, noise
blocks cannot appear between data records. They always
appear at the top or the bottom of the data region.
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sai(b) is the total 
area of images 
in block b.
sab(b) is the total 
area of block b.
fnpt(b) is the 
total number of 
fonts of the 
plain texts in 
block b.
sapt(b) is the total 
area of the plain 
texts in block b.
fnlt(b) is the total 
number of fonts 
of the link texts 
in block b.
salt(b) is the total 
area of the link 
texts in block b.

Table 5

Formulas and remarks

Second, one data record may correspond to one or more
blocks in the Visual Block tree, and the total number of
blocks one data record contains is not fixed. In Fig. 5,
block b1 (statistical information) and b9 (annotation) are
noise blocks; there are three data records (b2 and b3 form
data record 1; b4, b5 and b6 form data record 2; b7 and
b8 form data record 3), and the dashed boxes are the
boundaries of data records.

Data record extraction is to discover the boundary of
data records based on the LF and AF features. That is,
we attempt to determine which blocks belong to the
same data record. We achieve this in the following three
phases:

Phase 1: Filter out some noise blocks.
Phase 2: Cluster the remaining blocks by computing

their appearance similarity.
Phase 3: Discover data record boundary by regrouping

blocks.

4.1 Phase 1: Noise Blocks Filtering
Because noise blocks are always at the top or bottom, we
check the blocks located at the two positions according to
LF1. If a block at these positions is not aligned flush left,
it will be removed as a noise block. This step does not
guarantee the removal of all noise blocks. For example,
in Fig. 5, block b9 can be removed in this step while block
b1 cannot be removed.

4.2 Phase 2: Blocks Clustering
The remaining blocks in the data region are clustered
based on their appearance similarity. Since there may
be three kinds of information in data records, i.e., im-
ages, plain text and link text, the appearance similarity
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between blocks is computed from the three aspects. For
images, we care about the size; for plain text and link
text, we care about the shared fonts. Intuitively, if two
blocks are more similar on image size and font, they
should be more similar in appearance. The formula for
computing the appearance similarity between two blocks
b1 and b2 is given below:

sim(b1, b2) = wi ∗simIMG(b1, b2)+wpt ∗simPT (b1, b2)
+ wlt ∗ simLT (b1, b2) (1)

where simIMG(b1, b2), simIMG(b1, b2), simLT (b1, b2)
are the similarities based on image size, plain text font
and link text font, respectively. And wi, wpt and wlt are
the weights of these similarities, respectively. Table 5
gives the formulas to compute the component similar-
ities and the weights in different cases. The weight of
one type of contents is proportional to their total size
relative to the total size of the two blocks.

A simple one-pass clustering algorithm is applied.
First, starting from an arbitrary order of all the input
blocks, take the first block from the list and use it to
form a cluster. Next, for each of the remaining blocks,
say b, compute its similarity with each existing cluster.
Let C be the cluster that has the largest similarity with
A. If sim(b, C) > Tas for some threshold Tas, which is
to be trained by sample pages (generally, Tas is set to
0.8), then add b to C; otherwise, form a new cluster
based on b. Function sim(b, C) is defined to be the
average of the similarities between b and all blocks in C
computed using Formula 1. As an example, by applying
this method to the blocks in Fig. 1, the blocks containing
the titles of the data records are clustered together, so
are the blocks containing the prices and so on.

4.3 Phase 3: Blocks Regrouping

The clusters obtained in the previous step do not cor-
respond to data records. On the contrary, the blocks in
the same cluster all come from different data records.
According to AF2, the blocks in the same cluster have
the same type of contents of the data records.

The blocks need to be regrouped such that the blocks
belonging to the same data record form a group. Our
basic idea of blocks regrouping is as follows. According
to CF1, the first data item in each data record is always
mandatory. Clearly, the cluster that contains the blocks
for the first items has the maximum number of blocks
possible; let n be this maximum number. It is easy
to see that if a cluster contains n blocks, these blocks
contain mandatory data items. Our regrouping method
first selects a cluster with n blocks and use these blocks
as seeds to form data records. Next, given a block b, we
determine which record b belongs to according to CF2.
For example, suppose we know that title is ahead of
author in each record and they belong to different blocks
(say an author block and a title block). Each author block
should relate to the nearest title block that is ahead of
it. In order to determine the order of different semantic

Algorithm block regrouping

Input: C1,C2,…,Cm: a group of clusters generated by blocks clustering

from a given sample deep web page P

Output: G1,G2,…,Gn: each of them corresponds to a data record on P

Begin

//Step 1. sort the blocks in Ci according to their positions in the page 

(from top to bottom and then from left to right)

1 for each cluster Ci do

2      for any two blocks bi,j and bi,k in Ci //1 j<k |Ci|

3        if  bi,j and bi,k are in different lines on P, and bi,k is above bi,j

4                    bi,j bi,k;        //exchange their orders in Ci;

5        else if bi,j and bi,k are in the same line on P, and bi,k is in front of bi,j

6                    bi,j bi,k;

7  end until no exchange occurs;

8  form the minimum-bounding rectangle Reci for Ci;

//Step 2. initialize n groups, and n is the number of data records on P

9   Cmax={Ci | |Ci|=max{|C1|,|C2|,……, |Cm|}};    // n=| Cmax|

10 for each block bmax,i in Cmax

11      Initialize group Gi;

12      put bmax,i into Gi;

//Step 3. put the blocks into the right groups, and each group 

corresponds to a data record

13 for each cluster Ci

14       if Reci overlaps with Recmax on P

15             if Reci is ahead of (behind) Recmax

16                  for each block bi,j in Ci

17                    find the nearest block bmax,k in Cmax that is behind (ahead 

of) bi,j on the web page;

18                      place bi,j into group Gk;

End

Fig. 6. The algorithm of blocks regrouping

blocks, a minimum-bounding rectangle is formed for
each cluster on the page. By comparing the positions
of these rectangles on the page, we can infer the order
of the semantics. For example, if the rectangle enclosing
all title blocks is higher than the rectangle enclosing the
author blocks, then title must be ahead of its correspond-
ing author. Based on this idea, the algorithm of block
regrouping is developed as shown in Fig. 6.

This algorithm consists of three steps. Step 1 rear-
ranges the blocks in each cluster based on their appear-
ance order on the web page, i.e., from left to right and
from top to bottom (lines 1-7). In addition, a minimum-
bounding rectangle is formed for each cluster on the
page (line 8). In Step 2, n groups are initialized with
a seed block in each group as discussed earlier, where n
is the number of blocks in a maximum cluster, denoted
as Cmax. According to CF1, we always choose the cluster
that contains the first mandatory data item of each record
as Cmax. Let bmax,k denote the seed block in each initial
group Gk. Step 3 determines to which group each block
belongs. If block bi,j (in Ci, Ci is not Cmax) and block
bmax,k (in Cmax) are in the same data record, then bi,j

should be put into the same group bmax,k belongs to.
According to LF3, no two adjoining data records overlap.
So for bmax,k in Cmax, the blocks that belong to the same
data record with bmax,k must be below bmax,k−1 and
above bmax,k+1. For each Ci, if data record Ri is ahead
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C2(b2,b4,b7)

C3(b3,b6,b8)
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C4(b5)

R3
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Fig. 7. An illustration of data record extraction

of Rmax, then the block on top of Ri is ahead of (behind)
the block on top of Rmax. Here ”ahead of” means ”on
the left of” or ”above”, and ”behind” means ”on the
right of” or ”below”. According to CF2, bi,j is ahead of
bmax,k if they belong to the same data record. So we can
conclude that, if bmax,k is the nearest block behind bi,j

, then bi,j should be put into the group bmax,k belongs
to. Obviously, the complexity of this algorithm is O(n2),
where n is the number of data records in the sample
page.

Example for data record extraction:

Fig. 7 illustrates the case in Fig. 5. First, b9 is removed
according to LF1. Then, the blocks on the left in Fig. 7 (b)
are clustered using Formula 1. Altogether, four clusters
are formed and the blocks in them are also rearranged:
C1{b1}, C2{b2, b4, b7}, C3{b3, b6, b8}, and C4{b5}. Next, C2

is Cmax, b2, b4, andb7 form three initial groups G1, G2 and
G3 respectively. Since R3 and R4 overlap with R2 and
R3 is below R2, we group b3, b6 and b8 with b2, b4 and b7

(the nearest block above it in C2), respectively. At last,
G1 is {b2, b3}, G2 is {b4, b5, b6}, and G3 is {b7, b8}. Each
group forms a complete data record.

5 DATA ITEM EXTRACTION
A data record can be regarded as the description of its
corresponding object, which consists of a group of data
items and some static template texts. In real applications,
these extracted structured data records are stored (often
in relational tables) at data item level and the data items
of the same semantic must be placed under the same
column. When introducing CF, we mentioned that there
are three types of data items in data records: mandatory
data items, optional data items and static data items. We
extract all three types of data items. Note that static data
items are often annotations to data and are useful for
future applications, such as web data annotation. Below
we focus on the problems of segmenting the data records
into a sequence of data items and aligning the data items
of the same semantics together.

Note that data item extraction is different from data
record extraction; the former focuses on the leaf nodes
of the Visual Block tree while the latter focuses on the
child blocks of the data region in the Visual Block tree.

Algorithm data item matching 

Input: item1, item2: two data items

Output: matched or unmatched: the match result (Boolean)

Begin

1 if (font(item1)    font(item2))

2       Return unmatched;

3 if (position(item1) = position(item2))

4      return matched;

5 if (itemp1 and itemp2 are matched)     // itemp1 and itemp2 are the data 

items immediately in front of item1 and item2 respectively

6          return matched;

7 else

        return unmatched;

End

Fig. 8. The algorithm of data item matching

5.1 Data Record Segmentation

AF3 indicates that composite data items cannot be seg-
mented any more in the Visual Block tree. So, given
a data record, we can collect its leaf nodes in the
Visual Block tree in left to right order to carry out
data record segmentation. Each composite data item also
corresponds to a leaf node. We can treat it as a regular
data item initially and then segment it into the real data
items with the heuristic rules mentioned in AF3 after the
initial data item alignment.

5.2 Data Item Alignment

CF1 indicates that we cannot align data items directly
due to the existence of optional data items. It is natu-
ral for data records to miss some data items in some
domains. For example, some books have discount price
while some do not.

Every data record has been turned into a sequence of
data items through data record segmentation. Data item
alignment focuses on the problem of how to align the
data items of the same semantic together and also keep
the order of the data items in each data record. In the
follow ing we first define visual matching of data items,
and then propose an algorithm for data item alignment.

5.2.1 Visual matching of data items
AF2 indicates that, if two data items from different data
records belong to the same semantic, they must have
consistent font and position, including both absolute po-
sition and relative position. In Fig. 8, a simple algorithm
to match two visually similar data items from different
data records is described.

The first four lines of the algorithm say that two
data items are matched only if they have the same
absolute position in addition to having the same font.
Here absolute position is the distance between the left
side of the data region and the left side of a data item.
When two data items do not have the same absolute
position, they can still be matched if they have the
same relative position. For match on relative position,
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Algorithm data item alignment

Input: a set of extracted data records {ri|1 i n} 

Output: a set of data records {ri|1 i n} with all the data items 

aligned

Begin

1   currentItemSet=!;

2   currentCluster=!;

//put the first unaligned data item of each ri into currentItemSet:

// ItemiU(i) refers to the first unaligned item of the ith data record

3    currentItemSet ItemiU(i) (1 i n); 

4    while currentItemSet"!

5         use the data item matching algorithm to group the data items 

in currentItemSet into k clusters {Ci|1 i k} (k n);

6          for each cluster Ci

7              for each rj that does not have a data item in Ci

8                 if ItemjU(j)+k is matched with data items in Ci

9            Log position k;

10            else 

11           Log position 0;

12   Pi = max value of these logged positions for Ci;

/*Till now, each cluster Ci has a position Pi */

13 if any PL==0

14    currentCluster=CL;

15 else

16    currentCluster=CL whose PL is max {P1, P2,…,PK};

17 for each rj whose ItemjU(j) is in currentCluster CL

18     remove ItemjU(j) from currentItemSet;

19     if ItemjU(j)+1 exists in rj

20     put ItemjU(j)+1 into currentItemSet;

21 for each rj that has no item in currentCluster CL

22     insert a blank item ahead of ItemjU(j)  in rj ;

23       U(j)++;

End

Fig. 9. The algorithm of data item alignment

the data items immediately before the two input data
items should be matched (from line 5 to line 6). As an
example, for the two records in Fig. 4, the titles can be
matched based on the absolute positions and the authors
on the relative positions.

Because two data items of different semantics can also
be visually similar, AF2 cannot really determine whether
two data items belong to the same semantic. But the
fixed order of the data items in the same data record
(CF2) can help us remedy this limitation. So we further
propose an effective algorithm for data item alignment
that utilizes both CF2 and AF2.

5.2.2 Algorithm for data item alignment
CF2 says that the order of data items in data records is
fixed. Thus, each data record can be treated as a sequence
of data items. We can utilize this feature to align data
items. Our goal is to place the data items of the same
semantic in the same column. If an optional data item
does not appear in a data record, we will fill the vacant
position with a predefined blank item. Based on this
insight, we propose a multi-alignment algorithm that
can process all extracted data records holistically step

r1

r2

r3

r1

r2

r3

r1

r2

r3

r1

r2

r3

Fig. 10. An example of data item alignment

by step. The basic idea of this algorithm is described
as follows. Initially, all the data items are unaligned.
We align data items by the order in their corresponding
data records. When we encounter optional data items
that do not appear in some data records, these vacant
positions will be filled with the predefined blank item.
This ensures that all data records are aligned and have
the same number of data items at the end. Our data item
alignment algorithm is shown in Fig. 9.

The input is n data records {r1, r2, ......, rn}, each
data record ri is denoted as a sequence of data items
{item1

i , item
2
i , ......, item

m
i }. Any data item has a unique

position in its corresponding sequence according to the
semantic order. In each iteration, we only process the
next unaligned data item of every data record and decide
which ones should be ahead of all others. The complexity
of this algorithm is O(n2 ∗m), where n is the number of
data records in the sample page and m is the average
number of data items per data record.

Example for data item alignment:

The example shown in Fig. 10 explains the process
of data item alignment. Suppose there are three data
records {r1, r2, r3} and each row is a data record. We
use simple geometric shapes (rectangle, circle, triangle,
etc.) to denote the data items. The data items represented
by the same shape are visually matched data items. We
also use itemj

i to denote the jth data item of the ith data
record. Initially (Fig. 10.(a)), all current unaligned data
items {item1

1, item
1
2, item

1
3} of the input data records are

placed into one cluster, i.e., they are aligned as the first
column. Next (Fig. 10.(b)), the current unaligned data
items item2

1, item
2
2, item

2
3 are matched into two clusters

C1 = {item2
1, item

2
3} and C2 = {item2

2} (line 5 in Figure
9). Thus, we need to further decide which cluster should
form the next column. The data items in C1 can match
item4

2, and the position value 2 is logged (lines 6-12),
which means item4

2 is the third of the unaligned data
items of r2. The data items in C2 can match item3

1 and
item3

3, and the position value 1 is logged (lines 6-12).
Because 1 is smaller than 2 (line 16), the data items
in C1 should be ahead of the data items in C2 and
form the next column by inserting the blank item into
other records at the current positions (lines 21-22). The
remaining data items can be aligned in the same way
(Fig. 10.(c) and (d)).
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6 VISUAL WRAPPER GENERATION
ViDE has two components, ViDRE (Vison-based Data
Record Extracor) and ViDIE (Vison-based Data Item
Extracor). There are two problems with them. First, the
complex extraction processes are too slow in supporting
real-time applications. Second, the extraction processes
would fail if there is only one data record on the page.
Since all deep web pages from the same web database
share the same visual template, once the data records
and data items on a deep web page have been extracted,
we can use these extracted data records and data items to
generate the extraction wrapper for the web database so
that new deep web pages from the same web database
can be processed using the wrappers quickly without
reapplying the entire extraction process.

Our wrappers include data record wrapper and data
item wrapper. They are the programs that do data
record extraction and data item extraction with a set of
parameter obtained from sample pages. For each web
database, we use a normal deep web page containing the
maximum number of data records to generate the wrap-
pers. The wrappers of previous works mainly depend
on the structures or the locations of the data records and
data items in the tag tree, such as tag path. In contrast,
we mainly use the visual information to generate our
wrappers. Note that some other kinds of information
are also utilized to enhance the performances of the
wrappers, such as the data types of the data items and
the frequent symbols appearing in the data items. But
they are easy to obtain from the web pages. We describe
the basic ideas of our wrappers below.

6.1 Vision-based Data Record Wrapper
Given a deep web page, vision-based data record wrap-
per first locates the data region in the Visual Block tree,
and then extracts the data records from the child blocks
of the data region.

Data region location: After the data region R on a
sample deep web page P from site S is located by ViDRE,
we save five parameters values (x, y, w, h, l), where (x,
y) form the coordinate of R on P, w and h are the width
and height of R, and l is the level of R in the Visual Block
tree.

Given a new deep web page P* from S, we first check
the blocks at level l in the Visual Block tree for P*.
The data region on P* should be the block with the
largest area overlap with R on P*. The overlap area can
be computed using the coordinates and width/height
information.

Data record extraction: For each record, our visual
data record wrapper aims to find the first block of each
record and the last block of the last data record (denoted
blast).

To achieve this goal, we save the visual information
(the same as the information used in Formula 1) of the
first block of each data record extracted from the sample
page and the distance (denoted as d) between two data

records. For the child blocks of the data region in a new
page, we find the first block of each data record by the
visual similarity with the saved visual information. Next,
blast on the new page needs to be located. Based on
our observation, in order to help the users differentiate
data records easily, the vertical distance between any two
neighboring blocks in one data record is always smaller
than d and the vertical distance between blast and its next
block is not smaller than d. Therefore, we recognize the
first block whose distance with its next block is larger
than d as blast.

6.2 Vision-based Data Item Wrapper

Parameter

Table 6
Explanation for (f, l, d)

Value Remarks

f

l

d

font

Boolean

image, text, 
number, date, 

email, etc

the font used by the data items 
of this attribute

True denotes that the data items 
of this attribute are link texts

the data type of this attribute

The data alignment algorithm groups data items from
different data records into columns or attributes such
that data items under the same column have the same
semantic. Table 6 lists useful information about each
attribute obtained from the sample page that can help
determine which attribute a data item belongs to.

The basic idea of our vision-based data item wrapper
is described as follows. Given a sequence of attributes
{a1, a2, ......, an} obtained from the sample page and a
sequence of data items {item1, item2, ......, itemm} ob-
tained from a new data record, the wrapper processes the
data items in order to decide which attribute the current
data item can be matched to. For itemi and aj , if they
are the same on f, l, and d, their match is recognized.
The wrapper then judges whether itemi+1 and aj+1 are
matched next, and if not, it judges itemi and aj+1. Repeat
this process until all data items are matched to their right
attributes.

Note that if an attribute on a new page did not
appear on the sample page, the data item of the attribute
cannot be matched to any attribute. To avoid such a
problem, several sample pages may be used to generate
the wrapper. This can increase the chance that every
attribute appears on at least one of these sample pages.

This process is much faster than the process of wrap-
per generation. The complexity of data records extraction
with the wrapper is O(n), where n is the number of
data records in the page. The complexity of data items
extraction with the wrapper is O(n ∗m), where n is the
number of data records in the test page and m is the
average number of data items per data record.
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7 EXPERIMENTS
We have implemented an operational deep web data
extraction system for ViDE based on the techniques we
proposed. Our experiments are done on a Pentium 4
1.9GH, 512MB PC. In this section we first describe the
data sets used in our experiments, and then introduce
the performance measures used. At last, we evaluate
both ViDRE and ViDIE. We also choose MDR [17] and
DEPTA [29] to compare with ViDRE and ViDIE respec-
tively. MDR and DEPTA are the recent works on web
data record extraction and data item extraction, and they
are both HTML-based approaches.

7.1 Datasets
Most performance studies of previous works used small
data sets, which are inadequate in assuring the impar-
tiality of the experimental results. In our work, we use
a large dataset to carry out the experiments.

General Dataset (GDS): This dataset is collected from
CompletePlanet (www.completeplanet.com), which is
currently the largest deep web repository with more than
70,000 entries of web databases. These web databases
are classified into 42 categories covering most domains
in the real world. GDS contains 1,000 available web
databases. For each web database, we submit 5 queries
and gather 5 deep web pages with each containing at
least three data records.

Special Dataset (SDS): During the process of obtaining
GDS, we noticed that the data records from two-thirds
of the web databases have less than 5 data items on
the average. To test the robustness of our approaches,
we select 100 web databases whose data records contain
more than 10 data items from GDS as SDS.

Note that, the deep web pages collected in the testbed
are the ones that can be correctly displayed by the Web
browser we used. An example where a page is not
correctly displayed is when some images are displayed
as small red crosses. This will cause the positions of the
texts on the result page to shift.

7.2 Performance Measures
All previous works use precision and recall to evaluate
their experimental results (some also include F-measure,
which is the weighted harmonic mean of precision and
recall). These measures are also used in our evaluation.

Table 7

Performance Measures Used in the Evaluation of ViDE

precision recall revision

ViDRE

ViDIE

c

e

DR

DR

c

e

DI

DI

c

r

DR

DR

c

r

DI

DI

t c

t

WDB WDB

WDB

 

In this paper we propose a new metric, revision, to
measure the performance of an automated extraction

algorithm. It is defined to be the percentage of the web
databases whose data records or data items are not per-
fectly extracted, i.e., either precision or recall is not 100%.
This measure indicates the percentage of web databases
the automated solution fails to achieve perfect extraction
and manual revision of the solution is needed to fix this.
An example is used to illustrate the significance of this
measure. Suppose there are three approaches (A1, A2
and A3) which can extract structured data records from
deep web pages, and they use the same data set (5 web
databases, 10 data records in each web database). A1
extracts 9 records for each site and they are all correct.
So the average precision and recall of A1 are 100% and
90%, respectively. A2 extracts 11 records for each site
and 10 are correct. So the average precision and recall
of A2 are 90.9% and 100%, respectively. A3 extracts 10
records for 4 of the 5 databases and they are all correct.
For the 5th site, A3 extracts no records. So the average
precision and recall of A3 are both 80%. Based on average
precision and recall, A1 and A2 are better than A3. But in
real applications A3 may be the best choice. To make
precision and recall 100%, all wrappers generated by A1
and A2 have to be manually tuned/adjusted, while only
one wrapper generated by A3 needs to be manually
tuned. In other words, A3 needs the minimum manual
intervention.

Because our experiments include data record extrac-
tion and data item extraction, we define precision, recall
and revision for them separately.

In Table 7, DRc is the total number of correctly ex-
tracted data records, DRr is the total number of data
records, and DRe is the total number of data records
extracted, DIc is the total number of correctly extracted
data items, DIr is the total number of data items, and
DIe is the total number of data items extracted; WDBc

is the total number of web databases whose precision and
recall are both 100%, and WDBt is the total number of
web databases processed.

7.3 Experimental Results on ViDRE

In this part, we evaluate ViDRE and also compare it
with MDR. MDR has a similarity threshold, which is
set at the default value (60%) in our test, based on
the suggestion of the authors of MDR. Our ViDRE also
has a similarity threshold, which is set at 0.8. In this
experiment, the input to ViDRE and MDR contains the
deep web pages and the output contains data records
extracted. For ViDRE, one sample result page containing
the most data records is used to generate the data
record wrapper for each web database. Table 8 shows the
experimental results on both GDS and SDS. Based on our
experiment, it takes approximately 1 second to generate
the data record wrapper for each page and less than half
second to use the wrapper for data record extraction.

From Table 8, we can make the following three obser-
vations. First, ViDRE performs significantly better than
MDR on both GDS and SDS. Second, ViDRE is far better
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Table 8

Comparison Results between ViDRE and MDR

dataset precision revision

ViDRE
GDS 98.7% 12.4%

SDS 98.5% 10.9%

recall

97.2%

97.8%

MDR
GDS 85.3% 55.2%

SDS 78.7% 63.8%

53.2%

47.3%

than MDR on revision. ViDRE needs only to revise
slightly over 10% of the wrappers, while MDR has to re-
vise almost five times more wrappers than ViDRE. Third,
the precision and recall of ViDRE are steady on both
SDS and GDS, but for MDR, they drop noticeably for
SDS. Our analysis indicates that: for precision of ViDRE,
most errors are caused by failing to exclude noise blocks
that are very similar to the correct ones in appearance;
for recall of ViDRE, most errors are caused by mistaking
some top or bottom data records as the noise blocks; for
MDR, its performance is inversely proportional to the
complexity of the data records, especially data records
with many optional data items.

7.4 Experimental Results on ViDIE
In this part, we evaluate ViDIE and compare it with
DEPTA. DEPTA can be considered as the follow-up work
for MDR, and its authors also called it MDRII. Only
correct data records from ViDRE are used to evaluate
ViDIE and DEPTA. For ViDIE, two sample result pages
are used to generate the data item wrapper for each
web database. Table 9 shows the experimental results
of ViDIE and DEPTA on both GDS and SDS. Our exper-
iments indicate that it takes between 0.5 and 1.5 seconds
to generate the data item wrapper for each page and
less than half second to use the wrapper for data item
extraction..

dataset precision revision

ViDIE
GDS 96.3% 14.1%

SDS 95.6% 11.6%

recall

97.2%

98.4%

DEPTA
GDS 75.3% 32.8%

SDS 66.1% 37.6%

71.6%

54.1%

Table 9

Comparison Results between ViDIE and DEPTA

From Table 9, we can see that the observations we
made in comparing the results of ViDRE and MDR
remain basically valid for comparing ViDIE and DEPTA.
In addition, we also found that DEPTA often misaligns
two data items of different semantics if they are close in
the tag tree and have the same tag path, and this leads to

the misalignment of all the data items in the same data
record that follow the misaligned data items. In contrast,
ViDIE can easily distinguish them due to their different
fonts or positions.

We also tried to use one sample page and three sample
pages to generate the data item wrapper for each web
database. When one page is used, the performance is
much lower; for example, for SDS, the precision, recall
and revision are 91.7%, 95% and 32.3%, respectively. This
is caused by the absence of some optional data items
from all the data records in the sample page used. When
more sample pages are used, the likelihood that this
will happen is significantly reduced. When three pages
are used, the results are essentially the same as those
shown in Table 9, where two sample pages are used. This
suggests that using two sample pages to generate the
data item wrapper for each web database is sufficient.

We also conducted experiments based on the datasets
used in [30] and provided by [13], and the results are
similar to those shown in Table 8 and 9. These results
are not shown in this paper due to space consideration.

8 CONCLUSIONS AND FUTURE WORKS
With the flourish of the deep web, users have a great
opportunity to benefit from such abundant information
in it. In general, the desired information is embedded
in the deep web pages in the form of data records
returned by web databases when they respond to users’
queries. Therefore, it is an important task to extract
the structured data from the deep web pages for later
processing. In this paper, we focused on the structured
web data extraction problem, including data record ex-
traction and data item extraction. Firstly, we surveyed
previous works on web data extraction and investigated
their inherent limitations. Meanwhile, we found that the
visual information of web pages can help us implement
web data extraction. Based on our observations of a
large number of deep web pages, we identified a set
of interesting common visual features that are useful for
deep web data extraction. Based on these visual features,
we proposed a novel vision-based approach to extract
structured data from deep web pages, which can avoid
the limitations of previous works. The main trait of this
vision-based approach is that it primarily utilizes the
visual features of deep web pages.

Our approach consists of four primary steps: Visual
Block tree building, data record extraction, data item
extraction, and visual wrapper generation. Visual Block
tree building is to build the Visual Block tree for a
given sample deep page using the VIPS algorithm. With
the Visual Block tree, data record extraction and data
item extraction are carried out based on our proposed
visual features. Visual wrapper generation is to generate
the wrappers that can improve the efficiency of both
data record extraction and data item extraction. Highly
accurate experimental results provide strong evidence
that rich visual features on deep web pages can be used
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as the basis to design highly effective data extraction
algorithms.

However, there are still some remaining issues and
we plan to address them in the future. First, ViDE can
only process deep web pages containing one data region
while there is significant number of multi-data-region
deep web pages. Though [31] has attempted to address
this problem, their solution is HTML dependent and
its performance has a large room for improvement. We
intend to propose a vision-based approach to tackle
this problem. Second, the efficiency of ViDE can be
improved. In the current ViDE the visual information of
web pages is obtained by calling the programming APIs
of IE, which is a time-consuming process. To address
this problem, we intend to develop a set of new APIs
to obtain the visual information directly from the web
pages.
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