
During automatic program animation,
explanations after animations have greater impact than

before animations

Peng Wang
University of Eastern Finland

School of Computing
Joensuu

pwang@student.uef.fi

Roman Bednarik
University of Eastern Finland

School of Computing
Joensuu

roman.bednarik@uef.fi

Andrés Moreno
University of Eastern Finland

School of Computing
Joensuu

andres.moreno@uef.fi

ABSTRACT
Little is known about the effectiveness of automatic expla-
nations in educational program visualization. We designed a
study in which the order of animations and related explana-
tions was manipulated. Two groups of a total of 18 partici-
pants interacted with either animation-first or explanation-
first version of a tool. The results indicate that animation-
first approach is significantly more effective. On the grounds
of these findings and students’ input about the explanation
generation and layout, we discuss the design implications of
the findings.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and In-
formation Science Education—computer science education,
information systems education

General Terms
Human factors, Experimentation, Design

Keywords
program animation, learning programming, educational tech-
nologies, Jeliot 3

1. INTRODUCTION
Program animation, when interaction with it is properly de-
signed, has been shown to be beneficial for learning pro-
gramming [10]. Others have stressed specifically adequate
teacher support [3] as one of the key ingredients for success-
ful learning.

It has been previously reported that inexpert users of visual-
izations take longer to understand and make efficient use the
visualizations than experts, partly due to the visualizations
being designed by the experts themselves and partly because

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Koli Calling ‘12, November 15–18, Tahko, Finland
Copyright 2012 ACM 978-1-4503-1795-5/12/11 ...$15.00.

experts already possess mental models that help in under-
standing [22]. In the domain of computer programming ed-
ucation, it is well known students “cannot make sense of
visualisations” [4]. Then, a question arises, what methods,
pedagogically and empirically sound, should be used when
the teachers are not present and cannot cue students in to
engage in meaningful interactions with a program visualiza-
tion tool? Naps et al. [20] suggested to ”complement vi-
sualizations with explanations”, based on research showing
that animations are better understood if they are accom-
panied with concurrently narrated explanations [15]. Naps
et al. suggested that also in programming education expla-
nations could be added to visualizations in two ways: 1)
using accompanying text or 2) providing coordinated audio
explanations.

Auditory explanations fit the dual-coding theory better. They
complement simultaneously the visual stimulation to create
new knowledge, and its effectiveness has been proved. In
their experiment, Mayer and Anderson [15] demonstrated
how concurrent verbal explanations improved students’ prob-
lem solving transfer skills. Students who received the expla-
nations before the animation did significantly worse than
those with concurrent audio explanations. These results
have been extended in [17], providing arguments for employ-
ing multimedia-learning theory principles for learning with
dynamic visualizations.

Several automatic animation systems, that is those systems
in which the animation is dynamically created from users’
own data set or program source code, offer benefit to stu-
dents from explanations as they help to build the relation-
ships between the animations and the concept explained.
However, program animation systems’ designers have so far
preferred to employ textual explanations rather than ver-
bal explanations, and these explanations are often displayed
simultaneously.

While it is assumed that students make use of the explana-
tions when interacting with the program animation systems,
there are neither studies nor guidelines regarding the tem-
poral arrangement of textual explanations and animations.
In this paper thus, we explore the effects of the arrange-
ments on students’ learning of principal Java programming
concepts.

100

2. RELATED SYSTEMS AND RESEARCH
2.1 Program visualization and explanations
Many program visualization tools such as MatrixPro [11],
ALVIS LIVE! [9], Jeliot 3 [2] and WinHIPE [21] do not have
explanations of the animations. MatrixPro and WinHIPE
provide exercises with textual descriptions and explanations
about the program or algorithm.

On the other hand, ViLLE [23], WADEIn II [6], and VARScope [12]
provide explanations of animations or programs, and these
explanations are shown during animations. We next present
a short summary of these systems.

ViLLE [23] and UUhistle [25] are program visualization tools
that animate, and let the student simulate in the case of
UUhistle, the execution of a program. They highlight code
lines, displays the states of variables, and creates frames
representing newly executed methods. At the same time,
in both tools, explanations are automatically generated in a
separate frame at the bottom. A study of Rajala et al. [24]
on effectiveness of ViLLE was carried out, demonstrating
that ViLLE is especially useful for inexperienced program-
mers.

WADEIn II [6] is a web-based program visualization appli-
cation. It visualizes the process of expression evaluation in C
language and it supports twenty-four C operators. WADEIn
II displays animations and related explanations close to each
other in the “blackboard” region, and they are presented si-
multaneously. As students’ knowledge increases, the system
evaluates it, parts of explanations are hidden until no more
explanations are presented, and animations become faster.

VARScope [12] is a program visualization system focusing on
the concept and usage of variable scope in C programming
language. Visualization in VARScope includes highlighted
code line, value of the variable, animating the active and
hidden variables, and the detailed explanations of each code
line. Explanations and visualizations are displayed simulta-
neously in separate windows.

In summary, to our knowledge ViLLE and UUhistle are the
only general purpose visualization tools that contains auto-
matic explanations during visualization. WADEIn II and
VARScope are more focused on certain programming con-
cepts they explain, but have interesting features like adap-
tation. Automatic explanations in these tools are mostly
presented simultaneously and in different windows than the
main representations.

2.2 Temporal arrangement of explanations
Few previous studies investigated the arrangement of ani-
mations and explanations in time. In order to evaluate the
effects of verbal and visual representation in time, Mayer [14]
applied a number of retention and transfer tests. The result
was that students who received simultaneous animation and
narration outperformed those who received successive ani-
mation and narration on problem-solving test. In retention
test there was no statistical difference between simultaneous
presentation and successive presentation. In Mayer’s stud-
ies, however, there was little information on the presentation
of textual narrations and animations. What has been found

is the advantage of multimodal representation use, that is of
the combination of verbal and visual materials.

Lawrence [13] carried out an experiment regarding the or-
der of presentation of text and animation in algorithm vi-
sualization. The conclusion of Lawrence’s research was that
students in text-first condition did not achieve better result
than those in animation-first condition. Although no sig-
nificant difference was observed, text-first approach was se-
lected finally for the reason that the text-first group achieved
a slightly higher score than the other group. Lawrence
thought that condition of text first rather than animation
first was preferred by participants. In Lawrence’s study,
XTango [26] was used to animate relevant algorithms and
twelve students were separated equally into two groups. An
analysis of each group’s post-test score determined if the
order of presentation had effects on result.

Lawrence’s research is quite similar to ours in a few aspects.
We too put an emphasis on the impact of the arrangement of
explanations and animations in time and it is also our goal to
improve understanding of certain behaviors of the visualiza-
tion and thus of certain concepts being visualized. However,
Lawrence’s experiment only compared each group’s post-test
score, while we here present a pre- post-test design.

3. JELIOT 3
We selected Jeliot 3 as a system to test the effectiveness
of explanations and their temporal arrangement for few rea-
sons. First, Jeliot 3 is distributed as an open source, it is well
documented1 and its architecture allows for such modifica-
tions [2]. Second, as we show below, it has been repeatedly
shown to be effective in learning programming. Here, it has
been modified to automatically display explanations for cer-
tain concepts during the animation of students’ programs.

3.1 Previous research on Jeliot effectiveness
Jeliot 3 employs automatically generated animations that
display the execution of a Java program. Teachers and stu-
dents can use these animations in a movie like fashion or in
a step by step way. Several studies have demonstrated that
Jeliot 3 has positive impacts on learning programming [3, 7,
8]. A study of [3] was carried out to evaluate a predeces-
sor of Jeliot 3 in a one-year programming course. In that
experiment, students were divided into a control group and
animation group. Between the two groups only the anima-
tion group was treated with Jeliot. Ben-Bassat et al. found
that there was no statistically significant difference between
pre- and post-test results in the control group, whereas there
was statistically significant improvement in the grades of the
animation group. Furthermore, in the animation group it
was demonstrated that mediocre students benefited more
from long-term use of the tool than either strong or weak
students.

A study of Cisar et al. [7] verifies that Jeliot 3 affects learning
of Java. In that study, results of 20 multiple choice questions
by 400 students were analyzed. It was shown that students
who learned with the help of Jeliot 3 outperformed those
who did not use Jeliot 3. Hongwarittorrn and Krairit [8]

1http://cs.uef.fi/jeliot/

101

confirms that Jeliot 3 leads to better learning of Java, espe-
cially in object-oriented programming (OOP). In that study
conducted with 54 participants, those who learned Java with
Jeliot achieved better results than those who learned with-
out the tool.

However, other research [16] indicates that some students
misunderstand the animations in Jeliot 3. In that study, af-
ter 10 weeks voluntarily using Jeliot 3 as a programming tool
for weekly assignment completion, six maths undergraduate
students were interviewed to explore their attitudes towards
the tool and to assess their comprehension of animation. Al-
though almost all subjects understood animation referring
to basic statements such as variable declaration, some of
them failed to describe the animation of an object alloca-
tion correctly. The ”this” reference which is used to point
to the current object, and argument passing to parameter
of the constructor, were found to be the most puzzling.

3.2 Objectives and hypotheses
In this paper, the aim is to inspect the effect of the se-
quence of animation and related explanation on learning
outcome during programming. In particular, the investi-
gation we present compares the impact in understanding
critical Java programming concepts when explanations are
either displayed after animations or before animations.

The null hypothesis we investigate is that there is no differ-
ence in the other of animation and related explanation in
terms of learning outcome.

4. METHOD
We designed a pre—post-test study in which participants
were assigned to one of two conditions: either they are in-
teracting with a modified Jeliot 3 system that presented ex-
planations of key concept before the animation of a concept,
or they were using a version of the tool that presented ex-
planations after the concept animation.

Lawrence’s research method is similar to the one is used in
this study. She also focused on the impact of the temporal
arrangement of explanations and animations in time. How-
ever, Lawrence’s experiment only compared each group’s
post-test score, while this study uses a pre- post-test design.

4.1 Design and materials
The experiment was designed as a between subject study,
where the order of the animation and explanation was the
primary factor with two levels: one level was explanation
first while the other level was animation first.

Both groups had the same short Java program for exper-
iment (see Appendix for listing) and the same test before
and after the experiment. The only difference between two
groups was the order of explanations and animations. In the
animation-first group, the corresponding explanation was
presented after each animation and it described what the
previous animation represented. In contrast, in the explanation-
first group, related explanation was displayed before each
animation and it described what the next animation would
represent. The content of the explanations was same for
both groups.

Table 1: Background of the participants. There was no sta-
tistically significant difference between two groups in OOP
grades (p = 0.127) and in self-ratings (p = 0.227) according
to a t-test. Note: M = male, F = female.

Group N OOP grade Self-rating M F

Anim.-first 10 3.44 (0.88) 3.30 (0.95) 9 1
Explan.-first 8 2.75 (0.89) 2.75 (0.89) 6 2

There were altogether three target animations related to
three fundamental Java object-oriented concepts:

1. Object initialization and ”this” keyword

2. Reference return and assignment

3. Garbage collection

These concepts were chosen as the animations of object-
oriented concepts in Jeliot 3 were identified to be the most
difficult for students to explain after watching them [16]. As
well, the first two concepts have been considered either crit-
ical or difficult to learn on a study surveying faculty mem-
bers [5].

As an example of an animation in Jeliot 3 Figure 1 and
Figure 2 show the sequence of animation steps for object
initialization and ”this” keyword concepts in animation first
and explanation first conditions, respectively.

4.2 Participants
There were a total of 18 volunteering participants in this ex-
periment, 15 male and 3 female. The participants were com-
puting postgraduate and Master’s students at one Finnish
university. In overall, they had very little or no experience
with Jeliot 3. All participants had some knowledge of ob-
ject oriented programming (OOP) in Java as they recently
took a Java class in an undergraduate course. A grade from
the OOP was collected as a background measure of OOP
understanding along with self-rating of OOP skills, both on
the scale from 1 (worst) - 5 (best).

They were divided into two groups: the animation-first group
(10 participants) and the explanation-first group (8 partici-
pants). Table 1 shows no significant differences between the
groups in terms of previous grade in OOP class and self-
rating.

4.3 Procedure
Participants were given a short introduction to Jeliot 3 by
an assistant. The introduction included what each area of
the animation frame displays and how to control the pro-
cess of animation through buttons. After the introduction,
participants were required to get familiar with Jeliot 3 by
running an object-oriented program. Participants were al-
lowed to ask questions on Jeliot 3. The time reserved for
this introduction and practice was 10 minutes.

Afterwards, participants completed a test which comprised
three questions in 20 minutes. Each question could award

102

(a) Animation of object initialization starts. (b) Animation of initialization ends and related explanation
appears.

(c) Related explanation disappears. (d) Animation of “this” keyword starts.

(e) Animation of “this” ends and related explanation appears. (f) Related explanation disappears.

Figure 1: In animation first condition, animations of object initialization and ”this” keyword are shown before the respective
explanation appears.

103

(a) Explanation of object initialization appears. (b) Explanation disappears and related animation starts.

(c) Related animation ends. (d) Explanation of ”this” keyword appears.

(e) Explanation disappears and related animation starts. (f) Related animation ends.

Figure 2: In explanation first condition, animations of object initialization and ”this” keyword are shown only after the
respective explanation.

104

the student a maximum score of 5, for a maximum total of
15 points. During the test, participants could use Jeliot 3,
with the options for explanations deactivated, to visualize
the animation associated with each question.

After the test, explanations were added to Jeliot 3. Partici-
pants were required to run the same program again and read
explanations in 15 minutes.

In the end, participants completed a test in 15 minutes.
During this test, they were not allowed to use Jeliot 3. Those
three questions in this test were same as the previous ones.

4.4 Analysis
In this paper we present an analysis of scores achieved on
pre-test (score1) and post-test (score2) evaluations. We
compute the raw score difference as well as learning gain,
which depends on the maximum number of points that can
be awarded (max). We employ the following formula to
compute the learning gain:

Learning gain =
score2 − score1
max− score1

Learning gain allows to evaluate the relative increase in score
given the pre-test score (how much the student improved out
of total possible improvement), while raw score difference
does not consider the starting level of the assessment.

5. RESULTS
In this paper we analyze performance in terms of pre-post
test differences. Table 2 shows the distribution of pre-test
scores. A statistical analysis2 shows that there were no sig-
nificant differences between the two groups on the pre-test
performance although the animation first group performed
somewhat better on the reference return and assignment
concept. The same question though was also easier for par-
ticipants as it received the highest score from the three con-
cepts.

The scores on the post-test are shown in Table 3. It shows
that on first and last concept the animation-first group over-
performed the explanation-first group. We treat the differ-
ences between post and pre-test in the following section.

We also computed correlations of the pre-test and post-test
scores with the knowledge of the participants measured by
the grade obtained from a previous OOP course, see Table
4. Such analysis allows to answer a question, whether ex-
planations have homogenous effect on participants regarding
their background knowledge.

It turned out that only second question related to reference
return and assignment and pre-test scores were significantly
correlated. This fact indicates that those with better OOP
knowledge did better in answering that question related to
garbage collection before the use of explanations. The score
on the post-test was not correlated with previous knowledge

2A 1-Sample Kolmogorov-Smirnov test verified that the dis-
tributions of participants’ grades both in pre-test and post-
test were normal distributions as well as the distributions
of the changes in the score. Hence we applied a series of
independent-samples t-tests in the following analyses.

Table 4: Correlations of pre- and post-test scores with OOP
understanding for all study participants, a 2-tailed p-value
in parenthesis; * denotes p<.02.

Q 1 Q 2 Q 3

pre-test (N=18) 0.25 (0.33) 0.58 (0.02*) 0.20 (0.46)
post-test (N=18) 0.30 (0.24) 0.28 (0.28) 0.23 (0.37)

in any of the questions. This is due to the fact, the inter-
vention improved score on the second question of only few
participants with lower grades and was not effective on the
majority of the users.

5.1 Learning score changes and learning gain
We first computed for each participant the difference be-
tween pre- and post-test scores, shown as group-aggregated
mean values in Table 5. In total, there were significant dif-
ferences in the raw score changes between the two groups.

In particular, the animation-first group improved by 1.7
points on average in total, while the explanation-first group
improved only by 0.25 points on average in total. The orig-
inal standard deviation of the animation-first group was 2.0
thus the learning improvement measured in standard devi-
ation shift by 1.7 corresponds to about 0.85 σ. When an-
alyzing the score change within the groups statistically, us-
ing a paired-sample t-test we discovered a significant differ-
ence between pre- and post-test scores in the animation-first
group (t(9) = 3.6, p = .006), while there was no difference
in the performance of the explanation-first group (t(7) =
1.528, p =.170).

Analysis of learning gain scores discovered that the animation-
first group improved by 15% on average while the explanation-
first group improved by 2% on average, see Table 6. The
overall difference between the groups was significant on the
3% level. There was no difference in the learning gains on
the second concept related to reference return and assign-
ment.

5.2 Analysis of written answers
5.2.1 Object initialization and this-keyword
In the animation-first group, three of the ten (30%) partici-
pants corrected their answers on object initialization, while
another three of the ten (30%) participants corrected their
answers on “this” keyword. However, in the explanation-
first group, no participants improved their scores after using
the explanation-version of the tool. Table 7 captures the
differences between pre- and post-test answers.

5.2.2 Reference return and assignment
As shown above, there was no difference in the understand-
ing of reference return and this-keyword concepts between
groups and that there was very little or no improvement af-
ter using explanations. Only two and two participants in
each group scored better by one point; Table 8 shows the
rare changes in answers.

105

Table 2: Before: Means, standard deviations (in parenthesis), t value, and 2-tailed p-value of each question, before using
explanations (pre-test)

Q 1 Q 2 Q 3 Total questions

Animation-first (N=10) 0.90 (0.74) 1.90 (0.74) 0.90 (0.74) 3.70 (2.00)
Explanation-first (N=8) 0.88 (0.35) 1.38 (0.74) 0.88 (0.83) 3.13 (1.13)

t value 0.088 1.495 0.067 0.723
p (2-tailed) 0.931 0.154 0.947 0.480

Table 3: After: Means, standard deviations (in parenthesis), t value, and 2-tailed p value of each question, after using
explanations (post-test)

Q 1 Q 2 Q 3 Total questions

Animation-first (N=10) 1.60 (1.17) 2.10 (0.74) 1.70 (0.95) 5.40 (2.59)
Explanation-first (N=8) 0.88 (0.35) 1.63 (0.74) 0.88 (0.83) 3.38 (1.92)

t value 1.851 1.352 1.931 2.009
p value (2-tailed) 0.091 0.195 0.071 0.062

Table 5: Pre-post-test mean differences in raw score, standard deviations (in parenthesis), t value, and 2-tailed p value of each
question.

Q 1 Q 2 Q 3 Total questions

Animation-first (N=10) 0.70 (0.82) 0.20 (0.42) 0.80 (0.79) 1.70 (1.49)
Explanation-first (N=8) 0.00 (0.00) 0.25 (0.46) 0.00 (0.00) 0.25 (0.46)

t value 2.689 -0.239 3.207 2.899
p value (2-tailed) 0.025 0.814 0.011 0.014

Table 6: Mean learning gains, standard deviations (in parenthesis), t value, and 2-tailed p value

Q 1 Q 2 Q 3 Mean gain

Animation-first (N=10) 0.18 (0.23) 0.06 (0.13) 0.19 (0.20) 0.15
Explanation-first (N=8) 0.00 (0.00) 0.07 (0.12) 0.00 (0.00) 0.02

t value 2.250 -0.139 2.732 2.413
p value (2-tailed) 0.039 0.891 0.015 0.028

Table 7: Example answers from pre- and post-test on object initialization and this-keyword, all participants from animation-
first group.

Participant In pre-test In post-test Changes

A “...create a new ob-
ject square.”

“...this arrow to
square.”

This participant misunder-
stood the meaning of arrow
in pre-test, but after reading
explanations he realized ar-
row as a reference to an ob-
ject.

B “The arrow repre-
sents the relationship
between the current
object and its vari-
ables.”

“Every object has a
reference to itself and
this keyword indi-
cates that. The ar-
row means the refer-
ence to the object.”

This participant thought of
arrow as relationship. How-
ever, later he was able to
understand why used “this”
so that explanations made
sense for him.

C “The arrow refers to
the constructor of the
class.”

“The arrow means
the memory is lo-
cated for new ob-
ject.”

This participant changed his
answers from reference to
constructor to reference to
object.

106

Table 8: Example answers from pre- and post-test on reference return and assignment.
Participant In pre-test In post-test Changes
A participant
in animation-
first group

“the movement of
square from ’Expres-
sion evaluation area’
to ’Method area’
means to select the
value of the variable
”side” and put it in
the object of class
square.”

“The movement of
the small rectangle
from ’evaluation
area’ to ’method
area’ means to assign
to the variable a
reference from the
new created object.”

This participant was not
able to express the mean-
ing of movement precisely in
pre-test, but after reading
explanations he could con-
sider the movement as as-
signment correctly.

A partic-
ipant in
explanation-
first group

“The newly created
instance square has
been initialized by
the instance of class
square. It will return
to the main func-
tion with the refer-
ence to the new in-
stance square.”

“...assign it to the
newly created in-
stance.”

This participant changed his
answer from initialization
and return to assignment.

5.2.3 Garbage collection
After interacting with explanations, six of the ten partic-
ipants in the animation-first group improved their scores.
However, no participants in the explanation-first group im-
proved their scores. Table 9 shows examples of three partic-
ipants’ answers in pre-test and post-test.

5.3 Summary of the findings
The main findings can be summarised as following:

• Sequencing of animations and explanations matters Ex-
planations after animations have positive effect on learn-
ing gain while explanations before animations have lit-
tle to no effect.

• Students quickly assimilate the vocabulary of the ex-
planations Students improved their descriptions, and
scores, borrowing the text provided in the explana-
tions.

6. GENERAL DISCUSSION AND CONCLU-
SIONS

In this paper we presented an empirical evaluation of the
effect of temporal arrangement of explanations in learning
three Java concepts using automatic program animation.
We extended a well studied tool by automatic explanation
generation and conducted a study in which participants used
either a version that presented explanations before the ani-
mated concept or after it.

The results show that there are differences in learning con-
tingent with the temporal arrangement of animations and
explanations. Interestingly, even short-term interaction with
explanations after animations is sufficient to improve under-
standing of some core Java programming concepts.

Previous research indicates that interactive elements such
as prediction questions [18] shown during program anima-
tion cause student to pause and are beneficial for learning
as they increase the levels of engagement [19]. The present

findings can be seen as in line with the previous research.
The design of animation-first condition creates pauses dur-
ing the display of the explanation in which students seem
to reflect on what happened during the animation. On the
contrary, when the explanation goes first, the dynamic na-
ture of the animation does not let the student to mentally
retrieve the text from the explanation she just read. We
plan to investigate the actual step-to-step use of explana-
tions using gaze-tracking methodology that will allow us to
estimate when and how explanations and visualizations are
attended.

Should textual explanations be displayed at the same time
with animation? Intuitively and theoretically, such design
should be mostly effective [15, 17, 14]. There are how-
ever at least two counter-arguments against concurrent ex-
planations in programming education. First, the new ex-
planations presented here are not verbal, so the temporal-
contiguity effect would not entirely apply. In previous re-
search on multimodal learning, the additional modality was
often verbal. We see this approach as impractical for class-
room use and for eventual automatic implementation, though
we do not dismiss this possibility.

Second, and more importantly we believe that a juxtaposed
explanation of a concurrently animated programming con-
cept may bring more harm than gain. It has been previously
shown that novice programmers are not able to coordinate
multiple representations concurrently [1]. Same applies here,
where introducing a new attention demanding element into
an already complex and dynamic visual stimuli would result
in further increase of load. Monitoring the ongoing ani-
mation, source code, output, and an additional explanation
would simply be beyond the possibilities of a student.

The research presented here opens new paths into the topic
of interaction with explanations. While the explanations
were generated automatically using generic templates for
various concepts, further work could ask the student to write
the explanation of each concept herself, to be later compared
with the experts’ explanation.

107

Table 9: Example answers from pre- and post-test on garbage collection, all participants from the animation-first group.
Participant In pre-test In post-test Changes
A “System run out

of main(); So the
Square() is removed.”

“...the garbage collect
the object, therefore,
Square square is re-
moved.”

After reading explanations,
this participant was able to
recalled garbage collection.

B “It means that the
program has finished
and a new object has
been created with the
value(s) given. The
new object is shown
in the instance and
array with the vari-
ables visible.”

“...memory will be
freed by the garbage
collector...”

Although this participant
used garbage collector not
garbage collection in post-
test, it was found that his
answer changed a lot from
pre-test to post-test.

C “That means it went
out of the scope and
does not exist any-
more.”

“...will be removed
once garbage col-
lector will start its
work.”

This participant also re-
called garbage collection af-
ter reading explanations so
that her answer changed
from pre-test to post-test.

Further research needs to consider the effects of explana-
tions from a long-term perspective. In our study students
were exposed to the intervention for a short period of time,
and, even though the observed effects were clearly visible, a
course-long exposure is needed to establish an evidence of
more permanent effects.

Acknowledgments
The work of Roman Bednarik was supported by a grant of
Academy of Finland #137773.

7. REFERENCES
[1] R. Bednarik. Expertise-dependent visual attention

strategies develop over time during debugging with
multiple code representations. Int. J. Hum.-Comput.
Stud., 70(2):143–155, Feb. 2012.

[2] M. Ben-Ari, R. Bednarik, R. Ben-Bassat Levy,
G. Ebel, A. Moreno, N. Myller, and E. Sutinen. A
decade of research and development on program
animation: The jeliot experience. Journal of Visual
Languages & Computing, 22(5):375–384, 2011.

[3] R. Ben-Bassat Levy, M. Ben-Ari, and P. Uronen. The
jeliot 2000 program animation system. Computers &
Education, 40(1):1–15, 2003.

[4] P. Brusilovsky. Explanatory visualization in an
educational programming environment: Connecting
examples with general knowledge. In B. Blumenthal,
J. Gornostaev, and C. Unger, editors,
Human-Computer Interaction, volume 876 of Lecture
Notes in Computer Science, pages 202–212. Springer
Berlin / Heidelberg, 1994.

[5] P. Brusilovsky, J. Grady, M. Spring, and C.-H. Lee.
What should be visualized?: faculty perception of
priority topics for program visualization. SIGCSE
Bull., 38(2):44–48, June 2006.

[6] P. Brusilovsky and T. Loboda. Wadein ii: a case for
adaptive explanatory visualization. In ACM SIGCSE
Bulletin, volume 38, pages 48–52. ACM, 2006.

[7] S. Cisar, D. Radosav, R. Pinter, P. Cisar, D. Radosav,
and P. Cisar. Effectiveness of program visualization in

learning java: a case study with jeliot 3. International
Journal of Computers Communications & Control,
6(4):669–682, 2011.

[8] N. Hongwarittorrn and D. Krairit. Effects of program
visualization (jeliot3) on students’ performance and
attitudes towards java programming. In The spring
8th International conference on Computing,
Communication and Control Technologies, 2010.

[9] C. Hundhausen and J. Brown. What you see is what
you code: A radically dynamic algorithm visualization
development model for novice learners. In Visual
Languages and Human-Centric Computing, 2005
IEEE Symposium on, pages 163–170. IEEE, 2005.

[10] C. Hundhausen, S. Douglas, and J. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages & Computing,
13(3):259–290, 2002.

[11] V. Karavirta, A. Korhonen, L. Malmi, and
K. St̊alnacke. Matrixpro-a tool for on-the-fly
demonstration of data structures and algorithms. In
Proceedings of the Third Program Visualization
Workshop, pages 26–33, 2004.

[12] G. Krishnamoorthy and P. Brusilovsky. Personalized
guidance for example selection in an explanatory
visualization system. In World Conference on
E-Learning in Corporate, Government, Healthcare,
and Higher Education, volume 2006, pages 2122–2127,
2006.

[13] A. Lawrence. Empirical studies of the value of
algorithm animation in algorithm understanding.
Technical report, DTIC Document, 1993.

[14] R. Mayer. Multimedia learning. Elsevier, 2002.

[15] R. Mayer and R. Anderson. Animations need
narrations: An experimental test of a dual-coding
hypothesis. Journal of educational psychology,
83(4):484, 1991.

[16] A. Moreno and M. Joy. Jeliot 3 in a demanding
educational setting. Electronic Notes in Theoretical
Computer Science, 178:51–59, 2007.

[17] R. Moreno and R. Mayer. Cognitive principles of

108

multimedia learning: The role of modality and
contiguity. Journal of educational psychology,
91(2):358, 1999.

[18] N. Myller. Automatic generation of prediction
questions during program visualization. Electronic
Notes in Theoretical Computer Science, 178:43–49,
2007.

[19] N. Myller, R. Bednarik, E. Sutinen, and M. Ben-Ari.
Extending the engagement taxonomy: Software
visualization and collaborative learning. Trans.
Comput. Educ., 9(1):7:1–7:27, Mar. 2009.

[20] T. Naps, G. Rößling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, et al. Exploring the role of
visualization and engagement in computer science
education. In ACM SIGCSE Bulletin, volume 35,
pages 131–152. ACM, 2002.

[21] C. Pareja-Flores, J. Urquiza-Fuentes, and
J. Velázquez-Iturbide. Winhipe: an ide for functional
programming based on rewriting and visualization.
ACM SIGPLAN Notices, 42(3):14–23, 2007.

[22] M. Petre. Why looking isn’t always seeing: readership
skills and graphical programming. Commun. ACM,
38(6):33–44, June 1995.

[23] T. Rajala, M. Laakso, E. Kaila, and T. Salakoski.
Ville–a language-independent program visualization
tool. In Proceedings of the Seventh Baltic Sea
Conference on Computing Education Research (Koli
Calling 2007), Koli National Park, Finland, November
15-18, 2007. Conferences in Research and Practice in
Information Technology, volume 88, 2007.

[24] T. Rajala, M. Laakso, E. Kaila, and T. Salakoski.
Effectiveness of program visualization: A case study
with the ville tool. Journal of Information Technology
Education, 7:15–32, 2008.

[25] J. Sorva and T. Sirkiä. UUhistle – a Software Tool for
Visual Program Simulation. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, Koli Calling ’10, pages 49–54.
ACM, 2010.

[26] J. Stasko. Animating algorithms with xtango. ACM
SIGACT News, 23(2):67–71, 1992.

Appendix
Listing 1: The Java program employed in the experiment

public c lass Square{
int s i d e ;
Square (){ s i d e = 0;}

Square (int s){ s i d e = s ;}
}
public c lass MyClass {

public stat ic void main () {
Square square = new Square (5) ;

}
}

109

