
Data Structures and Algorithms I Thu 2.3.2017
Exercise 6

No mandatory X-task this week, but there will be on last week. Draw a picture of all exercises.

31. Write an algorithm that creates a ”two out of three” intersection of sets. Algorithm gets as pa-
rameter three sets, and creates a new set that contains those elements that are contained in ex-
actly two input sets (not all three, not less than two). You can use either JavaAPI sets, or TRA-
library set. Do not change the input sets. What is the time complexity of your algorithm?

32. Write a linear time algorithm retainAll(LinkedList A, Collection B) which removes from list
A all those elements that are not in in set B. Hint: create a set (HashSet) of elements of
collection B. Then it is easy to decide which of the elements of A should be removed. Do
not use ready retainAll() operation.

33. Write a linear time algorithm retainAll(ArrayList A, Collection B) which removes from
array-based list A all those elements that are not in in set B. Hint: create a set (HashSet)
of elements of collection B. Then it is easy to decide which of the elements of A should be
removed. Compared to task 32 you cannot, however, call remove() for each element to remove,
as it would destroy the linear time complexity. Do not use ready retainAll() operation.

34. Write an algorithm that finds from a collection of floating point numbers those two different
numbers that have the lowest (mutual) difference. Return the two values as a list of two
elements or null if there are less than two values in the input collection. Hint: put all values
to a sorted set and iterate that. What is the time complexity of your algorithm?

35. Use quicksort manually to sort array A[16] = { M, L, D, Z, R, H, B, A, S, G, P, F,
J, K, C, X }. Write the contents of the array after each partition phase (before recursive
calls). Mark down each pivot element and each recursive call. ”Parallel” recursive calls can
be drawn side by side. You can select pivot element randomly (or use the first element
initially for simplicity).

36. Write an algorithm that sorts efficiently an array (or Vector/ArrayList) that is in almost
ascending order. Here ”almost” means that most of the array is in correct ascending order,
but at most k last elements are out of order and can contain also small elements. Use a
priority queue as helper by putting the k last elements to priority queue. Then merge the
contents of the priority queue and the ascending majority of the array to the array (from
end to start). Time complexity should be O(n+klogk).


