
An Evaluation of Inspection Automation Tools

Vesa Tenhunen and Jorma Sajaniemi

University of Joensuu, Department of Computer Science,
P.O. Box 111, FIN-80101 Joensuu, Finland

Abstract. A key element in manufacturing quality software is the early
detection of defects which can be fostered by inspection techniques. In-
spections may be boosted by automated tools that help in various tasks
during the whole inspection process. We present a framework for inspec-
tion automation tool evaluation and use it to evaluate four tools. The
framework divides tool requirements in two dimensions: phase and view-
point. The former deals with the successive phases of the process, and
the latter considers various issues that must be dealt with during the
process.

1 Introduction

A key element in manufacturing quality software is the early detection of defects
throughout the whole software production life cycle. If defects are not removed
as soon as possible they give rise to other defects which may be hard to trace
and are expensive to remove. Early defect detection can be fostered by inspec-
tion techniques [3,4] yielding an effective way to quality [1,11]. It is, however,
sometimes hard to motivate people to spend enough time doing inspections.
Especially, when customers are needed for inspections, e.g., in inspecting a Re-
quirements Document, proper participation is often found to be a problem. Any
mechanism that helps to show that inspections are an important premise for
project success is therefore helpful for achieving good quality products.

Software process improvement (SPI) is only possible if the state of a process
can be measured and articulated in a rigorous way so that the effect of improve-
ment acts can be evaluated [5]. Measurements should be automated as far as
possible to get objective data and to relieve developers from extra work [7]. A
good solution is to integrate measurement collection into the tools that are used
for software production.

Inspection automation tools may provide a solution for both of the above
problems: they can give the customer – and other inspectors as well – an in-
creased feeling of the importance of inspections, and help SPI in providing met-
rics of the inspected product and the inspection process itself.

Existing inspection automation tools [6,12,13,10] vary in their scope for in-
spection process phases and tasks, and support for various document formats
and computer platforms. Therefore, a framework for tool evaluation is needed.
The framework should take into account the whole inspection process and pro-
vide a possibility to make judgments based on individual needs and emphasis.

J. Kontio and R. Conradi (Eds.): ECSQ 2002, LNCS 2349, pp. 351–361, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

352 Vesa Tenhunen and Jorma Sajaniemi

In this paper, we will present such a framework (Chap. 3) and use it to evaluate
major inspection automation tools (Chap. 4). To get a basis for the framework
we will start with an overview of the inspection process (Chap. 2).

2 Inspection Process

Inspection as a method for finding defects within software engineering process
was first described by Fagan [3] in the early 1970’s. Since then, inspections have
become quite popular and they are used during the entire life cycle. Inspections
have been tested empirically and they have been found to be an effective way to
ensure quality [1,11].

Despite some variations, most inspection processes still follow closely Fa-
gan’s original proposal. Fagan divides the process into five separate stages: (1)
Overview, (2) preparation, (3) Inspection, (4) rework, and (5) follow-up.

The people involved are cast into well-defined and distinct roles: moderator,
producer (or author), inspectors, reader, and recorder.

Usually the process goes as follows: In the overview, the moderator selects
the inspection team members and assigns them their roles. The producer then
introduces the product (code, document etc.) that is to be inspected.

During the preparation stage, the inspectors familiarise themselves with the
material. In Fagan’s original description, the inspectors are supposed to gain an
understanding of the work – defect detection is only a by-product. In a variation
suggested by Gilb and Graham [4], the inspectors should explicitly focus on
finding defects.

In the inspection the moderator oversees the event; the reader (or the pro-
ducer) paraphrases the document in full. The inspectors can stop the reader at
any time and tell their comments which they have found in advance or at the
meeting. All comments are written down by the recorder. No attempt to fix
the defects is made – the inspection must focus solely on finding defects. The
end product of this stage is a document containing all the found defects and
problems.

It is also possible to have an inspection as distributed (non-local). The par-
ticipants “meet” electronically using a suitable conferencing software to send
their comments to each other. Another possibility is to replace the meeting by
an asynchronous inspection, where the moderator oversees that the inspectors
complete their tasks before the inspection moves forward [9].

The next stage is rework, where the producer reviews all defects. In the final
stage, the follow-up, the moderator ensures that all comments are addressed and
then decides whether there is a need for a full or partial re-inspection.

In the following, we will use a slight variation of these inspection stages.
We rename overview as planning, for even in Fagan’s proposal, there are more
activities in this stage than just overseeing the start of the process. Preparation
of materials, assignment of tasks to roles and assignment of roles to participants
cannot be done without proper planning.

An Evaluation of Inspection Automation Tools 353

PhasePhase ModeratorModerator ProducerProducer InspectorInspector ReaderReader

PlanningPlanning Start processStart process Provide materialsProvide materials

Search for defectsSearch for defects

Check reworkCheck rework

Record findings;Record findings;

Check findingsCheck findings

Oversee meetingOversee meeting Clarify findingsClarify findings Search for defectsSearch for defects Go through the materialsGo through the materials

ReworkRework Remove defectsRemove defects

write a summarywrite a summary

Follow−upFollow−up

RecorderRecorder

PreparationPreparation

FamiliarisationFamiliarisation

InspectionInspection

Fig. 1. Roles and tasks in inspection process

The preparation is the same as above, but we add a new phase between
that and the inspection: familiarisation, where the producer steps through the
inspectors’ remarks and makes her own comments about them. The rest of the
inspection process follows as stated previously. Figure 1 lists the phases and
participants’ major tasks in them.

In practice, companies often have their own inspection process, where some
phases may be joined and some tasks done in a different phase. This has no
effect on the evaluation framework, as we have used the phases as an analysis
tool rather than a fixed process description.

3 Framework for Tool Evaluation

There are several goals in automating the inspection process. Among the most
important ones are increasing rigour, effectivity, and efficiency [8,9].

MacDonald et al. [8] have presented requirements for inspection support
tools. They look for each phase in the inspection process and point out the
elements that could or should be automated. We use a similar approach, but
create a more detailed view of the process. We examine each phase from four
viewpoints:

– Material Handling (all document-related issues such as file format, versions,
navigation etc.)

– Comment Handling (all comment-related functions, such as adding, viewing,
reviewing, reporting, summarising etc.)

– Support for Process (features that automate or otherwise benefit the inspec-
tion process)

– Interfaces (use of external software or other tools)

In each case, we determined whether there’s a possibility for automation
and if so, what kind of support the tool should provide. With this division,
it was possible to get a more detailed view of tool requirements. We included
previously reported requirements [9,2], but the viewpoints suggested some new
requirements, too. We have left out voting support suggested by MacDonald et
al. [9], as we feel that support for voting is not a necessity in a process where
defects are supposed to be found but not resolved.

354 Vesa Tenhunen and Jorma Sajaniemi

PhasePhase Material HandlingMaterial Handling Comment HandlingComment Handling Support for ProcessSupport for Process InterfacesInterfaces

PlanningPlanning Distribute materialsDistribute materials Defining tasks for roles;Defining tasks for roles;
casting persons for roles casting persons for roles

Different document types;Different document types;
paper documentspaper documents

PreparationPreparation Navigation;Navigation;
automatic defect detection;automatic defect detection;
support for comprehensionsupport for comprehension

Recording;Recording;
summary reportingsummary reporting

Monitoring time usage,Monitoring time usage,
completeness of review, andcompleteness of review, and
completeness of checklist usagecompleteness of checklist usage

ChecklistsChecklists

FamiliarisationFamiliarisation NavigationNavigation Walkthrough;Walkthrough;
reviewing commentsreviewing comments

InspectionInspection NavigationNavigation Selecting and modifyingSelecting and modifying
final comments;final comments;
summary reportssummary reports

Time tracking;Time tracking;
summaries for time usage etc.summaries for time usage etc.

ChecklistsChecklists

ReworkRework Listing unfinished comments;Listing unfinished comments;
bundling correctionsbundling corrections

Change control systemChange control system

Follow−upFollow−up Checking for reworkChecking for rework

Fig. 2. Requirements for inspection automation tools

The resulting evaluation framework is presented in Figure 2 and described
in more detail below.

Planning. A tool can support material handling by automating the distribution
of materials. It can help in support for process, when the moderator defines tasks
for roles and casts persons to those roles. The tool may automate interfaces by
supporting various kinds of documents, like different file formats (including paper
documents).

Preparation. The tool should provide support in every category for this phase.
In material handling, it should help navigation, i.e. moving around and searching
in the document, even though this may contradict the previous requirement
of supporting different document formats. It should also find (at least some)
defects automatically and support inspectors’ needs to gain understanding of
the material.

In comment handling, the tool should enable the recording of comments
with information about the comment’s location, classification, explanation and
references. Another requirement is the ability to create summary reports as
needed.

For process support, the tool should monitor inspector’s use of time and
check that the inspector has completely gone through material and checklists.

The tool should support interfaces by facilitating the use of checklists.

Familiarisation. In this phase, the tool should provide support for the pro-
ducer: walkthrough and review of comments, and navigation within the material
as the producer evaluates the comments.

Inspection. The tool should help comment handling by supporting selection
and modification of final comments, and also creation of summary reports (even
covering several inspection meetings). It should also support the moderator’s
tasks in inspection meeting by keeping track of time, so that if too much time
is consumed in secondary issues, the moderator can urge to move on. It should
also make summaries of time usage. As for interfaces, the tool should support
the use of checklists in this phase, too.

An Evaluation of Inspection Automation Tools 355

Rework. In rework, automation is most useful in comment handling. The tool
can help by listing unfinished comments and by enabling the producer to bundle
corrections together. For interfaces, the tool can work in cooperation with a
change control system.

Follow-Up. The tool should support comment handling by automating the
moderator’s overview of finished rework.

4 Tool Evaluation

We will now apply the evaluation framework to four inspection automation tools:
CSRS, ReviewPro, sfia and Microsoft Word. This selection of tools is based on
our search for currently supported inspection automation tools. Selected tools are
particularly designed for inspection automation except Microsoft Word, which is
included as an example of word processors that are sometimes used for inspection
purposes. A summary of the analysis is presented in Figure 3.

4.1 CSRS

CSRS, Collaborative Software Review System [6], is a tool for Formal Techni-
cal Asynchronous review method (FTArm), which is a modification of Fagan’s
inspection. In FTArm, nearly all parts of the inspection process are managed
asynchronously: all participants have certain tasks, and when they are com-
pleted, the inspection can continue to the next stage. CSRS works on Unix
operating system.

Material Handling. CSRS manages material using a database where docu-
ments are stored as nodes which are linked together. A node can be a whole
file or a portion of it (e.g. a function within code). Different file formats are not
supported. Only plain text files can be used, because CSRS is built on XEmacs
editor.

The pages of a document can be easily navigated, and standard XEmacs
search functions are available. There is no automatic fault detection, neither
there is any special support for comprehension. Automatic fault detection can
be added by using CSRS’s process modelling language.

Comment Handling. There can be three different types of comments, or an-
notations, as they are called in CSRS: a comment is a public note available to all
inspectors and it is used for making questions and answering them in a general
level. An issue is a private inspector’s note which is used to address a defect. An
action is also a private note and used to suggest an action to correct a defect.

All comments are stored as nodes and they are linked to the relevant parts of
the document, so that they can be viewed concurrently with the content which
they refer to.

Comments can be categorised with pre-made classifications of the types of
the defect and its severity. When inspectors have finished their preparation tasks,
comments can be reviewed in a public review which corresponds to an inspection
meeting. CSRS ensures that all comments are visited.

356 Vesa Tenhunen and Jorma Sajaniemi

Material HandlingMaterial Handling

distributiondistribution

navigationnavigation

automatic defect detectionautomatic defect detection

comprehension supportcomprehension support

Comment HandlingComment Handling

walkthroughwalkthrough

summary reportssummary reports

reviewing & modifyingreviewing & modifying

listing unfinishedlisting unfinished

ProcessProcess

tasks & rolestasks & roles

monitoring time usagemonitoring time usage

summaries of time usagesummaries of time usage

monitoring completenessmonitoring completeness

monitoring checklistsmonitoring checklists

InterfacesInterfaces

different document typesdifferent document types

checklistschecklists

change control systemchange control system

comment attributescomment attributes

−− ++++ −− ++

−−

−−

−−

−−

−−

−−

−−

−−−−

++++ ++ ++++++

++++++ ++++++ ++++++ −−

++++

++++

++++

++++

++++

++++

++++

++++

++++

++++++++

++ ++

++

−−

−−

CSRSCSRS ReviewProReviewPro sfiasfia MS WordMS Word

−−

++

++

++

++

++

++

++

++

++

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

++

−−

++++

++

−−

++++

−−

−−

++

−−

−−

11

11

− = not supported, + = supported, ++ = good support, +++ = extensive support− = not supported, + = supported, ++ = good support, +++ = extensive support
partially manualpartially manual11

Fig. 3. Summary of the inspection tool analysis

Support for Process. CSRS keeps logs of each inspector’s usage of time. It
also sees that every node is reviewed and that checklists are completely gone
through. CSRS doesn’t support role casting and task assignments unless they
are added using the system’s programming language.

CSRS is not meant to provide support for inspection meetings. It only helps
the moderator to summarise decisions and to produce a report of results.

Interfaces. CSRS does not support different file formats or paper versions. It
does support checklists which are included in the node database.

An Evaluation of Inspection Automation Tools 357

Summary. CSRS is aimed to support FTArm, a method that differs from tradi-
tional Fagan inspection. Yet the program is quite versatile because of its built-in
process modelling language, so it can be tailored to support many variations of
inspection processes. However, it works only with text files.

4.2 ReviewPro

ReviewPro1 3.0 [12] is a web-based groupware application that supports both
synchronous and asynchronous inspections. All inspection data is kept in a server
database and the reviewers need only web browsers. ReviewPro is available for
Windows and Unix.

Material Handling. Material can be of any type as ReviewPro is not used
to handle it. ReviewPro can store copies of documents in different file formats.
These documents are downloadable from the server and other programs are used
to manage them.

Navigation or searching of the documents cannot be done with ReviewPro. It
is meant to be used simultaneously with a word processor that shows the docu-
ment, or with paper versions. ReviewPro is used to record inspectors’ comments.

Comment Handling. Comments are linked to documents manually by a sepa-
rate log page describing their place within the document (page, paragraph etc.).
Attributes of a comment include type, severity, status, and description. All com-
ments are saved into the database.

ReviewPro can create several types of reports from comment information.
Comments can be reviewed and modified both in synchronous and asynchronous
inspections.

Support for Process. ReviewPro includes some support for defining roles and
tasks. The moderator can create task lists for every participant.

The use of checklists and the control of their usage is automated. Tracking
and summarisation of time usage requires that inspectors enter the data manu-
ally.

Interfaces. ReviewPro requires that the inspected material is available to in-
spectors in some form. There are no restrictions to document types or their file
formats.

As many as six checklists can be created to be used in preparation and in-
spection. ReviewPro checks that inspectors have completely gone through them
before the inspection moves to the next phase. There is no support for a control
change system.

Summary. ReviewPro serves as a versatile note pad that inspectors can use
to save and review their comments. It leaves the handling of inspected materi-
als to other tools. As a web-based application, ReviewPro provides support for
distributed, asynchronous and traditional inspection processes.
1 This evaluation is based on the demo version of ReviewPro. Consequently, some
functionality could not be assessed.

358 Vesa Tenhunen and Jorma Sajaniemi

4.3 sfia

sfia 1.0 (software for inspection automation) [13] is a tool for inspection of code
and documents in every stage of software development. It uses pictures to repre-
sent documents and XML-type plain text files for inspection data. By utilising
GIF files as document pages and Tcl/Tk as the implementation language, sfia
can be used with basically any document type and in various operating systems
(including Unix, Linux, Windows and Macintosh).

Material Handling. sfia does not use the material per se; instead it manages
images of the material, a graphic representation in GIF format of each page of
the original document. Thus it gets around the problem of different file formats
and works also with scanned paper documents.

sfia does not convert files to pictures, but there’s an abundance of tools
which can be used to do that. The producer can create the pictures and then
write a definition file, which tells sfia what files comprise the document and what
classifications of comments are used.

There is no automatic fault detection nor support for document comprehen-
sion. The pages of the document can be easily navigated, but there’s no search
function for document content.

Comment Handling. The main feature of sfia is its ability to handle com-
ments. Inspectors can add comments and at the same time attribute classifica-
tion, severity and other criteria to them. These classifications are freely definable
by the moderator (or company). Comments are shown as semitransparent marks
in the insertion point and they can be viewed simultaneously with their content
texts. Inspectors can also view at any time detailed or summary reports of the
comments.

For inspection meeting, all comments made by several inspectors can be
combined into a single file. Comments can be deleted as necessary and also
marked according to their status: finished, unfinished and notified.

Using summary reports, the producer can view unfinished comments, make
modifications to original material and edit comments and change their status.

Support for Process. sfia does not support definition of roles or tasks. It
does not record logs of time usage and neither does it track completeness of
preparation or inspection.

Interfaces. Based on the use of standard graphics format it is possible to use
sfia with any kind of file formats, including paper. However, sfia does not support
any third party software like change control systems. Also, there is no support
for checklists: they can be used only separately and manually.

Summary. sfia works in virtually all systems and it provides all necessary
support for comment handling. However, it leaves process support and content-
related issues like search and comprehension to be managed with other content-
aware tools.

An Evaluation of Inspection Automation Tools 359

4.4 Microsoft Word

Microsoft Word 97 [10] is a word processor, but it is widely used in many organ-
isations also for document handling. The program has some characteristics that
can be used to automate inspections, so it is appropriate to review it. Word can
be used on Windows and Macintosh.

Material Handling. Word can keep track of different versions of documents.
The producer can prepare the material using Word’s protection functions: the in-
spectors can be granted rights to add only comments, add comments and modify
the text, or add comments and tracked changes. Documents can be distributed
directly from Word via e-mail.

Navigation through document is supported as well as search of content, but
there is no fault detection or comprehension support.

Comment Handling. Inspectors can add comments to documents. Comments
can be either text or recorded sound files. Depending on the granted rights,
inspectors may also modify documents.

By using track changes feature, Word keeps track of any modifications in-
spectors make and it is later possible to merge all copies into a single document
with all the comments and modifications.

The comments can not be classified automatically: the inspectors must add
manually the appropriate class, severity and other information into each com-
ment’s text. Word also lacks all summarising or reporting features; it can only
show a listing of comments made by every inspector or by one selected inspector.

In rework, the producer can step through the comments, make necessary
modifications and edit comments to show that they are dealt with. If there are
any tracked changes, the producer can accept or discard them.

Support for Process. Word does not offer any support for the inspection
process. There is no functionality regarding roles and tasks; it does not keep
track of time usage (although it records the time when a modification is made);
and there is no way to create reports about comments, although it is possible to
print a list of comments and modifications.

Interfaces. Word provides some support for different file formats, but added
comments can only be saved in Word’s own format. This can cause a variety of
problems, if the members of the inspection team have different versions of the
program.

By using Word’s macro language, Word can be made to support the use
of checklists (which must be also in Word document format). There is also a
possibility to ease distribution of the material by using e-mail directly from
Word. The e-mail connection provides also some sort of support for asynchronous
meetings, even though the program has no direct facilities for them.

Summary. Word is a familiar tool for many users. It does have some func-
tionality usable in an inspection process, but it does not recognise any special
features of inspection, so it requires disciplined working from users. It can be
utilised with Word documents only.

360 Vesa Tenhunen and Jorma Sajaniemi

5 Conclusions

Inspection automation tools motivate inspectors, especially customers, to do
their best by providing an increased feeling of the importance of inspections.
Furthermore, tools can automate metrics collection and help in SPI.

We have presented a framework for inspection automation tool evaluation.
The framework divides tool requirements in two dimensions: phase of the in-
spection process and viewpoint of the contemplation. Our viewpoints are: mate-
rial handling, comment handling, support for process, and interfaces. Using this
framework we evaluated four tools: CSRS, ReviewPro, sfia and Microsoft Word.

CSRS is based on a special inspection method and it supports plain ASCII
files only. ReviewPro serves as a versatile note pad with a manual connection to
the inspected material. sfia supports any document type and gives good support
for comment handling but has no process support. Finally, Microsoft Word is a
word processor that provides no special support for inspections, and can be used
with caution when Word documents are inspected by disciplined users.

The number of inspection automation tools is quite limited and a need for new
tools applicable in different environments is apparent. Our evaluation framework
can be used in tool design, too. It lists the major tasks that inspection partic-
ipants encounter and thus poses requirements for future inspection automation
tools.

References

1. Doolan, E. P.: Experience with Fagan’s inspection method. Software – Practice
and Experience, Vol 22, No. 2 (1990) 173–182

2. Dunsmore, A. P.: Comprehension and visualisation of object-oriented code for in-
spections. Technical Report, EFoCS-33-98, Computer Science Department, Uni-
versity of Strathclyde (1998)

3. Fagan, M. E.: Design and code inspections to reduce errors in program develop-
ment. IBM System Journal, Vol. 15, No. 3 (1976) 182–211

4. Gilb, T., Graham, D.: Software inspection. Addison-Wesley (1993)
5. Humphrey, W. S.: Managing the software process. Addison-Wesley (1989)
6. Johnson, P. M., Tjahjono, D.: Improving software quality through computer sup-

ported collaborative review. Proceedings of the Third European Conference on
Computer Supported Cooperative Work (1993)

7. Kitchenham, B.: Measuring software development. In Software Reliability Hand-
book, Ed. by P. Rook, Elsevier Applied Science (1990) 303–331

8. MacDonald, F., Miller, J., Brooks, A., Roper, M., Wood, M.: A review of tool sup-
port for software inspection. Proceedings of the Seventh International Workshop
on Computer Aided Software Engineering (1995) 340–349

9. MacDonald, F., Miller, J., Brooks, A., Roper, M., Wood, M.: Automating the soft-
ware inspection process. Automated Software Engineering Vol. 3, No. 3–4 (1996)
193–218

10. Microsoft Corporation. http://www.microsoft.com/office/word/
11. Russell, G. W.: Experience with inspections in ultralarge-scale developments. IEEE

Software, Vol. 8, No. 1 (1991) 25–31

An Evaluation of Inspection Automation Tools 361

12. SoftWare Development Technologies (SDT). http://www.sdtcorp.com
13. Tenhunen, V.: sfia – software for inspection automation. http://www.cs.joensuu.fi/

pages/saja/se/sfia

	1 Introduction
	2 Inspection Process
	3 Framework for Tool Evaluation
	4 Tool Evaluation
	4.1 CSRS
	4.2 ReviewPro
	4.3 sfia
	4.4 Microsoft Word

	5 Conclusions
	References

