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Abstract
In speaker identification, most of the computation originates from
distance or likelihood computations between the feature vectors of
the unknown speaker and the models in the database. The identifi-
cation time depends on the number of feature vectors, their dimen-
sionality, the complexity of the speaker models and the number of
speakers. In this paper, we focus on optimizing vector quantiza-
tion (VQ) based speaker identification. We reduce the number of
test vectors by pre-quantizing the test sequence prior to matching,
and the number of speakers by pruning out unlikely speakers dur-
ing the identification process. The best variants are then generalized
to Gaussian mixture model (GMM) based modeling also. We ob-
tain a speed-up factor of 16:1 with VQ-based system, and 34:1 with
GMM-based system with a minor degradation in the identification
error rate.

1. Introduction
Speaker identification is a task of finding the best-matching speaker
for unknown speaker from a database of known speakers [3].
Speaker verification, in turn, consists of deciding whether a given
unknown speech sample was uttered by a claimed identity. In this
paper we focus on reducing the computational load of the identifi-
cation task.

A large number of methods have been proposed for speeding
up the verification task, in particular the Gaussian mixture model
(GMM) [14] based systems. The UBM-adaptation approach for
training GMM-based systems [13] induces a hierarchy between the
UBM and speaker-depended GMMs which enables efficient GMM
scoring. Other optimizations of GMM include clustering of GMM
components [2], Gaussian shortlisting [1], input vector reordering
combined with beam-search pruning [12], decimation of the input
vectors [5] and tree-structured GMMs [10, 17].

GMM-based speaker modeling is widely used and has many ad-
vantages. However, vector quantization (VQ) based modeling [15]
is computationally less demanding and simpler to implement than
GMM, and according to our experiments, it gives equal or even bet-
ter performance than GMM. Based on these arguments, VQ-based
recognition is well suited for practitioners.

Most of the computation time in speaker identification is spent
on the match score computations. Speaker pruning [6,12,18] can be
used to reduce the search space by dropping out unlikely speakers
“on the fly” as more speech data arrives. In this work, we compare
and optimize several speaker pruning variants, and propose also a
novel variant called confidence-based speaker pruning.

We also reduce the number of test sequence vectors by si-
lence removal and pre-quantization, and demonstrate how pre-
quantization and pruning can be combined. A vantage-point tree

∗Extended version of the work has been submitted to IEEE Transac-
tions on Speech and Audio Processing.

Speech input stream

Silence detection

Feature extraction

Pre-quantization

Speaker database

Speaker 1 
model

Speaker N 
model

List of candidate speakers

Active speakers Pruned speakers

Frame blocking

Decision ? END

...

Fill buffer with 
new data

All  frames

Non-silent 
frames

Feature 
vectors

Redused set 
of vectors

Matching

v
v

v
v

v
v

v

Database pruning

v

v
YesNo

Figure 1: Diagram of the real-time identification system.

(VPT) [16] is used for indexing the code vectors for speeding up
the nearest neighbor search. We also generalize the methods from
VQ to GMM.

2. VQ-Based Speaker Identification
Any speaker identification system includes a feature extractor
which converts the raw signal into a sequence of feature vec-
tors X = {x1, . . . , xT }. Commonly used features include mel-
cepstrum (MFCC) and LPC-cepstrum (LPCC) [4], which both mea-
sure the short-term spectral envelope.

In the training phase, a speaker model is created by clustering
the training feature vectors into disjoint groups by any clustering al-
gorithm. The LBG algorithm [8] is widely used due to its efficiency
and simple implementation. However, other clustering methods can
also be considered; a comparative study can be found in [7]. The
result of clustering is a set C = {c1, . . . , cM} of vectors, called
a codebook. The codebook of each speaker is stored in the system
database.

In the identification phase, unknown speaker’s vectors X are
matched against the codebooks {C1, . . . , CN} and the codebook
giving the best match is selected. Usually, the match score
D(X, Ci) is computed by mapping each test vector x ∈ X to its
nearest neighbor inCi, and accumulating or averaging these quanti-
zation distortions [15]. The speaker yielding the smallest distortion
is selected as the winner.

Simple nearest neighbor search from Ci requires O(T · M)
distance calculations. The computation ofD(X, Ci) is repeated for



i = 1, . . . , N , giving total number of O(N · T · M) distance cal-
culations. Notice that the feature extraction increases the time with
an additive constant, since it needs to be done only once. Therefore
we have discarded it here.

In order to speed up the nearest neighbor search from a code-
book, we utilize vantage-point tree (VPT) [16] for indexing the
code vectors. VPT is a balanced binary tree for searching in metric
spaces. It cannot be used to index the codebooks themselves, since
D(·, ·) does not satisfy the triangular inequality as required by the
VPT.

3. Real-Time Speaker Identification
The proposed system architecture is depicted in Fig. 1. The input
stream is processed in short buffers, which are divided into frames.
The frames are passed through a silence detector that uses a sim-
ple energy-based thresholding. Feature extraction is performed for
the remaining frames, and the vectors are then pre-quantized to
a smaller representative sequence. Pre-quantized vectors are then
matched against active speakers only. After the match scores for
each speaker are obtained, a number of speakers are pruned out so
that they are not included anymore in the matching on the next iter-
ation. The process is repeated until there is no more input data, or
there is only one speaker left in the list of active speakers.

20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of vectors

M
at

ch
 s

co
re

Correct speaker 

 Correct speaker found already

Figure 2: Match score saturation (20 speakers from TIMIT).

By pre-quantization (PQ) we mean reducing the bit rate of the
input sequence without compromizing the accuracy of the represen-
tation. In practise, adjacent feature vectors are correlated, and they
can be harmful for recognition [5].

We consider four PQ variants: (1) random subsampling, (2) av-
eraging, (3) decimation, and (4) clustering-based PQ. In random
subsampling and averaging, the input buffer is processed in non-
overlapping segments of M > 1 vectors. In random subsampling,
each segment is represented by a randomly selected vector. In av-
eraging, the representative vector is the centroid (average vector) of
the segment. In decimation, we simply take everyKth vector of the
test sequence, which corresponds to performing feature extraction
with a smaller frame rate. In clustering-based PQ, we first parti-
tion the sequence X into K clusters by the LBG clustering algo-
rithm [8], and input the reduced vector set to the matching function.

3.1. Speaker Pruning

A number of speakers are pruned out at each iteration. One must fix
the number of new vectors (non-silent, pre-quantized) used for up-
dating the match scores. We call this the pruning interval. Also, the
pruning criterion must be decided, for which we consider several
variants.

Figure 2 shows an example how the average distortion
D(X, Ci) develops with time. The bold line represents the cor-
rect speaker. In the beginning, the scores oscillate; however, when
more vectors are obtained, the scores stabilize around the expected

µ µ + 
0

10

20

30

40

50

60

1,4
7 1,5 1,5

3
1,5

6
1,5

9
1,6

2
1,6

5
1,6

8
1,7

1
1,7

4
1,7

7 1,8 1,8
3

1,8
6

1,8
9

1,9
2

1,9
5

1,9
8

2,0
1

2,0
4

2,0
7

Dissimilarity

Am
ou

nt
  o

f s
pe

ak
er

s

Pruning
region

THEORETICALTIMIT

N(µ, 2)

Dissimilarity

# 
Sp

ea
ke

rs

Figure 3: Left: Match score distributions from TIMIT. Right: Illus-
tration of the pruning threshold.

Algorithm 1 Confidence-Based Pruning (CP)

A := {1, 2, . . . , N} ;X := ∅ ;
for i := 1, . . . , N do

Dprev[i] := 0 ; stable[i] := false ;
end for
while (|A| > 1) and (vectors in input buffer) do
InsertM new vectors into bufferX ;
UpdateD(X, Ci) for all i ∈ A ;
Update pruning threshold Θ ;
for i ∈ A do

Dcurr[i] := D(X, Ci) ;
end for
for i ∈ A do
if ( |1 − Dprev[i]/Dcurr[i]| < ε ) then stable[i] = true ;
if (stable[i]) and (Dcurr(X, Ci) > Θ) then A = A \ {i} ;
Dprev[i] := Dcurr[i] ;

end for
end while
Decision: i∗ = arg mini{D(X, Ci)|i ∈ A} ;

values of the distortions. An important observation is that a small
amount of feature vectors is enough to rule out most of the speakers
from the set of candidates.

We consider three pruning variants: static, hierarchical, and
adaptive pruning. The idea in static pruning (SP) [6] is to maintain
an ordered list of the best matching speakers. At each iteration, K
worst matching speakers are pruned out. More data is obtained, and
the match scores for the remaining speakers are updated.

In hierarchical pruning (HP) [18], for each speaker two code-
books are stored: a coarse and a detail codebook. Both codebooks
are generated from the same training data, but the size of the coarse
model is much smaller than the size of the detail model. Test vectors
are first scored against the coarse models, and a number of speaker
are pruned out. Then, the match scores of the remaining speakers
are refined using the detail models.

In adaptive pruning (AP) [6], a pruning threshold Θ is com-
puted from the distribution of the match scores and all speakers sat-
isfying D(X, Ci) > Θ are pruned out. The threshold is defined
as Θ = µD + η · σD , where µD and σD are mean and standard
deviation of the active speakers’ match scores, and η is a control
parameter. The larger η is, the less speakers are pruned, and vice
versa (see Fig. 3).

3.2. Confidence-Based Pruning (CP)

We propose a novel pruning variant called confidence-based prun-
ing. In CP, only speakers whose match scores have stabilized are
considered for pruning. If the match score is poor but it oscillates,
the speaker can still change its rank and become the winner. Thus,
we remove only speakers that have both stabilized and whose match
score (average distortion) exceeds the pruning threshold. The pseu-
docode of the method is given in Algorithm 1. The set A contains
the indices of the active speakers,M is the pruning interval, ε is the
stabilization threshold, and Θ is the pruning threshold.



Algorithm 2 PQ + Static Pruning Combined (PQP)

A := {1, 2, . . . , N} ;
Read new data into bufferX ;
X̂ := LBG-Clustering(X, M) ;
ComputeD(X̂, Ci) for all i ∈ A ;
Prune outK worst speakers from A based on {D(X̂, Ci)};
ComputeD(X, Ci) for all i ∈ A ;
Decision: i∗ = arg mini{D(X, Ci)|i ∈ A} ;

3.3. Combining PQ and Pruning (PQP)

Clustering-based PQ and static pruning can be combined (see Al-
gorithm 2). First, the whole input data is pre-quantized using the
LBG algorithm [8]. Using the match scores for the quantized data,
K worst scoring speakers are pruned out, and the decision is made
by comparing the unquantized data with the remaining models.

4. Experiments
For the experiments, the TIMIT corpus [9] was used for param-
eter tuning and the results were then validated using the NIST
1999 speaker recognition evaluation corpus [11]. TIMIT has been
recorded in a sound-proof room with a high-quality microphone,
whereas NIST is recorded over telephone network. For consistency,
TIMIT was downsampled to 8 kHz (NIST has 8 kHz sampling rate).

For TIMIT, we used all 630 speakers, and for NIST, we selected
the male subset containing 230 speakers. For NIST, the 1-speaker
test segments from the same telephone line with mixed handsets
were used for identification. The standard MFCC’s [4] were used
as the acoustic front-end. The experiments were performed on a
cluster of two computers having 2.8 GHz CPUs and 1024 MB of
RAM each.

4.1. Baseline System (TIMIT)

First, a few preliminary tests were carried out on TIMIT for tuning
the silence threshold and an appropriate number of MFCCs. With
the optimized silence threshold, about 12 % of the frames were clas-
sified as silent, and the identification time improved by about 10 %
without degradation in accuracy. The error rates stabilized around
10-15 coefficients. For the rest of the experiments, the number of
MFCCs was fixed to 12.

Table 1 summarizes the performance of the baseline system.
The last row shows the results for using the training vectors directly
as the speaker model. The accuracy improves with increasing model
size; however, the results detoriate due to the overfitting effect when
all data is used as the model. For the rest of the experiments, code-
book size was fixed to 64.

Table 1: Performance of the baseline system (TIMIT).
Codebook size Error rate (%) Avg. identific. time (s)

8 10.5 0.33
64 0.48 2.07
512 0.32 12.9
No model 1.59 23.7

4.2. Pre-Quantization and Pruning (TIMIT)

Parameters of the PQ variants were optimized for each variant sep-
arately, and the best time-error trade-off curves are summarized in
Fig. 4. The clustering-based PQ gives the best results while the
averaging gives the worst results. In general, PQ can be used to re-
duce the running time about to 50 % of the full search with minor
degradation in accuracy.

Next, we evaluated the performance of the speaker pruning vari-
ants with the pre-quantization turned off. The parameters of the
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Figure 4: Comparison of the PQ methods (TIMIT).
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Figure 5: Comparison of the pruning variants (TIMIT).

variants were optimized separately, and the best results for each
variant are compared in Fig. 5. The adaptive variant gives the
best performance, whereas the static variant gives the worst per-
formance.

The best PQ (clustering-based) and pruning (adaptive) variants,
as well as the PQP are compared in Fig. 6. We observe that in
time-critical applications the PQ gives slightly better results than
pruning. The combination (PQP) gives the best result as expected.
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4.3. Validation with NIST and Generalization to GMM

We generalize the best pre-quantization and pruning variants to
GMMmodeling as follows: instead of the likelihood p(X|GMMi),
we use −p(X|GMMi) so that the match score becomes a dissim-
ilarity. For GMM, diagonal-covariance models were trained using
the basic EM algorithm [4].

For PQ, we selected the clustering variant, for pruning the AP
variant, and for the combination the PQP. The best results for both
VQ and GMM are summarized in Table 2. We can make the fol-
lowing observations:

• VQ is computationally more efficient than GMM. This is ex-
plained by the higher number of parameters in the GMM.

• The error rates are approximately of the same order for both
VQ and GMM (around 17-19 %).



Table 2: Summary of the best results on the NIST 1999 corpus.
Vector quantization (VQ) Gaussian mixture model (GMM)

Setup Model Error Time (s) Speed-up Model Error Time (s) Speed-up
size rate (%) factor size rate (%) factor

Baseline 64 18.06 2.92 1:1 64 17.34 9.58 1:1
PQ 18.20 0.62 5:1 18.79 0.73 13:1
Pruning 19.22 0.48 6:1 19.36 0.82 12:1
PQP 18.06 0.50 6:1 17.34 0.94 10:1
Baseline 128 17.78 5.80 1:1 128 17.05 18.90 1:1
PQ 18.93 0.64 9:1 18.20 0.84 23:1
Pruning 18.49 0.86 7:1 17.34 2.88 7:1
PQP 17.78 0.67 9:1 17.63 1.34 14:1
Baseline 256 17.34 11.40 1:1 256 16.90 37.93 1:1
PQ 18.20 0.70 16:1 18.50 1.11 34:1
Pruning 17.49 1.46 8:1 17.48 5.78 7:1
PQP 17.49 0.90 13:1 18.06 2.34 16:1

• The speed-up factor of PQ increases with the model size as
expected. Relative speed-up is higher for GMM than for VQ.
Improvement of pruning depends less on the model size.

• The best speed-up factor with VQ is 16:1 increasing the error
rate from 17.34 % to 18.20 %. For GMM, the corresponding
speed-up factor is 34:1 with the increase of error from 16.90
% to 18.50 %.

Clearly the algorithms work well for both corpora, even though
the absolute error rates are higher for NIST. The algorithms formu-
lated for VQ-modeling generalize directly to GMM-modeling. In
fact, the speed-up factors are even better for GMM than for VQ. The
optimized systems are close to each other both in time and accuracy,
and we cannot state that one of the models would be better than the
other in terms of time/error trade-off. However, the ease of imple-
mentation, numerical stability and lower memory usage make VQ
more attractive for practical systems. In fact, prototype implemen-
tation for Symbian series60 operating system for mobile devices is
currently in progress.

5. Conclusions
A real-time speaker identification system based has been proposed.
We used TIMIT corpus for tuning the algorithm parameters, and
validated the results using the NIST-1999 corpus. The best methods
were also generalized to GMM-based identification, which showed
a speed up of 34:1 with minor degradation in the accuracy.

It must be noted that the identification rates on the NIST corpus
are much worse than on the TIMIT corpus, which is explained by
the differences in the recording conditions. We have not used any
channel compensation methods nor delta coefficients, which also
explains the relatively high error rate of NIST. In future, we plan to
extend our experiments with a better acoustic front-end.
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