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Abstract

The challenges in empirical eye-tracking studies of usability or
complex problem solving include 1) how to effectively analyze the
eye-tracking data, and 2) how to interpret and relate the resulting
measures to the user cognitive processing. We conducted a reanal-
ysis of eye-tracking data from a recent study that involved program-
mers of two experience groups debugging a program with the help
of multiple representations. The proportional fixation time on each
area of interest (AOI), frequency of visual attention switches be-
tween the areas, and the type of switch were investigated during five
consequential phases of ten minutes of debugging. We increased
the granularity of the focus on the user processing several times,
allowing us to construct a better picture of the process. In addition,
plotting the areas of interest in time supported a visual analysis and
comparison with the quantitative data.

We found repetitive patterns of visual attention that were associ-
ated with less experience in programming and lower performance.
We also discovered that at the beginning of the process program-
mers made use of both the code and visualization while frequently
switching between them. At a later stage of debugging, more expe-
rienced programmers began to increasingly integrate also the output
of the program and employed a high-frequency of visual attention
switching to coordinate the three representations.

CR Categories:  H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces - Evaluation/methodology—Input devices
and strategies;

1 Introduction

The technological problems of eye-tracking systems are being con-
tinually resolved, making the technique more usable and easier to
apply. Modern eye-tracking systems are easy to operate, make no
interference with participants, and are claimed to reliably capture
a large proportion of population. At the moment, eye-tracking is
considered a common tool of an HCI analyst.

Nonetheless, the issues related to data analysis and interpreta-
tion prevent HCI researchers and practitioners from utilizing eye-
tracking further. As the most challenging, [Jacob and Karn 2003]
list two methodological problems: labor-intensive data extraction
and difficulties in their interpretation. Commercial systems are of-
ten supplied with a recording and analysis software that reduces
the labor associated with the manual fixation extraction. While this
automation can facilitate the analysis for simple and short tasks,
the studies of complex processing with modern interactive systems
present a new challenge to eye-tracking researchers.
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The other problem is the interpretation of the data in evaluating
user strategies. In particular, the retrospective relation of the eye-
tracking measures to the underlying processing is hard. Typically,
the analysis starts from delimiting the scene into the areas of in-
terest, continues through aggregating the data, and ends with com-
puting the measures with respect to the areas. Most of the previous
steps can be performed using a software analysis tool. The final step
of the analysis, that is the linking of the measures to the phenomena
in question, however, is a hard task left to the HCI analyst.

Dealing with large amounts of complex behavioral data is common
in many domains. In studies that employ eye-tracking, one or more
groups of participants receive a treatment while their ocular behav-
ior is recorded; the researcher then compares the respective aggre-
gated eye-tracking measures between the treatments or groups to
confirm or reject the hypothesis. While this approach can be func-
tional with short tasks in range of tens of seconds, such as in the
usability studies, in the eye-tracking studies of complex problem-
solving the task the participants perform is severalfold longer and
also more complex.

The analysis of such eye-tracking data, interpretation of the mea-
sures, and relation to the underlying processes cannot be ap-
proached as has been done with the short tasks in past [Bednarik
and Tukiainen 2006]. Complex tasks are composed of hierar-
chies of simpler tasks and stages, and therefore the conventional
approaches to the analysis, conducted under typical experimental
settings, do not accurately uncover the underlying processes. In-
stead, using the conventional approaches, an mixture of dynamic
processes is described using a single eye-tracking measure.

There clearly is a need for advancing the methods of eye-tracking
analysis in more complex domains. In this paper we discuss the
analysis issues in the context of studies that present several adjacent
representations of a computer program and investigate the problem-
solving strategies. The present analysis expands on the automatic
analysis methods in studies of usability evaluation and seeks to im-
prove them to allow for a better interpretation of the results. We
employ two alternative approaches to the analysis of visual strate-
gies. First, to tackle the problem of too coarse analysis, we increase
the granularity by segmenting the whole stream of visual attention
data into shorter sequences. We also use plots of areas of interest as
they were attended during the process, which allows us to compare
the information that can be gained using these two approaches.

1.1 Related Work

Linking eye-tracking data to underlying cognitive processes have
become the primary challenge in retrospective eye-tracking stud-
ies. Practical and some methodological aspects of eye-tracking in
usability research have been previously discussed in the work of
[Goldberg and Wichansky 2003] and [Jacob and Karn 2003]. For
instance, in the eye-tracking studies of usability [Jacob and Karn
2003] argue that the challenge of linking eye-tracking data to the
underlying processes has been “probably the single most signifi-
cant barrier to the greater inclusion of eye tracking”. There are
several reasons underlying the problem, including, for example, the
large amounts of data, complexity of the tasks being studied, or
ineffective analysis methods.



Program. Bugs
Group N Age experience found
Expert 8 25.88(3.94) 108.00(22.22)  2.75(1.04)
Novice 6 26.17(6.08)  42.00 (14.70) 1.50 (0.55)
t(12) A1 (p=92)  6.29 (p<.001)  2.67 (p=.02)

Table 1: Number of participants in each group, their age (SD), pro-
gramming experience in months (SD), and bugs found (SD) max=4.
Differences in groups on independent sample t-test (p-value).

To combat the labor associated with the manual processing of eye-
tracking recordings in the usability studies, previous eye-tracking
research proposed numerous eye-tracking measures that allow for
automation of the evaluation process. Thus, the large quantities of
raw eye-tracking data can be significantly reduced to make the anal-
ysis of the data more efficient. However, how to interpret the results
and relate them to the underlying processing or to the usability as-
pects are tasks yet not very well understood.

Analysis of underlying processing based on visual attention data
becomes popular also in the studies of programming. Relating the
eye-tracking data to the underlying processes in programming is
not, however, an easy task. This is due to the fact that programming
is a complex domain involving many cognitive processes, knowl-
edge and skills that need to be applied to understand multiple and
often hidden or implicit components and dependencies. Previous
visual attention studies in programming focused, for example, on
source code reading [Crosby and Stelovsky 1990], on use and co-
ordination of multiple representations [Romero et al. 2003] or on
the effects a visualization of a program has on the visual atten-
tion patterns. The studies of visual attention in programming often
make use of the hypothesis testing paradigm. In these studies, often,
the resulting long-term eye-tracking measures between two groups
are compared. [Bednarik and Tukiainen 2006] however argued that
“the comprehension process ... cannot be effectively examined by
studying long-term averages [of eye-tracking measures]”.

The attempts to automatize the analysis and to gain understanding
of how to relate the resulting measures to the processing have of-
ten employed short and artificial tasks, and long-term eye-tracking
measures. It is an open question into which extent the quanti-
tative approaches can be assumed to expose the relation of eye-
tracking data and measures to the complex processes involved dur-
ing problem-solving. This gap motivates us to expand the knowl-
edge available about the methods to analyze and interpret eye-
tracking data to the more complex domains. We examine the
temporal changes in the eye-tracking measures during a complex
problem-solving task with multiple program representations.

2 Case Study: Visual Attention During Debug-
ging with Multiple Representations

We investigated visual attention during debugging. The research
settings were similar to those of eye-tracking usability studies: par-
ticipants were provided with a familiarization task, were not re-
stricted in the interaction with the environment, and the tasks were
resembling real world. In this report we make use of a part of the
experimental data that has been collected in a replication study re-
ported in [Bednarik and Tukiainen 2007]. We extend the analysis
by segmenting the data sets into a series of shorter intervals and
thereby we include the temporal aspect into the analysis. We also
present illustrative fine-level views on the visual attention by plot-
ting the areas of interest as attended in time. Research settings, ma-
terials, and procedures were kept identical to those of the original
study [Romero et al. 2003], and we describe them briefly next.
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Figure 1: A screenshot of IDE employed in the study, with 1 second
of gaze overlaid.

2.1 Method, Participants, and Materials

Figure 1 presents a screenshot of the integrated development en-
vironment (IDE) employed in the study. The IDE presented the
source code of a program (left in Figure 1) that contained four non-
syntactic errors. The other available representations were a visual-
ization of the program (top right in Figure 1) and the output of the
program (bottom right in Figure 1).

We collected 14 quality eye-tracking recordings (Tobii 1750) out
of 18 participants. Two groups were formed, a highly experienced
(hereafter experts, N = 8) and less experienced (hereafter novices,
N = 6). Table 1 presents an overview of the two groups, showing
significant differences in experience and performance. Three Java
program were used that consisted of tens of lines of code and sev-
eral classes. For each program, the participants — after reading the
specifications of the desired behavior of the program — were given
ten minutes to debug the program. Participants did not know how
many bugs in total there were in the code, and the IDE did not allow
modifying of the source code.

To deal with the complexity of the data, the whole ten minute ses-
sions were divided into five two-minute segments. Proportional
fixation time (PFT) for each of the three areas was computed as a
ratio of the fixation time on an area to the overall fixation time on
all areas. Number of switches between areas per minute was com-
puted as the sum of all changes per minute in visual attention focus
between any of the three main areas.

2.2 Results

Figure 2 presents the distribution of PFT. For the subsequent analy-
ses of PFT, only data from code and output were used, because the
PFT for code and visualization were almost perfectly negatively
correlated (r (5) = -.971, p =.006). A 5 x 2 x 2 (segment, area,
experience) ANOVA revealed the main effects of segment (F(4,48)
= 4.53, p = .003, n? = .274), area (F(1,12) = 765.14, p < .001,
n? = .985), and experience (F(1,12) = 6.36, p =.027, n* = .346).
While there was no significant interaction between segment and ex-
perience (F(4,48) = .242, ns), the analysis revealed a significant
interaction between segment and area (F(4,48) = 3.57, p =.012, 7>
=.229). Other two and three-way interactions were not significant.

The main effect of segment was analyzed using multiple compar-
isons with Bonferroni adjustment. This showed that while PFT’s
during last two phases were almost equal, the PFT during the first
two minutes was significantly different than during the second seg-
ment (p =.037) and nearly significantly different than during fourth
segment (p = .053). The difference between second and third seg-
ment was not significant. The results indicate that the experts relied
more on the source code of the program than the less experienced
programmers during all segments. Output of the program became
more important than visualization at later phases of the debugging



Figure 2: Plots of proportional fixation times on code (left), visualization (center), and output (right) for novice (N) and expert (E) groups
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during five phases of debugging. Not in the same scale.

S Novi Expert Novices Experts
egm. oviees Xperts Code - Code - Visual. - Code - Code - Visual. -
(min.) sw/m SD sw/m SD X .
Segm. | Visual. Output Output Visual. Output Output
0-1 8.00 4.57 8.63 7.95
23 242 166 119 119 0-1 5.83 0.58 1.58 6.31 1.00 1.31
’ ’ } ’ 2-3 1.92 0.42 0.08 1.06 0.06 0.06
4-5 8.03 4.30 6.75 5.88
4-5 225 3.17 1.83 3.75 1.88 1.13
6-7 5.58 3.40 7.50 7.51
3.9 6.42 447 0.18 6.18 6-7 3.67 1.00 0.92 1.75 5.00 0.75
: ’ ’ : ’ 8-9 5.22 0.43 0.77 2.06 5.39 1.73

Table 2: Switches per minute between any of the
three AOls during the five segments of debugging.

of experts, while novices tended to attend the visualization.

The frequency of switching was analyzed using a 5 x 2 (seg-
ment, experience) ANOVA. Table 2 presents the overall number of
switches per minute. The analysis revealed the main effect of seg-
ment (F(4,48) =3.99, p=.007, n2 =.250). Experience had no effect
on the number of switches (F(1,12) = 0.11, p =.745, n* = .009) and
there was no interaction between experience and segment (F(4,48)
=0.477, p =753, n* = .038). Adjusted multiple pairwise compar-
isons showed that first and second, second and third, and second
and fifth segments differed significantly (p = .024, p = .014, p =
.005, respectively). Other pairwise differences were not significant.

We examined the relationship between the type of switch, the seg-
ment of debugging, and the expertise. Three types of switch were
possible: between code and visualization (or back), between code
and output (or back), and between visualization and output (or
back). Table 3 provides an overview of a breakdown of the switch-
ing frequency from Table 2 into the tree types of switches. A 5 x
3 x 2 (segment, switch type, experience) ANOVA revealed signif-
icant main effects of segment (F(4,48) = 3.75, p = .01, n* = .238)
and type of switch (F(2,24) = 9.23, p < .001, n? = .435) on the
switching frequency. The effect of experience was not significant
(F(1,12) = 0.18, ns). The two-way interactions of a segment and
experience, and of the type of switch and experience were not sig-
nificant. The interaction of segment and type of switch (F(8,96)
=475, p < .001, n° = 284) and the three-way segment, type of
switch and experience interaction (F(8,96) = 4.82, p < .001, 172 =
.286) were significant.

Pairwise comparisons showed that the main effect of switch type
was due to the switch between code and visualization being signif-
icantly more frequent than the switch type between visualization
and output (p = .001). The two other comparisons were not sig-
nificant, although the switch between code and visualization was
notably more frequent than the switch between code and output (p
=.19) and the switch between code and output was more frequent
than the switch between visualization and output (p = .18).

Segmentation allowed us to analyze the fixation patterns in time
and how well the eye-tracking measures correspond with the fine-
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Table 3: Switches per minute for each of the three main types of switches
during the five segments of debugging. Note, Visual. = Visualization.

level strategies. The data presented here show the saw-like patterns
of visual attention, in particular for the novice group. The PFT on
each AOI was not constant during the process, but oscillated be-
tween 64% to up to 97%. The overall frequency of switches and
the PFT on the code were negatively correlated (r(5) = -.814, p =
.093); therefore when the source code was used the most, program-
mers tended to not to switch to different AOIS. The actual visual
attention strategies were, however, far more complicated than that.

The quantitative data indicate that programmers attended to the vi-
sualization the most at the beginning. During the second phase they
concentrated on the source code, while decreasing the coordination
activity. In the middle of the debugging, novice programmers again
paid more attention to visualization and but also to the output, and
switched more frequently between code and output than in the pre-
vious phase. Experts also began to attend to the output and to switch
their visual attention between the three representations. From the
fourth phase, the experts continued having frequent switches be-
tween the output and the program code. The plots of novices’ PFT
and switching behavior continued in a saw-like pattern. At the final
stage of debugging, experts coordinated the representations with the
highest frequency.

Figure 3 displays visual attention strategies of a novice (left) and
an expert programmer (right), confirming the quantitative data pre-
sented above. The novice programmer did not attend very much to
the output of the program, however, attempted to do so. The novice
participants also did not switch between the AOIs often. The expert
programmers, on the other hand, attended more to the output and
coordinated the representations with more frequent switches either
toward the end or at later phases.

The analysis above suggests that experts spend more efforts inte-
grating the information from multiple representations. In particu-
lar, the visual attention strategies they exhibit suggest that exper-
tise promotes relating the code to the output. To examine whether
those who did well (regardless of experience) were also integrating
different information sources more, we correlated the eye-tracking
patterns with debugging performance. Table 4 presents the corre-
lations of the PFT spent on the output with the number of bugs
found. The analysis discovered a strong positive and statistically
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Figure 3: A plot of the areas of interest as attended during the debugging, displayed left is a novice, right is an expert.

Segm. 1 2 3 4 5
PFT | -0.07 -0.05 -0.07 0.282 0.73

p .81 .87 .82 33 .003%*
Switching | -0.20 0.09 0.08 0.17 0.60
P 49 .76 .80 .56 .02%

Table 4: Correlation coefficients and associated two-tailed prob-
abilities (N=14) of the PFT spent on the output with performance
and of the switching frequency and performance during the five seg-
ments of debugging.

significant correlation in the last phase. Therefore, more success-
ful debuggers employed a strategy that promoted more use of the
output in the final stage of debugging. Other correlations of the
performance and the times spent on code or visualization were not
statistically significant. Table 4 also presents the correlations of the
overall frequency of switches (between any AOI) with the number
of bugs found. Similarly as with the previous result, the only sta-
tistically significant correlation was found during the final phase of
debugging. The finding indicates that more successful program-
mers, regardless of their expertise, increase the representation co-
ordination activities in the last stages of debugging.

In summary, during the initial phases of debugging, we did not find
any significant correlations between the visual attention patterns
and performance. However, in the later phases, better performance
was accompanied by the increased visual coordination activities; in
particular, more attention to the output of the program was charac-
teristic to programmers who found more bugs.

3 General Discussion and Conclusions

The analysis and interpretation of eye-tracking data in a rich and
dynamic context present a serious challenge. In this study we seg-
mented the data sets into shorter sections, to achieve a finer level
of detail about the underlying cognitive activities. The visual atten-
tion strategies were analyzed both using the conventional quantita-
tive methods and also by plotting the data points against time and
performing a visual analysis.

Our results show that eye-movement patterns during debugging de-
velop in time. Except for the experts’ increasing use of output,
we however did not find other prevailing trends in the visual atten-
tion patterns and representation use, as it has been shown for com-
prehension tasks [Bednarik and Tukiainen 2006]. Instead, we ob-
served a saw-like pattern of use and segments of frequent switching
between the AOI's. More experienced programmers change their
strategies during debugging and focus their attention to the output
of a program at later stages of the process. The exact moment when
they engage in the increased coordination activity, however, dif-
fers individually. The results related to switching frequency show
that for most of the time it was not sensitive to expertise. Toward
the end of debugging more experienced programmers gradually ex-
hibited higher frequency of switching between all three AOI’s. The
findings indicate that the temporal aspects of eye-tracking data need
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to be considered as they provide valuable insights about visual at-
tention during lengthly complex tasks.

There are, however, limitations in the automatic methods to ana-
lyze the temporal aspects of gaze patterns. In particular, arranging
data sets into groups smooths away the individual differences. In
[Crosby and Stelovsky 1990] the two most similar scanning pat-
terns while reading an algorithm belonged to subjects from oppo-
site experience groups. Also our study, the individual differences
sometimes seemed to predominate over a stereotypical group be-
havior and caused the variability within a group. These variances
impaired the quantitative approaches to variance analysis in their
assumptions of homogeneity.

To study individual behavior and strategies, boundaries based on
subtasks and events could be determined as references to the be-
havioral units rather than fixed intervals. For example, one class of
such delimitations can be related to a user changing a strategy, e.g.
when a (hypothetical) bug has been found. It can be then possible
to examine how users modify their strategy on these boundaries.
Analysis of that type, however, requires better tools to efficiently
analyze variable-length data segments.

In summary, our study shows that segmentation of eye-tracking data
in general seems promising, but need to be carried out carefully. We
split the data sets according to the pre-defined intervals into shorter
segments of equal duration, one of many potential approaches to
segmentation. Both the PFT and switching frequency showed sen-
sitivity to the effect of segment. The fine-level plots of visual atten-
tion strategies corroborate the findings, and they also highlight the
weaknesses of the quantitative methods. The combination of the
two analysis methods allowed us to construct a more descriptive
picture of the visual attention strategies.
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