
Data Structures and Algorithms I Tue 7.3.2017
Exercise 7

No mandatory X-task this week, but there will be on last week. Draw a picture of all exercises.

In the following exercises we implement abstract data type queue according to interface java.util.Queue.
First using a ready linked list, then using a plain array, and finally using dynamic linked nodes
as the storage of the elements. Interface Queue contains some redundancy, but you can implement
one operation and call it from the other one. Much of Collection functionality will be inherited
from AbstractSequentialList. Implementation of Iterable can be non-functional.

Take a skeleton and test program from course www-page. Rename the same skeleton for each of the
three different implementations. You can use the same test program to test all the implementations.

37. Implement interface Queue using java.util.LinkedList as a storage structure and using its
operations. Even if LinkedList already implements Queue, you must implement them as
we do not extend LinkedList.

38-39. Implement interface Queue using a plain array as the storage structure and using the array
as a ring buffer. Now you must allocate the array and remember where the queue elements
are stored in the array. Operations must be (average) unit time.

40. Add to previous exercise 38-39 automatic doubling the storage space when queue runs out
of space.

41-42. Implement interface Queue using dynamic allocation of linked nodes. The queue is an object
holding references to first and last nodes of the queue. Each node contains an element and
a reference to the next node. Use an internal class to represent the linked nodes of queue
storage. Each add will allocate a new node and link it as the last node of the queue. Do
not use ready linked list implementations.


