
Remote gaze-tracking system
on basis of
TightVNC

System description

Version: 1.0
 Last updated: 22.02.10

Created: 02.11.09

1

Author Date Version Comments
Andrey Shipilov 02.11.09 0.1 Create document
Andrey Shipilov 07.11.09 0.2 Messages description added
Andrey Shipilov 08.11.09 0.3 Structures description added.

Messages description updated.
Andrey Shipilov 14.11.09 0.4 TightVNC Server and client

description.
Andrey Shipilov 14.01.10 0.5 Architecture description
Andrey Shipilov 01.02.10 0.6 Document structure changed
Andrey Shipilov 07.02.10 0.7 ETI java client changes
Andrey Shipilov 15.02.10 0.8 ETI server changes
Andrey Shipilov 15.02.10 0.9 Drawing process description
Andrey Shipilov 22.02.10 1.0 Completing document

2

CONTENTS

Glossary...5

System description..6

Architecture..6

Gaze data processing..8

ETI Gaze data components..9

Gaze data marks...9

Extension of TightVNC software..11

ETI TightVNC Server...11
New data types..11
New data collections...11
New messaging routines..11

ETI TightVNC Client..12
New classes...12
New RFB messages..12
New RFB messaging function..13
New drawing process..13

Extension to RFB protocol...15

Server To Client messages..15
etiEyePositionUpdateMsg..15
etiRemoveTrackClientMsg...15
etiSendClientNickMsg...15
etiSendClientDescMsg...16

Client To Server messages..16
etiEyeMovedMsg...16
etiAddMeToTrackMsg...16
etiRemoveMeFromTrackMsg..16
etiResentTracksMsg...17
etiClientSetNickMsg..17
etiClientSetDescMsg..17

3

ETU Driver Wrapper...18

Architecture..18

Interface methods...18

Limitations..19

Further Improvements...20

Complex data processing..20

4

GLOSSARY
• ETI – eye-tracking information;

• ETI TightVNC – extended version of TightVNC system, allowing processing eye-tracking
information;

• VNC – Virtual Network Computing, using RFB protocol;

• RFB - Remote FrameBuffer. Simple protocol for remote access to graphical user interfaces;

• ETU Driver – eye-tracking universal driver. Software, providing API for unified access to
different types of eye-tracking hardware;

• JNI – Java Native Interface. Technology allowing call C++ methods from Java code;

• Fixation – result of filtering eye-tracking samples, received from eye-tracker;

• Nickname – short client description, that will be shown next to its eye mark.

5

SYSTEM DESCRIPTION
ETI TightVNC is a remote gaze-tracking system on basis of TightVNC intended for collecting
and displaying eye-tracking information on several clients, using the same shared workspace.
This system is build on ideology of VNC. It is implemented as extension of open source VNC
project TightVNC. Current version of ETI TightVNC allows only translating and displaying
eye-tracking information, but it can be further improved to allow complex processing of gaze
data on server side.

Architecture
ETI TightVNC system can be divided into four main parts for convenience:

• Eye-tracker;

• ETU Driver;

• ETI TightVNC Java client with JNI wrapper for ETU Driver;

• ETI TightVNC Server.

Eye-tracker and ETU Driver are optional and can be absent on some clients. In that case such
clients will be able only to show gaze information, received from other clients.

System uses TCP\IP to exchange information between clients and server.

6

7Illustration 1: Remote gaze-tracking system architecture

Gaze data processing
Overall process of collecting, processing and distributing of eye-tracking information:

1. Eye-tracker reads gaze data with defined frequency;

2. ETU Driver gets gaze data samples from eye-tracker;

3. Internal ETU Driver filter process acquired samples and generate fixations;

4. ETU Driver wrapper receives fixations from ETU Driver and send them to ETI
TightVNC java client;

5. Client checks if fixation point is inside workspace area, translate coordinates and send it
to the server;

6. Server receive and parse message and store received data to the clients' ETI collection;

7. After storing updated information server generate messages and distribute received gaze
data to all other clients;

8. Each client parse message and store received gaze data into copy of clients' ETI
collection;

9. After storing information client checks if current settings allow displaying of gaze data
and redraw workspace image if needed.

8
Illustration 2: Gaze data processing

ETI Gaze data components
Eye-tracking information that is used in the system include next components:

• Nickname – short description of the client, it will be shown next to the clients mark. It
can be changed on each client independently;

• Description – extended description of the client. Clients cannot change descriptions of
other gaze data sources;

• Coordinates of the gaze data mark;

• Graphical settings of gaze data mark.

Gaze data marks
ETI TightVNC java client outputs received eye-tracking information to the user, drawing
marks on top of image of shared workspace. Parameters of each eye mark are stored in ETItem
class object (p.12).

9

Illustration 3: Example of user interface

ETI mark consist of two components – graphical shape and text:

Current version of ETI edition of TightVNC java client implements only one type of shape –
transparent circle of some color, but client can be further improved to imlement posibility to
draw other types of marks.

10

Illustration 4: Gaze data mark

EXTENSION OF TIGHTVNC SOFTWARE

ETI TightVNC Server
ETI TightVNC server is based on TightVNC server 1.3.10 for Windows.

New data types
ETI edition of TightVNC implements several new structures, used to store
gaze data.

• etiItem
Store information about one eye-tracking point – coordinates of the
point and ID of the client that own this ETI mark. Size - 6 bytes.

• etiClient
Store information about one eye-tracking client. Contain information
about client mark default colour. Size - 6 bytes.

• VncEYEClientsMap

std::map containing pairs <vncClientId, etiClient>;

• vncEYEPosMap

std::map containing pairs <vncClientId, etiItem>.

New data collections
Server stores copy of all eye-tracking information passed through it. Two
main collections, used for that:

• m_eyePositions – map of last received gaze data points from all
clients;

• m_eyeClients – map of all clients that send gaze data information.

New messaging routines
ETI TightVNC server implements several wrapper functions, that can be used
to distribute gaze information:

11

X (2 byte)
Y (2 byte)

Client ID (2 byte)

B (2 byte)
A (2 byte)

Client ID (2 byte)

R (2 byte)
G (2 byte)

Show Flag (2 byte)

• AddClientToTrackingList(vncClientId id) – add client to tracking list and send it's
Id to all other clients;

• RemoveClientFromTrackingList(vncClientId id) – remove client from tracking list;

• ResentClients(vncClientId send_to_id) – send to the client information about all
records in current tracking list;

• UpdateEyePos(CARD16 x, CARD16 y, vncClientId id) – distribute between clients
information about new gaze data point, received from one of the eye-tracking
sources;

• SetNick(vncClientId id, LPSTR nick) – notify all clients about changing nick name
on one of them;

• SetDesc(vncClientId id, LPSTR desc) – notify all clients about changing
description on one of them.

ETI TightVNC Client
ETI TightVNC client is based on TightVNC java client version 1.3.10. It implements all
functionality, presented in original client and adds some specific routines for gaze data
processing.

New classes
ETI TightVNC java client implements several new classes, used for storing
and processing eye-tracking information:

• ETItem – class, used to store gaze information, received from one
client;

• ETInfo – stores all eye-tracking information, received from all other
clients and handles the map of gaze data marks;

• ETMarkShape – information about graphical representation of the
eye-tracking information mark, that will be shown to the user;

• ETIOptionsFrame – frame, showing list of all connected sources of
gaze data and settings of current client;

• ETItemOptions – frame, showing options of one eye-tracking mark,
showed to the user;

• ETUDConnector – class for connecting to the wrapper and receiving
gaze data points from the ETU Driver. JNI technology, used to
implement wrapper strictly depends on the names of the classes and
methods, that are used to call C++ code. Any changes to this class
should be carefully planned as they can lead to impossibility to
interact with eye-tracker.

More extended description of these classes can be fond in Java-doc to the ETI
TightVNC java client source code.

New RFB messages
TightVNC java client includes description of RFB messages, that are
processed between server and client. ETI version of TightVNC also includes

12

description of new messages, used for gaze data transmitting. New messages
are described in section “Extension to RFB protocol” (p.15).

New RFB messaging function
ETI TightVNC java client implements several wrapper functions, that can be
used to send information to the server, easily:

• writeNick(String text) – send nickname of the current client to the
server;

• writeDesc(String text) – send description of the current client to the
server;

• writeETIEyeMoved(int x, int y) – send to the server new coordinates,
received from the current clients's eye-tracker;

• writeAddMeToList() - request to add the current client to the list of
clients, sending gaze data. In case if client send actual eye-tracking
daa, this message is not needed, client will be added to the list
automatically;

• writeRemoveMeFromList() - request to delete client from the list of
tracked clients;

• writeResentClientsList() - request to resend all list of tracked clients
stored on server.

More extended description of these functions can be fond in Java-doc to the
ETI TightVNC java client source code.

New drawing process
Original TightVNC client stores and processes only one image that is shown
to the user. Client receive update messages from the server, draw them to the
in-memory image and then output it to the user interface.

ETI edition of TightVNC assumes the output of additional graphical
information. User should be able to control it independently from the server
and other clients. Approach to the drawing of graphical information by client
was changed to implement this requirement. ETI edition of TightVNC java
client stores and processes two in-memory images:

• original TightVNC image, containing graphical information about
remote desktop;

• image of eye-tracking marks.

Client merge these two images before output to the user interface. Such
approach allows defining output options for each client independently. Any
changes on the main image do not influence on drawing of eye-marks.

Use of additional layer during drawing user interface image allows easy
adding some preprocessing logic (for example, removing trembling of eye-
mark).

13

This change makes it difficult to update the version of TightVNC java client,
used as a basis for implemeting ETI edition of this software.

14

Illustration 5: ETI TightVNC drawing approach

EXTENSION TO RFB PROTOCOL
ETI edition of TightVNC implements all functionality, that was implemented in the original
system. In addition it allows collecting, processing and distributing eye-tracking information
among clients. VNC systems use RFB protocol to exchange information. TightVNC
implements RFB protocol and adds several custom messages. ETI version of TightVNC on its
turn adds several own messages for processing eye-tracking information. All messages can be
divided into two groups:

• TightVNC messages (standard VNC and extended TightVNC messages);

• ETI messages, used for distributing eye-tracking information.

RFB protocol messages includes two groups of messages:

• server-to-client messages;

• client-to-server messages.

ETI extension adds messages to both groups. All messages are aligned to 32-bits, to make it
easier to send, receive and convert numbers.

Server To Client messages
Server controls all communications between clients. After receiving new message from the
client, server process it and propagate to other clients if needed.

etiEyePositionUpdateMsg
Send new eye-tracking information to the client. This message consists of a
header giving the number of eye points followed by etiItem structures. The
header is padded so that together with the type byte it is an exact multiple of 4
bytes. Currently server process and send ETI points by one. Size of the
header of the message – 4 bytes.

etiRemoveTrackClientMsg
Send request to remove client from the list of tracked entities. It can be used
to clean clients tracking lists from disconected eye-trackers. This message
includes only ID of the client that should not be tracked anymore. Size of the
message – 2 bytes.

15

TYPE (1 byte) PAD (1 byte) nPoints (2 bytes) nPoints ETI structures....

TYPE (1) ID (1)

etiSendClientNickMsg
Send request to change the nickname, shown next to the mark of the
client.This message includes ID of the client and length of the nickname,
followed by the text that should be sent to the recepient. Size of the message
header – 8 bytes.

etiSendClientDescMsg
Send request to change the description, shown next to the mark of the
client.This message includes ID of the client and length of the description,
followed by the text that should be sent to the recepient. Size of the message
header – 8 bytes.

Client To Server messages
Client send to the server information, received from eye-tracking device, and requests to
changes its parameters, available for other clients.

etiEyeMovedMsg
Send new position of the eye, received from eye-tracking device, to the
server. This message include x,y coordinates of eye mark. Size of the header
of the message – 6 bytes.

etiAddMeToTrackMsg
Send request to update lists of tracked clients. Currently this message is not
used. Tracked clients lists are updated automatically when new ET-
information received. Only type of the message is send, as server already
have the Id of the client. Size of the message – 1 bytes.

etiRemoveMeFromTrackMsg
Send request to update lists of tracked clients. This message can be send
before closing client – so it won't be shown on other clients. Only type of the
message is send, as server already have the Id of the client. Size of the
message – 1 bytes.

16

TYPE (1) Pad (1) LENGTH (4)ID (2) Text with LENGTH chars....

TYPE (1) Pad (1) LENGTH (4)ID (2) Text with LENGTH chars....

TYPE (1) Pad (1) X (2) Y (2)

TYPE (1)

TYPE (1)

etiResentTracksMsg
Send request to resent all trackable clients. This message can be used to
sinchronise lists of ET-information between server and client. Only type of
the message is send, as server already have the Id of the client. Size of the
message – 1 bytes.

etiClientSetNickMsg
Send request to change nickname text assosiated with the client. Message
consists of header (type of the message and length of following text) and text.
Message padded to 32*n bits, as the largest variable is 32 bits (4 bytes). Size
of the message – 8 bytes.

etiClientSetDescMsg
Send request to change description text assosiated with the client. Message
consists of header (type of the message and length of following text) and text.
Message padded to 32*n bits, as the largest variable is 32 bits (4 bytes). Size
of the message – 8 bytes.

17

TYPE (1)

TYPE (1) Pad (1) LENGTH (4)Pad (2) Text with LENGTH chars....

TYPE (1) Pad (1) LENGTH (4)Pad (2) Text with LENGTH chars....

ETU DRIVER WRAPPER
ETU Driver is implemented on C++. It is required to use wrapper, using JNI, to connect this
driver to the ETI TightVNC Client, written on Java.

Architecture
This wrapper includes an ETU Driver instance and a set of functions, written using JNI
technology. This functions allow controlling ETU Driver from Java client and translate gaze
data, received from eye-tracker back to the Java environment, using predefined callback
routine.

Interface methods
Wrapper methods, that can be invoked from Java client, include:

• Java_ETUDConnector_Init(JNIEnv *env, jclass c) – initialize ETU Driver instance;

• JNICALL Java_ETUDConnector_Start(JNIEnv *env, jclass c) – create a new ETU
Driver controlling window and start listening for gaze data from eye-tracking hardware;

• JNICALL Java_ETUDConnector_Stop(JNIEnv *env, jclass c) – stop listening for gaze
data from eye-tracking hardware;

• JNICALL Java_ETUDConnector_ShowOptions(JNIEnv *env, jclass c) – open standard
ETU Driver options window;

• JNICALL Java_ETUDConnector_Calibrate(JNIEnv *env, jclass c) – start standard ETU
Driver calibration routine;

• JNICALL Java_ETUDConnector_getEyePosition(JNIEnv *env, jclass c) – send to Java
callback function last received fixation.

18

Illustration 6: ETU Driver Wrapper architecture

Limitations
Implementation traits lead to some limitations in use of ETU Driver wrapper:

• ETU Driver Wrapper is strictly bounded to the Java client class names. In case of
changes in source codes of ETI TightVNC Java client it should be checked, if wrapper
is still operable.

• It is required to create dialog box during listening to the gaze information from eye-
tracker. Otherwise, ETU Driver thread became suspended and do not send any gaze data
to the wrapper.

• Java client requires access to the wrapper library. It restricts the use of Java client as a
simple java applet, loading from web page.

19

FURTHER IMPROVEMENTS

Complex data processing
It is possible to implement "workflow manager" on server side to process different scripts. That
will make it easier to implement different logic for eye-tracking data processing. Supposed
architecture of the server will be:

One of approaches that can be used:

• Scripts are implemented using some language like python;

• Server starts scripts sending it eye-tracking information as an input.

20

	Glossary
	System description
	Architecture
	Gaze data processing
	ETI Gaze data components
	Gaze data marks

	Extension of TightVNC software
	ETI TightVNC Server
	New data types
	New data collections
	New messaging routines

	ETI TightVNC Client
	New classes
	New RFB messages
	New RFB messaging function
	New drawing process

	Extension to RFB protocol
	Server To Client messages
	etiEyePositionUpdateMsg
	etiRemoveTrackClientMsg
	etiSendClientNickMsg
	etiSendClientDescMsg

	Client To Server messages
	etiEyeMovedMsg
	etiAddMeToTrackMsg
	etiRemoveMeFromTrackMsg
	etiResentTracksMsg
	etiClientSetNickMsg
	etiClientSetDescMsg

	ETU Driver Wrapper
	Architecture
	Interface methods
	Limitations

	Further Improvements
	Complex data processing

