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Abstract. We present preliminary results of an experiment in computer program
comprehension that was conducted to find out whether visual strategiescan char-
acterize low- and high-comprehenders. In addition, we investigated whether the
type and quality of externalized mental models can be associated with the visual
strategies.
Participants of various levels of experience used a program visualizationtool, Je-
liot, to comprehend short Java programs, while their eye-movements were recorded.
Comprehension summaries were evaluated for correctness as a measure of perfor-
mance and also analyzed using Good’s information-types scheme. Times spent on
viewing certain structures of the program visualization were analyzed andcorre-
lated with the information types found in comprehension summaries. Depending
on comprehension performance and target program, some information types were
found to be correlated with eye-data patterns.
Comprehension performance did not significantly correlate with information types.
When the visual strategies of low-comprehenders were similar to those ofhigh-
comprehenders, the comprehension outcome of the low-comprehenders was poor.
When the strategies diverged, the mental models of low-comprehenders tend to
match those of high-comprehenders. Based on the results, we propose that eye-
tracking can help to partially predict the mental model that is built during com-
prehension. We discuss limitations and future directions of this research.

1 Introduction

Program comprehension, the ability to understand programs, is often recognized as
central to programming and software maintenance in general. Researchers examining
cognitive processing have used several techniques, such asthink-aloud protocols, ob-
servational studies, eye tracking and other, to get insightinto the behavior and strategies
the participants exhibit during reading or problem-solving tasks. Previous research in
program comprehension have used many of these methods to capture and investigate
cognitive processes involved in programming [1–4]. However, visual attention tracking
methods have been employed relatively rarely.

When the reasoning is related to or even dependent on visual stimuli, eye-tracking
systems have shown to be useful in revealing the patterns of visual attention during the

In P. Romero, J. Good, E. Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 18 Pages 68 - 82

18th Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006 www.ppig.org



task. Programming tasks such as design, debugging or comprehension are such situa-
tions, since normally programmers work with a graphical interface that provides them
with several representations of a program. While most of the previous studies have uti-
lized think-aloud protocols and artificial environments, visual attention patterns during
programming have not been studied widely. Little has been done to analyze and explain
the visual strategies of programmers and relate them to the cognitive models formed
during the programming tasks. Therefore, one of the motivations of this study is to in-
vestigate the usability and also limitations of gaze tracking for studies of programming.
We also wish to relate the gaze-data to and validate them withother sources of empirical
and behavioral data.

Our longterm goal is to characterize the visual strategies and related mental models
of programmers of different skill levels and performance inprogram comprehension.
As a step in our ongoing efforts, we present an exploratory empirical experiment in
which participants tried to comprehend Java programs usinga program visualization
tool. To capture the visual attention patterns during comprehension, we recorded the
eye-movement data. Our study aims to address questions suchas: What kinds of visual
strategies lead to successful and unsuccessful comprehension? How is the quality of
constructed mental models related to the visual attention patterns during comprehen-
sion? What structures do programmers visually attend in order to comprehend a pro-
gram successfully? Answers to these questions help us to better understand not only
what shall be visualized, but also how program visualization is used and should be used
[5]. Furthermore, this research contributes to systems that can support programmers and
students based on their eye-data during the programming tasks.

2 Related Work

What cognitive processes are involved during programming tasks? One way to study
cognitive skills is through examining differences in the performance of novices and ex-
perts [6]. Differences between novices and experts in comprehension and debugging
tasks have been of great interest in previous research. Gugerty and Olson [7] found that
during debugging, not only novices were much slower in discovering the bug, but they
also introduced new bugs. Experts tend to spend more time on planning and evaluation,
and their mental models are rich to support mental simulations of the programs [8]. Ex-
perts also think about programs in terms of higher-level abstractions [3], while novices
use elements on the (surface) level of the programming language [9].

Eye-movement tracking has been successfully applied in many domains, includ-
ing cognitive processing [10], reading [11], usability [12], or as a medium for direct
interaction with interfaces [13]. In the domain of empirical studies of programming, in-
stead, investigations of cognitive processes involved in programming have been mostly
based on verbal-protocols [4], a well established - and probably the most popular -
method, used to capture and analyze the thought-processing. Despite its potentials, eye-
movement tracking has not been widely applied in the domain and the applications of
the eye-movement tracking to study the behavioral aspects of programming are still
rare.
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The advantages of eye-tracking to study human behavior are,however, numerous.
Modern eye-trackers are highly unobtrusive and no additional effort is required from
participants to be tracked. Capitalizing on these advantages, Stein and Brennan [14]
used a head-mounted eye-tracker to record the point of gaze of professional program-
mers debugging. These recordings were then replayed for a half of other participants
searching for the bugs. It was found that those who viewed thegaze path of profession-
als found the bugs more quickly than those who did not see it. Torii et al. [15] made
use of the gaze from a wearable eye-tracker as one of the sources of behavioral data to
monitor users during software development.

Crosby and Stelovsky [16] studied gaze patterns of participants reading source code.
They found that the visual strategies vary and depend on individual preferences. In
addition, beacons [17], the typical structures found in thesource code, were found to
play an important role in visual strategies. Using an artificial environment and multiple
static representations, Romero et al. [18] studied visual attention during debugging.
Good debugging performance was found to be linked with balanced switching between
the different representations.

In a previous analysis of the present experiment, we concentrated on theeffects of
previous experience on the interaction and gaze patterns during comprehension [19]. In
the experiment, participants with various levels of programming experience used a pro-
gram visualization tool, Jeliot [20], to comprehend short Java programs. We have found
a significant effect of previous experience 1) on the generalcomprehension strategies
outside the animation, 2) on the fixation durations over different areas of interest, and
3) on the interaction patterns with the visualization tool.More experienced participants
spent more time on reading the code and generating hypotheses to finally validate them
against the visualization. Novice programmers, on the other hand, viewed the visual-
izations in order to generate hypotheses without studying the code carefully first. Only
then they tried to comprehend the programs from the source code. However, the quality
of the resulting mental models did not significantly differ and gaze patterns during the
visualization were similar to a great extent. Novice participants exhibited a higher mean
fixation duration that can be related to the depth and complexity of the required mental
processing.

In a study similar in some aspects to the present one, Nevalainen and Sajaniemi [21]
investigated the effects of a programming environment, Turbo Pascal, and a program vi-
sualization system, PlanAni, on visual strategies and mental models constructed during
program comprehension. Eye-movement data were analyzed interms of the proportion
of fixation times spent on code and visualization. While the authors found some effects
of the tools on the visual strategies, no statistically significant effects on the constructed
mental models were found. Some correlations between looking into visualization of
variables and information types were found. However, a great number of correlation
tests were performed in the study. It is then probable that many of the significant find-
ings might not indicate real dependencies, but be artifactsof the type I error because
the significance level was not adjusted.

Bednarik et al. [19] claim that complex and lengthy processes such as program
comprehension cannot be effectively described using a single long-term eye-tracking
measure. In addition, the visualization of program execution is dynamic and often in-
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volves several semantically distinct structures and entities that appear on the display
during limited period. For instance, a dedicated area showsthe type and actual con-
tent of variables, while another one concurrently illustrates changes in the control flow.
Thus, we study how the visual attention is allocated on thoseelements during the time
they are active. In the present study, we therefore concentrate only on the times when
the animation of a program was available and we decompose thevisualization interface
into several semantically distinctive areas.

Programmers acquire a mental model of a program as an outcomeof the compre-
hension process. Good and Brna [22] developed an analysis scheme based on the infor-
mation types and object descriptions found in comprehension summaries. The scheme
allows the evaluation of the quality of mental models in terms of proportions of different
information types and in terms of their level of abstraction. The information types are
the statements related to control-flow, data-flow, functionor operation of the program.
Object descriptions (i.e. how the variables and objects areexplained in the summary)
are classified based on the references they make to program, domain or real-world spe-
cific terms. A more detailed description of the comprehension summary analysis can be
found in [22].

In this report, we focus on particularly successful comprehenders and contrast their
visual strategies with those of low-comprehenders. We makeuse of Good’s scheme and
analyze the gaze-patterns of each of the groups and make an attempt to correlate the
mental models with the visual strategies. In addition, we compare the comprehension
performance to the information types, to investigate whether quality and performance
correlate.

3 Experiment

The purpose of this exploratory investigation was to discover if high and low compre-
hension outcomes are results of particular visual strategies of programmers using a pro-
gram visualization tool. Furthermore, we investigated whether information types found
in the program comprehension summaries correlate with these strategies. Knowledge
of such patterns could have direct implications to the design of future programming
environments that could use the gaze-tracking in real time.

3.1 Method

Dependent variables were the information types that were found in program compre-
hension summaries, comprehension summaries’ quality measures, and the proportions
of fixation times spent on each area of interest. The information types reflect the quality
of mental models. The proportional fixation time is a measureof participant’s interest
on an area [12] and therefore it reflects the importance of theinformation contained in
the area. Only the gaze data during the program animation were used in this analysis be-
cause that was the only time when all the representations were available concurrently.
Thus, the selection of the attended representation would make a difference in under-
standing the program. The data were analyzed using correlations, ANOVA and planned
comparisons based on t-test.
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3.2 Participants

A total of sixteen (13 male, 3 female) participants were recruited from high-school stu-
dents attending a university level programming course, andundergraduate and graduate
computer science students from local university. The experimental group can be char-
acterized as follows with mean values (standard deviationsin parentheses): age 23.25
(7.67), experience with programming in months 49.13 (54.05), experience with Java
in months 13.06 (12.75), experience with other programminglanguages 19.31 (29.25)
months, two participants had a previous industrial experience. All participants had nor-
mal or corrected-to normal vision, according to their own report.

3.3 Materials and Apparatus

Three short Java programs, a factorial computation, a recursive binary search program,
and a näıve string matching program were presented to the participants. Each of the
programs generated only one line of output and did not require any user input. The
names of methods and variables were altered in order to avoida possible recognition
of a program based on these surface features and motivate theparticipants to try to
understand the programs.

Visualization window is 

further split into four 

semantically different areas:  

a) Method 

b) Expression Evaluation 

c) Instances and Array 

d) Constants 

The eye-movement data 

from these areas were 

analyzed.  

Fig. 1. Interface of the program visualization tool used in the experiment.

To visualize the target Java programs, Jeliot 3 [20], a program visualization tool,
was used. The user interface of Jeliot 3 (Figure 1) consists of four separate areas: the
Code (1) is on the top left, the visualization is shown in the top right area (2), the Control
panel (3) with VCR-like buttons to control the animation is on the bottom left, and the
Output (4) of the program is displayed in the bottom right panel.

Moreover, the visualization area is further split into fourdiscrete sections that detail
a) the method frames and local variables, b) expression evaluation, c) constants and sta-
tic fields, and d) instantiated objects and arrays. These four areas were in the focus of
the present study. TheMethod area displays the currently executed method and types
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and values of local variables. When an expression is being evaluated during execution,
theExpression Evaluation area displays the process step-by-step. In addition, informa-
tion about method calls, return values and some explanations about the control flow of
the program are presented in this area. TheInstances and Arrays area shows the vi-
sualization of arrays and instances of objects, their fieldsand content. Finally, in the
Constants and Static Fields area all the literal values are introduced and static fields
are visualized. The areas are not separate in the sense that there are several operations
that can transfer information from one area to another. For instance, when a result of
an expression evaluation is assigned into a local variable,the resulting value is moved
from the expression evaluation area to its proper location in the method area. Thus,
these transitions contain also semantical meaning relatedto the programs’ execution.

3.4 Procedure and Design

The experiment was conducted in a quiet usability lab. Participants were seated in an
ordinary office chair, near the experimenter, and facing a 17” TFT display. Every partic-
ipant then passed an automatic eye-tracking calibration. After a successful calibration,
participants performed three sessions, each consisting ofa comprehension phase using
Jeliot 3 and a program summary writing phase.

Participants were instructed to comprehend the program as well as possible. In addi-
tion they were told that after the comprehension they will beasked to write a summary
of a program. They could interact with the program visualization tool as they found
it necessary. The target programs contained no errors and were always preloaded into
Jeliot and compiled. The duration of a session was not limited.

The first target program was factorial computation and it wasused as a warm-up
and the resulting data were discarded. The order of the two actual comprehension tasks
was randomized so that half of the participants started withthe recursive binary search
and other half with näıve string matching.

4 Results

Previous reports of this experiment [19] concentrated on distinguishing visual attention
patterns of participants according to their prior programming knowledge and experi-
ence. In this report, we focus on particular successful comprehenders and contrast their
visual strategies with those of low-comprehenders.

Comprehension summaries were evaluated based on three elements. A point was
given to those that contained a correct description of the function (what) of a program.
Another point was given if the procedure of the program (how) was described correctly.
If description contained a full description of the program and its execution in the current
case, a point was given. Thus, a comprehension summary couldbe given a maximum
of three points.

4.1 Comprehension performance vs. quality of mental models

Participants were post-hoc divided into two groups based ontheir performance in com-
prehension: those participants whose comprehension summaries received at least two
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points in both of the target programs were assigned to ahigh comprehenders group, and
other participants were assigned to alow comprehenders group. Following the criterion,
nine participants were assigned to the high-comprehendersgroup and seven participants
were assigned to the other group.

All thirty two program summaries were analyzed by an experienced rater. To estab-
lish the validity of the information-types analysis and of the performance evaluations,
eleven randomly selected summaries (approximately one third) were analyzed by two
raters. The summaries were chunked based on consensus, resulting in 130 chunks. The
pure inter-rater agreements were 83.8% (κ=.814, ASE=.037,p<.001) regarding the in-
formation types analysis. Considering the comprehension performance analysis, 100%
for presence of both function and procedure correct descriptions, and 90.9% (κ=.621,
ASE=.335,p=.026, one disagreement) for correct full description of the program were
achieved1.

High-comprehenders received on average 2.33 (SD=0.44) points, while the other
group achieved an average score of 1.07 (SD=0.62). Besides asignificant effect of
group F(1,14)=32.34,p<.001 on points received, a two-way ANOVA (program (2) x
group (2)) discovered no effect of program F(1,14)=.445,p=.52. A weak interaction
between group and program F(1,14)=4.43,p=.054 was found, with partialη2 = .24.
Thus, according to the performance criteria, the groups significantly different (high-
comprehenders performed significantly better) and the performance kept constant be-
tween the programs. This finding has been expected and the analysis only served as
a confirmation that the post-hoc division yielded differentgroups in terms of perfor-
mance.

To evaluate the information types (IT) found in summaries and therefore the qual-
ity of the externalization of the constructed models, comprehension summaries were
analyzed using Good’s scheme [22]. To reduce the complexityof the analysis, we con-
centrated on two composite ratings that would reflect the level of abstractions found
in the models. Similarly as in [23, 21], theinfo-high type was defined as a composite
value including the higher-level statements about data, function, action, and so called
state-high statements. Theinfo-low composite type included statements at a lower-level
of abstraction, namely statements about operation, control, and state-low. Other infor-
mation types provided by Good’s scheme were not included in the analysis, however,
the proportions are reported in Table 1.

Since both the classification of the performance and the information types analy-
sis were based on the same comprehension summaries, it mightbe hypothesized that
the two measures are correlated. To analyze a possible relationship, we correlated the
points awarded with the info-high and info-low proportions. For all of the summaries,
comprehension points with info-low and comprehension points with info-high were not
significantly correlated: info-low and comprehension points had a small negative cor-
relation (pearsonr between -.28 and -.16,ns) and info-high and comprehension points
had a small positive correlation (pearsonr between .25 and .18,ns). It therefore seems
that the performance classification and analysis of produced mental models were inde-

1 Inter-rater agreement is considered reliable enough ifκ > .7. However, there are problems
applying κ, when there are few categories and values. Thus, theκ = .621 of 11 agree-
ments/disagreements can be still considered relatively good.
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Table 1. Proportions of information types found in comprehension summaries. SD = Standard
deviation.

Target program
Binary search String matching

IT High compr.Low compr. High compr.Low compr.
mean SD mean SD mean SD mean SD

function 7.47 3.64 4.29 6.31 6.50 4.63 4.68 4.97
action 7.60 5.80 5.47 7.16 8.55 9.43 15.85 13.43

operation 8.07 16.0420.83 20.7312.56 10.6920.39 15.76
state-high 7.11 7.62 7.20 6.80 14.93 9.84 6.68 3.53
state-low 13.63 12.3111.09 15.95 5.80 5.79 13.99 13.02

data 21.54 9.51 9.28 8.59 12.85 9.03 6.77 6.05
control 22.16 10.8723.32 21.0212.76 9.85 9.77 6.29

elaborate 9.79 11.3316.60 13.4023.29 15.0911.03 9.27
meta 1.79 3.33 0.00 0.00 0.00 0.00 5.96 10.29

unclear 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
incomplete 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
continuation 0.00 0.00 1.91 3.28 0.00 0.00 0.00 0.00

irrelevant 0.83 2.36 0.00 0.00 2.76 4.41 4.89 5.64
Σ info-high 43.72 15.9826.24 15.2942.83 17.8333.15 15.34
Σ info-low 43.86 17.6855.25 26.3031.11 18.3244.15 19.78

pendent in general and can be used as separate measures. In other words, presence of
certain information type (e.g. info-high) in a summary doesnot indicate correct com-
prehension, and vice versa.

Table 1 provides a complete overview of the comprehension models and informa-
tion types found in the summaries, for both of the two programcomprehension tasks.
Three-way ANOVA (program (2) x group (2) x IT-type (2)) revealed no effects of
the type, F(1,13)=1.674,p=.218 and a mild effect of program F(1,13)=3.456,p=.086
on IT found in mental models, with a weak interaction betweenIT-type and perfor-
mance group F(1,13)=2.598,p=.131. Other interactions were not significant; similarly
as no effect of group on information type was found F(1,13)=.045, p=.84. Planned
comparisons revealed a significant difference between the groups on info-high-type,
t(13)=2.16,p=.050 for the binary search, and no difference for the string matching
t(13)=1.06,p=.305. No statistically significant differences were found in thepropor-
tions of info-low type.

It shall be observed that the analysis of the information types is strongly affected by
the great variances in the models. Nevertheless, the summaries of low-comprehenders
contained more low-level information than high-level information. Although the groups
statistically did not differ in the proportion of info-low-type found in their summaries,
clearly, mental models of high-comprehenders contained higher proportions of higher
level references than the models of low-comprehenders.
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4.2 Eye-movement patterns vs. quality of mental models

Correlations of eye-movement data on the main interface areas of the interface with the
proportions of information types found in the summaries were analyzed. We analyzed
the visual behavior separately for the two target programs,because the animations of the
program executions were different and they might have had aneffect on the allocation
of visual attention. Correlations of the times spent on the two main interface areas are
shown in Table 2 and the distribution of the times is shown in Table 3.

Table 2. Correlations of proportional fixation times on the Code and Visualization areas with
information types. Levels of significance in parentheses. Correlations approaching p=.1 are high-
lighted in italics.

ProgramGroup IT Code Visualiz.

Binary
search

High
compr.

info-high -.200
(.635)

.235
(.575)

info-low .005
(.990)

-.047
(.913)

Low
compr.

info-high .679
(.094)

-.622
(.136)

info-low -.605
(.150)

.484
(.271)

String
matching

High
compr.

info-high -.226
(.559)

.223
(.565)

info-low .191
(.622)

-.184
(.636)

Low
compr.

info-high -.079
(.866)

.005
(.992)

info-low .103
(.825)

-.072
(.878)

Recursive binary search program Detailed analysis of the fixation patterns on the
sub-areas of the visualization window revealed following:while comprehending the
binary search program, none of the proportional fixation times were significantly cor-
related with any of the information contained in mental models, except for a negative
correlation of low-comprehenders’ time to view the Expression area and info-high that
approached p of .05, (r(7)=-.73,p=.062). To analyze the effect of code reading during
the animation of this program, the time spent on looking intothe source code and time
spent on looking into visualization were correlated with information types, as shown in
Table 2. Although not significantly, the times the low-comprehenders spent on Code and
Visualization were interestingly correlated with the info-high and partly with info-low.
In addition, the distributions of the fixation times did not differed between the groups
during comprehension of this program.
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Table 3. Proportional fixation times on the Visualization areas (Method + Expression+ Instances
+ Constants = Visualization) and on the source code and Visualization [in % oftotal animation
time]. Probabilities are associated with two-tailed t-test, standard deviations are in parentheses.

Program Group MethodExpressionInstancesConstants Code Visualization

Binary search

High compr. 24.02 21.07 4.73 0.88 46.87 50.70
(11.30) (6.19) (3.04) (1.05) (16.65) (16.52)

Low compr. 23.79 22.14 6.87 1.15 43.45 53.95
(5.20) (6.36) (2.63) (0.66) (13.56) (13.80)

p diff. .96 .75 .17 .56 .67 .69

String matching

High compr. 16.18 25.95 9.56 1.49 43.94 53.17
(2.49) (11.23) (5.08) (2.84) (14.20) (14.77)

Low compr. 18.07 28.87 15.84 1.55 33.59 64.33
(1.79) (8.41) (6.33) (0.65) (12.17) (12.66)

p diff. .11 .58 .04 .96 0.15 .13

String matching program During comprehension of the string matching program,
none of the high-comprehenders’ fixation times on the areas of the visualization were
significantly correlated with information types found in their summaries. High-comprehenders’
fixation times on Code and Visualization areas were correlated neither with info-low nor
with info-high types in any program. The correlation of low-comprehenders’ time on
Constants-area with info-high proportion approached p level of .1, (r(7)=-.64,p=.120).
Information types contained in the summaries of low-comprehenders were not signifi-
cantly correlated with time spent looking on the Code nor with the time looking at the
Visualization. The distributions of the fixation times differed between the two perfor-
mance groups in this case (table 3): low-comprehenders spent less time on Code, 21%
more time on Visualization, and significantly more time on the Instances area.

5 Discussion

Visual strategies of programmers that use program visualization to aid comprehension
depend on several factors. Two such factors, the target program and its actual visual-
ization, seem to prevail over previous experience with programming [19]. Therefore, in
the present study we began to investigate the differences inthe visual behavior as re-
lated to the performance levels based on comprehension summaries. We focused on the
interplays between the correctness of the comprehension summary, quality of the exter-
nalized mental models, successful comprehension strategies and related gaze patterns.
Participants were post-hoc grouped according to whether their program comprehen-
sion summaries contained the information 1) about what the program does, 2) how the
program solves the problem, and 3) about overall function and aim of the program.

Comprehension performance was measured as a correctness ofdescription of the
program function and procedure. Our results suggest that itseems not to be strongly
related with the externalized information about mental models. In other words, presence
of e.g. high-level information type in the comprehension summary does not indicate that
the target program was correctly comprehended and vice-versa.
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Analysis of externalized mental models indicates that high-comprehenders referred
to higher-level information more, which is not a surprisingfinding. However, in the
case of the string matching program, the less successful participants improved their
performance in terms of higher-level understanding of the program so that there was
not any significant difference in the proportions between the two groups.

Looking at the patterns of visual attention, our results offer one explanation: while
high-comprehenders’ visual strategies do not seem to be correlated with the level of
abstraction found in their summaries, their performance ishigher. In other words, it is
hard to find common patterns in the visual strategies of high-comprehenders as their
visual behavior seems to be rather individual. This conclusion seems to be in line with
the findings of Crosby and Stelovsky [16].

During the comprehension of both programs, the attention ofthe high-comprehenders
was more balanced between the different representations compared to the low-comprehenders.
This seems to support the previous results about visual strategies during debugging
[18]. It is surprising how the distribution of fixation timesof low-comprehenders during
binary-search resembles the overall distribution representing the high-comprehenders’
behavior. While the performance differs, the times spent on different areas during com-
prehension of this program were similar. However, high-comprehenders, perhaps, had
the abilities and knowledge to extract the information fromdifferent areas as neces-
sary. Similarly distributed visual attention of the low-comprehenders then led to failed
comprehension of the program. As seen from table 2, the more the low-comprehenders
read the Code during animation of the binary search program,the more higher-level
information was contained in their program summaries. At the same time, looking into
the visualization decreased the proportion of the higher-level references in their mental
models.

Let’s contrast the previous with the behavior during the comprehension of the string-
matching program. For many of the areas (Method, Instances,and also code), visual
attention patterns of the two groups differed. For example,low-comprehenders paid
more attention to the Visualization area, in particular, Instances were attended signifi-
cantly more. We believe, that these strategies then led to the improvement in the propor-
tion of higher-level information found in the low-comprehenders’ summaries of string-
matching program. To reliably explain this improvement andthe difference, a further
qualitative analysis, such as questioning of the participants, would be required.

To summarize the previous observations, we have found that during comprehension
of one program the visual strategies of two performance groups were similar while their
mental models differed. On the other hand, during comprehension of another program
the visual strategies were different while the mental models were similar.

An alternative explanation for the finding could be that although the order of the pro-
grams was randomized in the original experiment, the post-hoc assignment into groups
could result in an unbalanced order within the groups. However, this was not the case:
the order of programs was balanced also for the post-hoc groups. It remains therefore
most probable that the actual target programs and their respective visualizations played
an important role in the differences found in comprehensionand visual behavior.

While there has been found an evidence of the relation betweenthe fixation patterns
and cognitive processing, e.g. in reading [10], eye-movement data are generally difficult
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to interpret in the complex domains. This is partly due to thefact that in complex do-
mains, such as programming, some information and processesare implicit and therefore
are hard to represent explicitly. For example, during a constructor call the constructor
of the super class is called even though this call would not beexplicitly written into the
program code. Programmers might understand the call even without visually attending
the code of the constructor.

Could eye-tracking data help to explain the differences found in comprehension
summaries? The presented findings suggest that gaze-patterns, at least partially, can
predict information later found in mental models of programmers. For instance, the in-
formation shown in the Method and Instances areas expose higher-level information
about program execution. Therefore, visually attending these areas shall have an ef-
fect on an increased awareness of the higher-level information related to execution.
Similarly, attending Constants and Expression evaluationareas shall provide the pro-
grammer with low-level information. Our findings indicate,however, that looking at
the Expression evaluation area might have decreased the proportion of high-level infor-
mation of low-comprehenders. However, at the same time, theresults also empirically
manifest that just looking at visualization does not guarantee its correct understanding
[24].

Although a promising technology, the gaze-related data, asused in this experiment
and similar research, do not directly allow us to identify strategies that may lead to
good comprehension. To overcome these problems, we are currently developing new
measures and analysis techniques that would better reflect the cognitive processes in-
volved in comprehension. For example, we employ the gaze to estimate the (gradual)
changes in importance of the different representations to the programmer [25]. Thus, in
future we can support the comprehenders efforts when the gaze is used in real-time.

There are, however, also other factors at play in determining good and poor com-
prehenders than just what structures of visualization theyselect to visually attend. For
instance, according to related research, good comprehenders can combine their previ-
ous domain and programming knowledge with the information about the program in
order to make sense of it [2]. It is quite possible that also inour study some of the
more experienced participants could build good mental models even without paying
attention to the visualization. In addition, it is also possible that more experienced par-
ticipants failed to comprehend the programs and therefore they were classified into the
low-comprehender group. In our future analysis we plan to take this possibility into
account.

Furthermore, different learning styles can affect the comprehension process and
certain types of learners might be more ready to comprehend programs with a help of
an animation than others. However, gaze data may give indications of what kind of
knowledge the comprehender tries to interpret.

5.1 Limitations and future work

The presented results have to be critically considered witha certain caution. The sample
size was relatively small and the applied analysis requiresa great number of correlations
to be run. Therefore the generalizability of the conclusions could be limited. Further
studies shall include a larger number of participants and validate or reject our findings.
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Our results, however, provide an interesting starting point for further investigations. In
our future work, we wish to more accurately classify the strategies leading to different
mental representations of a program. If we can distinguish between good and poor
comprehenders based on the gaze data or get indications about the abstraction level
of their mental models, we might be able to support differentcomprehenders in their
learning with an appropriately adapted support to foster comprehension.

In addition, we plan to improve the methodology introduced in this paper. First, the
analysis of the comprehension summaries shall be conductedby several raters. In this
way, we will be able to estimate an agreement between the raters and therefore add a
validity measure for each of the correlations. The coding book provided in [22] and
improved in [23] is comprehensive. The complete set of Good’s information types will
be analyzed, however, multivariate type of correlations orcanonical correlations have
to be used when the number of correlations grows. Finally, other gaze data, such as
fixation duration and area switching, will be analyzed.

6 Conclusions

Eye-movement data indicate what structures of program visualization have been at-
tended by programmers during comprehension. Program comprehension summaries
contain information about mental models acquired during the comprehension. We have
examined the relation between these two sources of data and we compared them with
high- and low-comprehension outcomes.

We have not found any correspondence between program comprehension perfor-
mance and structure of created mental models as indicated byinformation type analy-
sis.

Although further studies are needed to achieve generalizability and higher valid-
ity, our data suggest important implications into the research of program comprehen-
sion. High-comprehenders divided their attention on the visualization and the code in
a more balanced way. A few correlations between the eye-movement patterns and in-
formation types in the summaries of low-comprehenders havebeen found. When low-
comprehenders’ viewing times on different representations resembled those of high-
comprehenders, they attempted to infer information on wrong abstraction levels from
the visualization and the source code. This, in our opinion,negatively affected the low-
comprehenders’ results. When the fixation-time distributions and therefore the strate-
gies of the two groups diverged and the low-comprehenders concentrated more on the
visualization, the quality of their mental models improved. Yet, they failed to correctly
comprehend the program. This implies that personal strategies might be more effective
depending on the knowledge level of the comprehender.

Our long term aim is to develop systems that could assist the users in program
comprehension and debugging by analyzing their gaze-data in real-time. This work
takes the first steps into this direction.
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