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Abstract. We present preliminary results of an experiment in computer program
comprehension that was conducted to find out whether visual strategiehar-
acterize low- and high-comprehenders. In addition, we investigatethettne
type and quality of externalized mental models can be associated with tla visu
strategies.

Participants of various levels of experience used a program visualizatibrde-

liot, to comprehend short Java programs, while their eye-movementseerded.
Comprehension summaries were evaluated for correctness asurengfgzerfor-
mance and also analyzed using Good'’s information-types schemes $jpaat on
viewing certain structures of the program visualization were analyzedamne-
lated with the information types found in comprehension summaries. Depen
on comprehension performance and target program, some irtformtygpes were
found to be correlated with eye-data patterns.

Comprehension performance did not significantly correlate with infaomaypes.
When the visual strategies of low-comprehenders were similar to thdsgtof
comprehenders, the comprehension outcome of the low-compredsenas poor.
When the strategies diverged, the mental models of low-compreletatet to
match those of high-comprehenders. Based on the results, we prifaieye-
tracking can help to partially predict the mental model that is built during-com
prehension. We discuss limitations and future directions of this research.

1 Introduction

Program comprehension, the ability to understand progrénsften recognized as
central to programming and software maintenance in genResearchers examining
cognitive processing have used several techniques, suittinksaloud protocols, ob-
servational studies, eye tracking and other, to get inéigbthe behavior and strategies
the participants exhibit during reading or problem-saivtasks. Previous research in
program comprehension have used many of these methodsttoeand investigate
cognitive processes involved in programming [1-4]. Howgevisual attention tracking
methods have been employed relatively rarely.
When the reasoning is related to or even dependent on visomllisteye-tracking

systems have shown to be useful in revealing the patterniswéhattention during the
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task. Programming tasks such as design, debugging or chemmi®n are such situa-
tions, since normally programmers work with a graphicaiifece that provides them
with several representations of a program. While most of theipus studies have uti-
lized think-aloud protocols and artificial environmentisual attention patterns during
programming have not been studied widely. Little has be@®do analyze and explain
the visual strategies of programmers and relate them todfeitive models formed
during the programming tasks. Therefore, one of the mabimatof this study is to in-
vestigate the usability and also limitations of gaze tragKor studies of programming.
We also wish to relate the gaze-data to and validate thermotligr sources of empirical
and behavioral data.

Our longterm goal is to characterize the visual strategiesralated mental models
of programmers of different skill levels and performancgingram comprehension.
As a step in our ongoing efforts, we present an exploratorgiecal experiment in
which participants tried to comprehend Java programs usipgogram visualization
tool. To capture the visual attention patterns during cahension, we recorded the
eye-movement data. Our study aims to address questiongsu¥hat kinds of visual
strategies lead to successful and unsuccessful comprehension? How is the quality of
constructed mental models related to the visual attention patterns during comprehen-
sion? What structures do programmers visually attend in order to comprehend a pro-
gram successfully? Answers to these questions help us to better understandhhot o
what shall be visualized, but also how program visualizeiiaused and should be used
[5]. Furthermore, this research contributes to systenisHrasupport programmers and
students based on their eye-data during the programmikg. tas

2 Reated Work

What cognitive processes are involved during programmiegsta One way to study
cognitive skills is through examining differences in thefpemance of novices and ex-
perts [6]. Differences between novices and experts in celrgrsion and debugging
tasks have been of great interest in previous research.rigugel Olson [7] found that
during debugging, not only novices were much slower in disdog the bug, but they
also introduced new bugs. Experts tend to spend more timéonipg and evaluation,
and their mental models are rich to support mental simulatad the programs [8]. Ex-
perts also think about programs in terms of higher-levetrabsons [3], while novices
use elements on the (surface) level of the programming kae{0].

Eye-movement tracking has been successfully applied inyrdamains, includ-
ing cognitive processing [10], reading [11], usability [18r as a medium for direct
interaction with interfaces [13]. In the domain of empitistudies of programming, in-
stead, investigations of cognitive processes involvedagmmming have been mostly
based on verbal-protocols [4], a well established - and gvybthe most popular -
method, used to capture and analyze the thought-proce&sgite its potentials, eye-
movement tracking has not been widely applied in the domadhthe applications of
the eye-movement tracking to study the behavioral aspdgbsogramming are still
rare.
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The advantages of eye-tracking to study human behavioharegver, numerous.
Modern eye-trackers are highly unobtrusive and no additieffort is required from
participants to be tracked. Capitalizing on these advastagtein and Brennan [14]
used a head-mounted eye-tracker to record the point of Jga@f@ssional program-
mers debugging. These recordings were then replayed folf afh@ther participants
searching for the bugs. It was found that those who vieweddlze path of profession-
als found the bugs more quickly than those who did not seepiii &t al. [15] made
use of the gaze from a wearable eye-tracker as one of theesoofbehavioral data to
monitor users during software development.

Crosby and Stelovsky [16] studied gaze patterns of paditgpreading source code.
They found that the visual strategies vary and depend owithdil preferences. In
addition, beacons [17], the typical structures found ingberce code, were found to
play an important role in visual strategies. Using an ai#fienvironment and multiple
static representations, Romero et al. [18] studied visttahtion during debugging.
Good debugging performance was found to be linked with leadiswitching between
the different representations.

In a previous analysis of the present experiment, we coratet on thesffects of
previous experience on the interaction and gaze patterns during comprehens#jnlp
the experiment, participants with various levels of progming experience used a pro-
gram visualization tool, Jeliot [20], to comprehend shaxalprograms. We have found
a significant effect of previous experience 1) on the germralprehension strategies
outside the animation, 2) on the fixation durations overed#ht areas of interest, and
3) on the interaction patterns with the visualization tddbre experienced participants
spent more time on reading the code and generating hypathefinally validate them
against the visualization. Novice programmers, on therdthed, viewed the visual-
izations in order to generate hypotheses without studyirgdde carefully first. Only
then they tried to comprehend the programs from the souide. ¢édowever, the quality
of the resulting mental models did not significantly diffeidagaze patterns during the
visualization were similar to a great extent. Novice pgtats exhibited a higher mean
fixation duration that can be related to the depth and coritglekthe required mental
processing.

In a study similar in some aspects to the present one, Neegland Sajaniemi [21]
investigated the effects of a programming environmenthdtascal, and a program vi-
sualization system, PlanAni, on visual strategies and ah@mbdels constructed during
program comprehension. Eye-movement data were analyzethiis of the proportion
of fixation times spent on code and visualization. While thimars found some effects
of the tools on the visual strategies, no statistically iicemt effects on the constructed
mental models were found. Some correlations between Igokito visualization of
variables and information types were found. However, atgnaaber of correlation
tests were performed in the study. It is then probable thatyno&the significant find-
ings might not indicate real dependencies, but be artifaictbe type | error because
the significance level was not adjusted.

Bednarik et al. [19] claim that complex and lengthy processech as program
comprehension cannot be effectively described using deslngg-term eye-tracking
measure. In addition, the visualization of program executs dynamic and often in-
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volves several semantically distinct structures and iestithat appear on the display
during limited period. For instance, a dedicated area shbesype and actual con-
tent of variables, while another one concurrently illutsachanges in the control flow.
Thus, we study how the visual attention is allocated on tiedesments during the time
they are active. In the present study, we therefore coretenemly on the times when
the animation of a program was available and we decomposasihiaization interface
into several semantically distinctive areas.

Programmers acquire a mental model of a program as an outobthe compre-
hension process. Good and Brna [22] developed an analysmswcbased on the infor-
mation types and object descriptions found in comprehersiomaries. The scheme
allows the evaluation of the quality of mental models in tewhproportions of different
information types and in terms of their level of abstractibhe information types are
the statements related to control-flow, data-flow, functiooperation of the program.
Object descriptions (i.e. how the variables and objectegpdained in the summary)
are classified based on the references they make to progoamajm or real-world spe-
cific terms. A more detailed description of the comprehemsiammary analysis can be
found in [22].

In this report, we focus on particularly successful compreters and contrast their
visual strategies with those of low-comprehenders. We makef Good'’s scheme and
analyze the gaze-patterns of each of the groups and makeeampato correlate the
mental models with the visual strategies. In addition, wengare the comprehension
performance to the information types, to investigate wietuality and performance
correlate.

3 Experiment

The purpose of this exploratory investigation was to distafrhigh and low compre-
hension outcomes are results of particular visual strasagfiprogrammers using a pro-
gram visualization tool. Furthermore, we investigated tlvbeinformation types found
in the program comprehension summaries correlate witretegategies. Knowledge
of such patterns could have direct implications to the desigfuture programming
environments that could use the gaze-tracking in real time.

31 Method

Dependent variables were the information types that wasaddn program compre-
hension summaries, comprehension summaries’ qualityunesisand the proportions
of fixation times spent on each area of interest. The infammaypes reflect the quality
of mental models. The proportional fixation time is a measfingarticipant’s interest

on an area [12] and therefore it reflects the importance ointfoemation contained in

the area. Only the gaze data during the program animatioa uged in this analysis be-
cause that was the only time when all the representations aweilable concurrently.
Thus, the selection of the attended representation woukkraalifference in under-
standing the program. The data were analyzed using caomtatANOVA and planned

comparisons based on t-test.
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3.2 Participants

A total of sixteen (13 male, 3 female) participants wereuged from high-school stu-
dents attending a university level programming course uaagrgraduate and graduate
computer science students from local university. The empartal group can be char-
acterized as follows with mean values (standard deviafioparentheses): age 23.25
(7.67), experience with programming in months 49.13 (54.8%perience with Java
in months 13.06 (12.75), experience with other programrfanguages 19.31 (29.25)
months, two participants had a previous industrial expesgeAll participants had nor-
mal or corrected-to normal vision, according to their owpane.

3.3 Materialsand Apparatus

Three short Java programs, a factorial computation, a saeubinary search program,
and a né&ve string matching program were presented to the partitgpdach of the

programs generated only one line of output and did not reqaniy user input. The
names of methods and variables were altered in order to avpissible recognition
of a program based on these surface features and motivageattieipants to try to

understand the programs.

Visualization window is
further split into four

semantically different areas:
[—————a) Method

[———————b) Expression Evaluation

) Instances and Array

| —— d) Constants

The eye-movement data
from these areas were
analyzed.

JELIOT .S

Fig. 1. Interface of the program visualization tool used in the experiment.

To visualize the target Java programs, Jeliot 3 [20], a @nwgyisualization tool,
was used. The user interface of Jeliot 3 (Figure 1) considtsun separate areas: the
Code (1) is on the top left, the visualization is shown in theright area (2), the Control
panel (3) with VCR-like buttons to control the animation isthe bottom left, and the
Output (4) of the program is displayed in the bottom rightgdan

Moreover, the visualization area is further split into foliscrete sections that detail
a) the method frames and local variables, b) expressionaiaih, c) constants and sta-
tic fields, and d) instantiated objects and arrays. Thesedmas were in the focus of
the present study. Thdethod area displays the currently executed method and types
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and values of local variables. When an expression is beingateal during execution,
the Expression Evaluation area displays the process step-by-step. In addition, informa-
tion about method calls, return values and some explarsagéibout the control flow of
the program are presented in this area. Timbances and Arrays area shows the vi-
sualization of arrays and instances of objects, their fialt$ content. Finally, in the
Constants and Static Fields area all the literal values are introduced and static fields
are visualized. The areas are not separate in the sensb¢hatre several operations
that can transfer information from one area to another. Rstance, when a result of
an expression evaluation is assigned into a local varigiideresulting value is moved
from the expression evaluation area to its proper locatiothé method area. Thus,
these transitions contain also semantical meaning relatiée: programs’ execution.

3.4 Procedureand Design

The experiment was conducted in a quiet usability lab. Elpetnts were seated in an
ordinary office chair, near the experimenter, and facing’@ E4 display. Every partic-
ipant then passed an automatic eye-tracking calibratifter & successful calibration,
participants performed three sessions, each consistiagofmprehension phase using
Jeliot 3 and a program summary writing phase.

Participants were instructed to comprehend the progranelssvpossible. In addi-
tion they were told that after the comprehension they wilabked to write a summary
of a program. They could interact with the program visuaiiratool as they found
it necessary. The target programs contained no errors arelalways preloaded into
Jeliot and compiled. The duration of a session was not lohnite

The first target program was factorial computation and it wsed as a warm-up
and the resulting data were discarded. The order of the ttumboomprehension tasks
was randomized so that half of the participants started thighrecursive binary search
and other half with niae string matching.

4 Resaults

Previous reports of this experiment [19] concentrated stirdjuishing visual attention
patterns of participants according to their prior prograngrknowledge and experi-
ence. In this report, we focus on particular successful cetrgnders and contrast their
visual strategies with those of low-comprehenders.

Comprehension summaries were evaluated based on threergterA point was
given to those that contained a correct description of thetfan (vhat) of a program.
Another point was given if the procedure of the progréow) was described correctly.
If description contained a full description of the programal és execution in the current
case, a point was given. Thus, a comprehension summary beuwd/en a maximum
of three points.

4.1 Comprehension performance vs. quality of mental models

Participants were post-hoc divided into two groups basetthein performance in com-
prehension: those participants whose comprehension stiesmaceived at least two
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points in both of the target programs were assignecdiiglacomprehendersgroup, and
other participants were assigned t@a comprehenders group. Following the criterion,
nine participants were assigned to the high-comprehegdeup and seven participants
were assigned to the other group.

All thirty two program summaries were analyzed by an expeel rater. To estab-
lish the validity of the information-types analysis and loé tperformance evaluations,
eleven randomly selected summaries (approximately ong)thiere analyzed by two
raters. The summaries were chunked based on consensusngesul 30 chunks. The
pure inter-rater agreements were 83.8%.814, ASE=.037p<.001) regarding the in-
formation types analysis. Considering the comprehenséofopnance analysis, 100%
for presence of both function and procedure correct desanig and 90.9%+=.621,
ASE=.335p=.026, one disagreement) for correct full description of the pangwere
achieved.

High-comprehenders received on average 2.33 (SD=0.4#}paihile the other
group achieved an average score of 1.07 (SD=0.62). Besidggndicant effect of
group F(1,14)=32.34p<.001 on points received, a two-way ANOVA (program (2) x
group (2)) discovered no effect of program F(1,14)=.4#552. A weak interaction
between group and program F(1,14)=4.43,054 was found, with partiah? = .24.
Thus, according to the performance criteria, the groupsifsigntly different (high-
comprehenders performed significantly better) and theopmdnce kept constant be-
tween the programs. This finding has been expected and tigsisnanly served as
a confirmation that the post-hoc division yielded differgmbups in terms of perfor-
mance.

To evaluate the information types (IT) found in summaried #rerefore the qual-
ity of the externalization of the constructed models, caghpnsion summaries were
analyzed using Good'’s scheme [22]. To reduce the complekitye analysis, we con-
centrated on two composite ratings that would reflect thellef abstractions found
in the models. Similarly as in [23, 21], thafo-high type was defined as a composite
value including the higher-level statements about datagtfon, action, and so called
state-high statements. Th#o-low composite type included statements at a lower-level
of abstraction, namely statements about operation, dowatnd state-low. Other infor-
mation types provided by Good’s scheme were not includetiéranalysis, however,
the proportions are reported in Table 1.

Since both the classification of the performance and therimdition types analy-
sis were based on the same comprehension summaries, it beidgtypothesized that
the two measures are correlated. To analyze a possibléralhip, we correlated the
points awarded with the info-high and info-low proportiofsr all of the summaries,
comprehension points with info-low and comprehension fgoiith info-high were not
significantly correlated: info-low and comprehension p®inad a small negative cor-
relation (pearson between -.28 and -.1@s) and info-high and comprehension points
had a small positive correlation (pearsobetween .25 and .18g). It therefore seems
that the performance classification and analysis of pratlnoental models were inde-

! Inter-rater agreement is considered reliable enough if .7. However, there are problems

applying x, when there are few categories and values. Thusxthe .621 of 11 agree-
ments/disagreements can be still considered relatively good.
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Table 1. Proportions of information types found in comprehension summari@s: Standard
deviation.

Target program

Binary search String matching
IT High compr|Low compr]|High compr{Low compr.
mean SD|mean SD|mean SD|mean SD
function |7.47 3.64|4.29 6.31]6.50 4.63|4.68 4.97
action |7.60 5.80|5.47 7.16//8.55 9.43|15.85 13.48
operation | 8.07 16.0420.83 20.78312.56 10.6920.39 15.76
state-high| 7.11 7.62| 7.20 6.80{|14.93 9.84| 6.68 3.53
state-low [13.63 12.3111.09 15.955.80 5.79|13.99 13.02
data [21.54 9.51/9.28 8.59|12.85 9.03 6.77 6.05
control |22.16 10.8723.32 21.0212.76 9.85/ 9.77 6.29
elaborate | 9.79 11.3316.60 13.40)23.29 15.0911.03 9.27
meta |1.79 3.33/0.00 0.00|0.00 0.00|5.96 10.29
unclear | 0.00 0.00{ 0.00 0.00/| 0.00 0.00|0.00 0.00
incomplete| 0.00 0.00| 0.00 0.00j| 0.00 0.00| 0.00 0.00
continuation 0.00 0.00{ 1.91 3.28| 0.00 0.00| 0.00 0.00
irrelevant | 0.83 2.36| 0.00 0.00|| 2.76 4.41|4.89 5.64
X7 info-high|43.72 15.9826.24 15.2942.83 17.8333.15 15.34
X info-low [43.86 17.6855.25 26.3()31.11 18.3244.15 19.78

pendent in general and can be used as separate measurderlwotds, presence of
certain information type (e.g. info-high) in a summary does indicate correct com-
prehension, and vice versa.

Table 1 provides a complete overview of the comprehensiotietsaand informa-
tion types found in the summaries, for both of the two progammprehension tasks.
Three-way ANOVA (program (2) x group (2) x IT-type (2)) rele@ no effects of
the type, F(1,13)=1.674=.218 and a mild effect of program F(1,13)=3.45865.086
on IT found in mental models, with a weak interaction betw&Etype and perfor-
mance group F(1,13)=2.5985.131. Other interactions were not significant; similarly
as no effect of group on information type was found F(1,13$5, p=.84. Planned
comparisons revealed a significant difference between tbepg on info-high-type,
t(13)=2.16,p=.050 for the binary search, and no difference for the string match
t(13)=1.06,p=.305. No statistically significant differences were found in fhv@por-
tions of info-low type.

It shall be observed that the analysis of the informatioesyis strongly affected by
the great variances in the models. Nevertheless, the suesyarlow-comprehenders
contained more low-level information than high-level infation. Although the groups
statistically did not differ in the proportion of info-lotype found in their summaries,
clearly, mental models of high-comprehenders containgtdriproportions of higher
level references than the models of low-comprehenders.
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4.2 Eye-movement patternsvs. quality of mental models

Correlations of eye-movement data on the main interfacasas&the interface with the
proportions of information types found in the summariesenamalyzed. We analyzed
the visual behavior separately for the two target progrémsause the animations of the
program executions were different and they might have haeffant on the allocation
of visual attention. Correlations of the times spent on e main interface areas are
shown in Table 2 and the distribution of the times is shownahlé& 3.

Table 2. Correlations of proportional fixation times on the Code and Visualizatioasangth
information types. Levels of significance in parentheses. Correlatigmmeaching p=.1 are high-
lighted in italics.

ProgramGroup IT |Code |Visualiz.
High |info-high|-.200 |.235
Binary [compr. (.635) |(.575)
search info-low [.005 |-.047
(-990) ((.913)
Low [info-high|.679  |-.622
compr. (.094) |(.136)
info-low -.605 |.484
(.150) |(.271)
High |info-high|-.226 |.223
String |compr. (.559) |(.565)
matching info-low [.191 |-.184
(.622) |(.636)
Low |[info-high|-.079 |.005
compr. (.866) ((.992)
info-low [.103  |-.072
(.825) ((.878)

Recursive binary search program Detailed analysis of the fixation patterns on the
sub-areas of the visualization window revealed followingrile comprehending the
binary search program, none of the proportional fixatioremvere significantly cor-
related with any of the information contained in mental mesdexcept for a negative
correlation of low-comprehenders’ time to view the Expiassarea and info-high that
approached p of .05, (r(7)=-.7B7.062). To analyze the effect of code reading during
the animation of this program, the time spent on looking thesource code and time
spent on looking into visualization were correlated witfoimation types, as shown in
Table 2. Although not significantly, the times the low-coeipenders spent on Code and
Visualization were interestingly correlated with the isifigh and partly with info-low.

In addition, the distributions of the fixation times did nadtfeted between the groups
during comprehension of this program.
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Table 3. Proportional fixation times on the Visualization areas (Method + Expressiostances
+ Constants = Visualization) and on the source code and Visualization [intééadfanimation
time]. Probabilities are associated with two-tailed t-test, standard deviatiems parentheses.

Program Group |MethodExpressiofinstancegConstants Code |Visualization
High compr} 24.02| 21.07 4.73 0.88 || 46.87 50.70
(11.30) (6.19) | (3.04) | (1.05) ||(16.65) (16.52)
Binary search|Low compr,| 23.79| 22.14 6.87 1.15 || 43.45 53.95
(5.20)| (6.36) | (2.63) | (0.66) ||(13.56) (13.80)

p diff. .96 .75 17 .56 .67 .69

High compr| 16.18| 25.95 9.56 1.49 43.94 53.17
(2.49)| (11.23) | (5.08) | (2.84) ||(14.20) (14.77)
String matchingLow compr,| 18.07 | 28.87 15.84 155 || 33.59 64.33
(1.79)| (8.41) | (6.33) | (0.65) ||(12.17) (12.66)
p diff. A1 .58 .04 .96 0.15 13

String matching program During comprehension of the string matching program,
none of the high-comprehenders’ fixation times on the aré#seovisualization were
significantly correlated with information types found irthsummaries. High-comprehenders’
fixation times on Code and Visualization areas were coedlagither with info-low nor
with info-high types in any program. The correlation of leemprehenders’ time on
Constants-area with info-high proportion approached pllef.1, (r(7)=-.64 p=.120).
Information types contained in the summaries of low-corhprelers were not signifi-
cantly correlated with time spent looking on the Code nohulite time looking at the
Visualization. The distributions of the fixation times @iféd between the two perfor-
mance groups in this case (table 3): low-comprehenderg fggmntime on Code, 21%
more time on Visualization, and significantly more time oe thstances area.

5 Discussion

Visual strategies of programmers that use program visatidiz to aid comprehension
depend on several factors. Two such factors, the targetgmmognd its actual visual-
ization, seem to prevail over previous experience with @ogning [19]. Therefore, in
the present study we began to investigate the differenctieeinisual behavior as re-
lated to the performance levels based on comprehension atiesn\We focused on the
interplays between the correctness of the comprehensiomauy, quality of the exter-
nalized mental models, successful comprehension stestegid related gaze patterns.
Participants were post-hoc grouped according to whethadr gfrogram comprehen-
sion summaries contained the information 1) about what tbgram does, 2) how the
program solves the problem, and 3) about overall functiahaam of the program.

Comprehension performance was measured as a correctnéssaniption of the
program function and procedure. Our results suggest tisaeitns not to be strongly
related with the externalized information about mental eiedn other words, presence
of e.g. high-level information type in the comprehensiomswary does not indicate that
the target program was correctly comprehended and vicever
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Analysis of externalized mental models indicates thatugmprehenders referred
to higher-level information more, which is not a surprisifigding. However, in the
case of the string matching program, the less successftitipants improved their
performance in terms of higher-level understanding of ttegram so that there was
not any significant difference in the proportions betweentéto groups.

Looking at the patterns of visual attention, our resultgoffne explanation: while
high-comprehenders’ visual strategies do not seem to lrelated with the level of
abstraction found in their summaries, their performandggker. In other words, it is
hard to find common patterns in the visual strategies of kigmprehenders as their
visual behavior seems to be rather individual. This corncluseems to be in line with
the findings of Crosby and Stelovsky [16].

During the comprehension of both programs, the attentidinetiigh-comprehenders
was more balanced between the different representatiomgared to the low-comprehenders.
This seems to support the previous results about visuakgtess during debugging
[18]. It is surprising how the distribution of fixation time§low-comprehenders during
binary-search resembles the overall distribution reprirsg the high-comprehenders’
behavior. While the performance differs, the times spentifi@rdnt areas during com-
prehension of this program were similar. However, high-omghenders, perhaps, had
the abilities and knowledge to extract the information frdifierent areas as neces-
sary. Similarly distributed visual attention of the lowrsprehenders then led to failed
comprehension of the program. As seen from table 2, the rherltv-comprehenders
read the Code during animation of the binary search progtiaenmore higher-level
information was contained in their program summaries. Atshme time, looking into
the visualization decreased the proportion of the higeeelireferences in their mental
models.

Let’s contrast the previous with the behavior during the poghension of the string-
matching program. For many of the areas (Method, Instaraesalso code), visual
attention patterns of the two groups differed. For examiol;comprehenders paid
more attention to the Visualization area, in particulastémces were attended signifi-
cantly more. We believe, that these strategies then lecktimthrovement in the propor-
tion of higher-level information found in the low-compretuers’ summaries of string-
matching program. To reliably explain this improvement #imel difference, a further
qualitative analysis, such as questioning of the partiggavould be required.

To summarize the previous observations, we have found thiatgicomprehension
of one program the visual strategies of two performancepgotere similar while their
mental models differed. On the other hand, during compr&barof another program
the visual strategies were different while the mental mededre similar.

An alternative explanation for the finding could be thataitih the order of the pro-
grams was randomized in the original experiment, the postalssignment into groups
could result in an unbalanced order within the groups. Henehis was not the case:
the order of programs was balanced also for the post-hoggrduremains therefore
most probable that the actual target programs and theiectigp visualizations played
an important role in the differences found in comprehenaiwth visual behavior.

While there has been found an evidence of the relation betthedixation patterns
and cognitive processing, e.g. in reading [10], eye-movgmata are generally difficult
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to interpret in the complex domains. This is partly due tofdw that in complex do-
mains, such as programming, some information and procass@splicit and therefore
are hard to represent explicitly. For example, during a tantor call the constructor
of the super class is called even though this call would n&Xpdicitly written into the
program code. Programmers might understand the call evtouwtivisually attending
the code of the constructor.

Could eye-tracking data help to explain the differenceqbin comprehension
summaries? The presented findings suggest that gazengatirieast partially, can
predict information later found in mental models of prograers. For instance, the in-
formation shown in the Method and Instances areas expo$erlgvel information
about program execution. Therefore, visually attendireséhareas shall have an ef-
fect on an increased awareness of the higher-level infeomagelated to execution.
Similarly, attending Constants and Expression evaluadi@as shall provide the pro-
grammer with low-level information. Our findings indicatewever, that looking at
the Expression evaluation area might have decreased theriom of high-level infor-
mation of low-comprehenders. However, at the same timergbdts also empirically
manifest that just looking at visualization does not gutgarits correct understanding
[24].

Although a promising technology, the gaze-related datasad in this experiment
and similar research, do not directly allow us to identifsattgies that may lead to
good comprehension. To overcome these problems, we arentlyrdeveloping new
measures and analysis techniques that would better rdflectognitive processes in-
volved in comprehension. For example, we employ the gazstimate the (gradual)
changesin importance of the different representations to the programmer [25UsTin
future we can support the comprehenders efforts when theigased in real-time.

There are, however, also other factors at play in determigood and poor com-
prehenders than just what structures of visualization fedgct to visually attend. For
instance, according to related research, good comprefgende combine their previ-
ous domain and programming knowledge with the informatiboua the program in
order to make sense of it [2]. It is quite possible that also@un study some of the
more experienced participants could build good mental hsoeeen without paying
attention to the visualization. In addition, it is also pb#sthat more experienced par-
ticipants failed to comprehend the programs and therefag were classified into the
low-comprehender group. In our future analysis we plan ke this possibility into
account.

Furthermore, different learning styles can affect the cahension process and
certain types of learners might be more ready to comprehsrgtaims with a help of
an animation than others. However, gaze data may give itolitsaof what kind of
knowledge the comprehender tries to interpret.

5.1 Limitationsand futurework

The presented results have to be critically consideredavitirtain caution. The sample
size was relatively small and the applied analysis reqaigggat number of correlations
to be run. Therefore the generalizability of the conclusionuld be limited. Further
studies shall include a larger number of participants atidate or reject our findings.
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Our results, however, provide an interesting starting fpleinfurther investigations. In
our future work, we wish to more accurately classify thetstyges leading to different
mental representations of a program. If we can distinguistfivéen good and poor
comprehenders based on the gaze data or get indications thieoabstraction level
of their mental models, we might be able to support diffe@rhprehenders in their
learning with an appropriately adapted support to fostermehension.

In addition, we plan to improve the methodology introduaethis paper. First, the
analysis of the comprehension summaries shall be condbgtsdveral raters. In this
way, we will be able to estimate an agreement between thesratel therefore add a
validity measure for each of the correlations. The codingkbprovided in [22] and
improved in [23] is comprehensive. The complete set of Geodbrmation types will
be analyzed, however, multivariate type of correlationsaronical correlations have
to be used when the number of correlations grows. Finalhemgaze data, such as
fixation duration and area switching, will be analyzed.

6 Conclusions

Eye-movement data indicate what structures of programalimtion have been at-
tended by programmers during comprehension. Program @vapsion summaries
contain information about mental models acquired durirgcibmprehension. We have
examined the relation between these two sources of data amdmpared them with
high- and low-comprehension outcomes.

We have not found any correspondence between program cbhersien perfor-
mance and structure of created mental models as indicateddsynation type analy-
sis.

Although further studies are needed to achieve generdiigadnd higher valid-
ity, our data suggest important implications into the rese®f program comprehen-
sion. High-comprehenders divided their attention on tlseialization and the code in
a more balanced way. A few correlations between the eye-merepatterns and in-
formation types in the summaries of low-comprehenders baea found. When low-
comprehenders’ viewing times on different representati@sembled those of high-
comprehenders, they attempted to infer information on yralstraction levels from
the visualization and the source code. This, in our opimegatively affected the low-
comprehenders’ results. When the fixation-time distrimgiand therefore the strate-
gies of the two groups diverged and the low-comprehendersestdrated more on the
visualization, the quality of their mental models improv¥dt, they failed to correctly
comprehend the program. This implies that personal siegegight be more effective
depending on the knowledge level of the comprehender.

Our long term aim is to develop systems that could assist fegsuin program
comprehension and debugging by analyzing their gaze-dataai-time. This work
takes the first steps into this direction.
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