
Multi-taper MFCC Features for Speaker Verification 
using I-vectors 

Md Jahangir Alam #1, Tomi kinnunen *2, Patrick Kenny #3, Pierre Ouellet#4, Douglas O’Shaughnessy #5 
#1,3,4 CRIM, Montreal, Canada 

#1,5 INRS-EMT, Montreal, Canada 
1 Jahangir.Alam@crim.ca, 3 Patrick.Kenny@crim.ca, 4 Pierre.Ouellet@crim.ca 

5 dougo@emt.inrs.ca 
* School of Computing, University of Eastern Finland 

Joensuu, Finland 
2 tkinnu@cs.joensuu.fi 

 
Abstract—This paper studies the low-variance multi-taper 

mel-frequency cepstral coefficient (MFCC) features in the state- 
of-the-art speaker verification. The MFCC features are usually 
computed using a Hamming-windowed DFT spectrum. 
Windowing reduces the bias of the spectrum but variance 
remains high. Recently, low-variance multi-taper MFCC features 
were studied in speaker verification with promising preliminary 
results on the NIST 2002 SRE data using a simple GMM-UBM 
recognizer. In this study our goal is to validate those findings 
using a up-to-date i-vector classifier on the latest NIST 2010 SRE 
data. Our experiment on the telephone (det5) and microphone 
speech (det1, det2, det3 and det4) indicate that the multi-taper 
approaches perform better than the conventional Hamming 
window technique.  

I. INTRODUCTION 
Useful information extraction from speech has been a 

subject of active research for many decades. Feature extractor 
(or front-end) is the first step in an automatic speaker or 
speech recognition system which transforms a raw signal into 
a compact representation. Since feature extraction is the first 
step in the chain, the quality of later steps (modelling and 
classification) strongly depends on it. The MFCC features are 
the most popular in speech and speaker recognition systems 
and they demonstrate good performance in speech and speaker 
recognition. The MFCC representation is an approximation of 
the structure of the human auditory system [1]. Since MFCC 
features are computed from an estimated spectrum, it is 
crucial that this estimate is accurate. Usually, the spectrum is 
estimated using a windowed periodogram [16]. Despite 
having low bias, a windowed periodogram has large variance 
and therefore, MFCC features computed from this estimated 
spectrum have also high variance. One elegant technique for 
reducing the variance is to replace a windowed periodogram 
estimate with a multi-taper spectrum estimate [8, 9, 10].  
     The multi-taper method reduces the variance of the spectral 
estimates by using multiple time-domain window functions or 
tapers rather than a single taper. The multi-taper method has 
been widely used in geophysical applications and has been 
shown in multiple cases to outperform the windowed 
periodogram. It has also been used in speech enhancement 
application [2] and, recently, in speaker recognition [3] with 
promising preliminary results. The preliminary experiments of 

[3, 8] were reported on the NIST 2002 and 2006 SRE corpora 
using lightweight Gaussian mixture model–universal 
background model (GMM-UBM) system [17] and generalized 
linear discriminant sequence without any session variability 
compensation techniques.  
    In this paper, our aim is to study whether the improvements 
in [3, 8] translate to state-of–the-art speaker verification. The 
recent i-vector model [4, 5, 6] includes elegant inter-session 
variability compensation, with demonstrated significant 
improvements on the recent NIST speaker recognition corpora.   
Since i-vector does already a good job in compensating for 
variabilities in the speaker model space, one may argue that 
improvements in the front-end may not translate to the full 
recognition system. This is the question which we address in 
this paper. In the experiments, we use the latest NIST 2010 
SRE benchmark data with state-of-the-art i-vector 
configuration. To make the system gender independent, 
recently, a mixture Probabilistic Linear Discriminant Analysis 
(PLDA)-based speaker verification system has been proposed 
in [6] to deal with gender dependent problem.  In this paper, 
we also use a gender independent i-vector extractor and then 
form a mixture PLDA model by training and combining two 
gender dependent models, where the gender label is treated as 
a latent (or hidden) variable. 
 
    This paper is organized as follows: Background information 
on low-variance spectrum estimators is given in section II. 
Section III provides a description of the fundamental 
components of our speaker recognition system. Section IV 
provides a detailed description about the experimental setup 
used throughout all the experiments and presents results on 
the NIST 2010 SRE task. Conclusion is drawn in section V.  

II. LOW-VARIANCE SPECTRUM ESTIMATION 
A Hamming-windowed DFT spectrum is the most often 

used power spectrum estimation method for speech processing 
applications. For the mth frame and kth frequency bin an 
estimate of the windowed periodogram can be expressed as: 
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where { }0,1,......, 1k K∈ −  denotes the frequency bin index, 

N is the frame length, ( ),s m j is the time domain speech 

signal and ( )w j denotes the time domain window function 
called a taper, which usually is symmetric and decreases 
towards the frame boundaries (e.g., Hamming). Eq. (1) is 
sometimes called a single taper, modified or windowed 
periodogram. If ( )w j  is a boxcar function, eq. (1) is called 
the periodogram. Windowing reduces the bias, i.e., difference 
between the estimated spectrum and the actual spectrum, but it 
does not reduce the variance of the spectral estimate [7] and 
therefore, the variance of the MFCC features computed from 
this estimated spectrum is also large. One way to reduce the 
variance of the MFCC estimator is to replace a windowed 
periodogram estimate by a so-called multi-taper spectrum 
estimate [8, 9, 10]. The multi-taper spectrum estimator is 
given by: 
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where N is the frame length, pw is the pth data taper used for 

the spectral estimate ˆ ( )MTS ⋅ , which is also called the pth 
eigenspectrum, M denotes the number of tapers and ( )pλ is 
the weight corresponding to the pth taper. The tapers 

( )pw j are chosen to be orthonormal, i.e., 

                   ( ) ( )p q pqj
w j w j δ=∑                    

The multi-taper spectrum estimate is therefore obtained as the 
weighted average of M individual sub-spectra. Eq. (1) can be 
obtained as a special case of eq. (2) when 1M = and 
( ) 1.pλ =  Tapers in the multi-taper method are chosen so that 

the estimation errors in the individual sub-spectra are 
uncorrelated. Averaging these uncorrelated spectra gives a 
low variance spectrum estimate and, consequently low 
variance MFCC estimate as well. The underlying philosophy 
of multi-taper method is similar to Welch’s modified 
periodogram [7], it, however, focuses only one frame rather 
taking a time-averaged spectrum over multiple frames. 

The choice of taper has a significant effect on the resultant 
spectrum estimate. The objective of the taper is to prevent 
energy at distant frequencies from biasing the estimate at the 
frequency of interest. Various tapers have been proposed in 
the literature for spectrum estimation. A good set of 
M orthonormal data tapers with good leakage properties are 
specified from Slepian sequences (also called discrete prolate 
spheroidal sequences (dpss)) [9]. Another orthogonal family 
of tapers are the sine tapers given by [10]: 
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In [11] the sine tapers are applied with optimal weighting for 
cepstrum analysis and multi-peak tapers are designed for 
peaked spectra in [12]. Fig. 1 presents the multi-peak, the sine 
and the Thomson tapers used for multi0taper spectrum 
estimation. As there exists a number of different multi-tapers 

to choose from, it may not be clear which multi-taper suits 
well for modelling speech signal. In this paper, our goal is to 
do a comparative evaluation of various multi-taper methods 
for MFCC estimation and compare their performance with the 
conventional Hamming window-based MFCC estimation, in 
the context of speaker verification [6].  
Fig. 2 shows the generalized block diagram of MFCC-DCC 
(MFCC- Delta Cepstral Coefficients (DCC)) computation 
from the multi-taper spectrum estimates. The pre-processing 
step may include pre-emphasizing, DC removal and signal 
normalization. As we mentioned above, the Hamming- 
windowed spectrum estimates can be obtained as a special 
case of the multi-taper spectrum estimation method. To 
compute MFCC features from single taper (or window) 
spectrum estimates we use 1M = , ( )1 1,λ = and ( )1w j is the 
Hamming window. After extracting MFCC-DCC features we 
then remove the silence frames using our VAD (Voice 
Activity Detector) label files. Finally, MFCC-DCC features 
are normalized using feature warping technique (e.g., STG 
(Short-time Gaussianization), STMVN (Short-time Mean and 
Variance Normalization)) on speech only frames. In this paper 
we use STG feature warping technique. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Plot of three types of widely used tapers for multi-taper spectrum 
estimation. (a) The multi-peak tapers, (b) the sine tapers, and (c) the Thomson 
tapers or Slepian sequences. Window length  is 512, p is the taper number. 
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Figure 2. Generalized block diagram for the single taper and multi-taper 
spectrum estimation-based MFCC–DCC feature extraction. 

III. SPEAKER RECOGNITION SYSTEM 
Given two recordings of speech in a speaker detection trial, 

each assumed to have been uttered by a single speaker, are 
both speech utterances uttered by the same speaker or by two 
different speakers? Speaker verification is the direct 
implementation of this detection task. Speaker detection 
provides a scalar score by processing given speech recordings. 
A more positive score favors the target hypothesis (i.e., same 
speaker hypothesis) and a more negative score favors non-
target hypothesis (i.e., different speaker hypothesis). Non-
target trials may be male, female, or mixed but target trials, by 
definition, cannot have mixed gender. Similar to [6], in this 
paper, we are interested in the case where no gender 
information are provided and where there may be mixed non-
target trials [6].  

In the following sub-section we will provide a brief 
description of the fundamental components of our speaker 
verification system.  

A. I-vector extraction 
I-vector extractors have become the state-of-the-art 

technique in the speaker verification field. They convert an 
entire speech recording into a low dimensional feature vectors 
called i-vectors [4, 5, 14]. The i-vector extractors explained in 
[4, 5, 14] are gender dependent and are followed by gender 
dependent generative modeling stages. In this paper, we use a 
gender-independent i-vector extractor and a mixture of male 
and female Probabilistic Linear Discriminant Analysis (PLDA)   
models, where the gender label is treated as a latent variable 
[6].  

B. Generative models for i-vectors 
We construct a speaker detector using a generative PLDA 

model for a pair of i-vectors in a trial [6]. The model assumes 
that the i-vectors were produced by simple random processes. 

In the model, the pair of i-vectors 1,z 2z  is produced as 
follows: 
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where the hidden speaker variables, 1,y 2 ,y are  d-dimensional 
vectors sampled from a continuous multivariate between-
speaker distribution. 1 2y y= , for target trials whereas for non-
target trials, 1y and 2y are sampled independently. The hidden 
channels, 1,x 2x are D-dimensional and sampled from a 
continuous multivariate within-speaker distribution. Normally 

,d D≤ but in our experiments .d D=  The between- and 
within-speaker distributions are either normal or heavy-tailed 
[5], the d D× matrix V is a fixed hyper-parameter and 1,z 2z  
are observed variables. There are two types of hidden 
variables: (i) the continuous nuisance variables: 1 2 1 2, , ,x x y y  
and (ii) the variable of interest to be inferred, i.e., the trial type, 
which can have the discrete values target ( )T or non-target (N) 
[6]. 

1)  Gender modeling: Let, 1g , 2g  represent the genders of 
the speakers that produced 1,z 2z which take the values male 
(M) or female (F). For a target trial, ,1 2g g= while for a non-
target trial they may be different [6]. 

The generative model needs priors for all hidden variables. 
The priors for the continuous hidden variables are the within 
and between speaker distributions mentioned above. In this 
paper the prior for the trial type is not needed. The priors for 
the gender labels are trial-type dependent and are defined as 
[6]: 

               ( ) ( )         M FP P MM T P P FF T= =      

              ( ) ( )  QMM FFQ P MM N P FF N= =  

             ( ) ( )   Q ,MF FMQ P MF N P FM N= =  

where the event 1g M= and 2g F= is denoted by 
,MF 1,M FP P+ = and 1.MM MF FF FMQ Q Q Q+ + + =  Equi-

probable priors are used for our case, as in [6]. These priors 
take values of 0 or 1 in the limiting case of given gender 
labels.  

C. Scoring  
For gender-independent scoring of the model we assume to 
have the following available gender-dependent likelihoods [6]: 
For targets: 
                         ( )1 2, ,P z z MM T  

                        ( )1 2, ,P z z FF T , 
and for non-targets: 

            ( ) ( ) ( )1 2 1 2, ,P z z MM N P z M P z M=                  (4)  

                 ( ) ( ) ( )1 2 1 2, ,P z z FF N P z F P z F= .                  (5) 



The independence assumption in (4) and (5) holds when the 
model parameters are assumed known at the scoring time [5, 
14, 6]. In a more fully Bayesian treatment, the uncertainty in 
the estimates of the model parameters is taken into account 
during scoring [15]. 
If the continuous hidden variables have normal distributions, 
all these likelihoods can be computed in closed form [14], and, 
if heavy-tailed distributions are considered then they can be 
approximated [5]. The above mentioned likelihoods can be 
expressed by the following likelihood ratios [6]: 
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where log MR and log FR are gender dependent speaker 
verification scores for the male and female, respectively. 
log iG can be used as a gender discrimination score [6]. 
The gender-independent likelihood ratio R can be obtained by 
marginalizing over the gender variables as [6]:  
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Applying eq. (4) to eq. (7) in eq. (9), R can be expressed in 
terms of the likelihood ratios and priors as [6]: 
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IV. EXPERIMENTS 
 

A. Experimental setup 
We conducted experiments on the coreext-coreext 

condition of the NIST 2010 SRE extended list. To evaluate 
the performance of our speaker recognition systems we used 
following evaluation metrics: the Equal Error Rate (EER), the 
old normalized minimum detection cost function (DCFOld) and 
the new normalized minimum detection cost function 
(DCFNew). DCFOld and DCFNew correspond to the evaluation 
metric for the NIST SRE in 2008 and 2010, respectively. For 
our baseline Hamming method, MFCC features are computed 
from Hamming-windowed spectrum estimates using HCopy 
of the HTK toolkit. For the Thomson [9], multi-peak [12] and 

sine weighted cepstrum estimator (SWCE) [11] methods, 
MFCC features are computed from the multi-taper spectrum 
estimates as described in section II.  

1) Feature Extraction: For our experiments, we use 20 
MFCC features (including 0th cepstral coefficient (c0)) 

augmented with their delta and double delta coefficients 
(DCC), making 60 dimensional MFCC-DCC feature vectors. 
For the baseline Hamming method we use log-energy instead 
of c0. The analysis frame length is 30 ms (for baseline, it is 25 
ms) with a frame shift of 10 ms. Baseline system uses pre-
emphasis whereas multi-taper systems do not. Delta and 
double coefficients were calculated using a 2-frame window 
for baseline and a 1-frame window for the multi-taper systems. 
Then Silence frames are removed according to the VAD 
labels. After that we apply Short-time Gaussianization (STG) 
which uses a 300-frame window. For the baseline system we 
use HTK-based front-end and for the multi-taper systems 
MFCC features are extracted using the MATLAB. We chose 
HTK-based baseline because using the same configuration as 
the multi-taper systems we also developed a baseline speaker 
verification system where we calculated MFCC-DCC features 
from the Hamming windowed spectrum estimates, but the 
performance of that system was not as good as the HTK-based 
baseline system.  

2) GMM-UBM training: We train a gender-independent,  
full covariance Universal Background Model (UBM) with 256 
component Gaussian Mixture Models (GMMs). NIST SRE 
2004 and 2005 telephone data were used for training the UBM 
for our system. 

3) Training and extraction of i-vectors: Our gender- 
independent i-vector extractor is of dimension 800. After 
training gender-independent GMM-UBM, we train the i-
vector extractor using the Whitened Baum-Welch (WBW) 
statistics extracted from the following data: LDC release of 
Switchboard II - phase 2 and phase 3, Switchboard Cellular - 
part 1 and part 2, Fisher data, NIST SRE 2004 and 2005 
telephone data, NIST SRE 2005 and 2005 microphone data 
and NIST SRE 2008 interview development microphone data. 
In order to reduce the i-vectors dimension, a Linear 
Discriminant Analysis (LDA) projection matrix is estimated 
from the WBW statistics by maximizing the following 
objective function:  

                        arg max ,
T

b
LDA TP w

P P
P

P P

Σ
=

Σ
 

where bΣ and wΣ represent the between- and within-class 
scatter matrices, respectively. For the estimation of bΣ we use 
all telephone training data excluding Fisher data and wΣ is 
estimated using all telephone and microphone training data 
excluding Fisher data. An optimal reduced dimension of 150 
is determined empirically. 
Then we extract 150 dimensional i-vectors for all training data 
excluding Fisher data by applying this transformation matrix 
on the 800-dimensional i-vectors. For the test data, first WBW 
statistics and then 150 dimensional i-vectors are extracted 
following the similar procedure using the same projection 



matrix. We also normalize the length of the i-vectors, as it has 
been found that normalizing the length of the i-vectors after 
mapping by the estimated LDA projection matrix helps 
Gaussian PLDA model to give the same results as the heavy-
tailed PLDA model [13] i.e., PLDA model with heavy-tailed 
prior distributions [5]. Heavy-tailed PLDA is 2 or 3 times 
slower than the Gaussian PLDA. 

4) Training the PLDA model: We train two PLDA   
models, one for the males and another for females. These 
models were trained using all the telephone and microphone 
training i-vectors; then we combine these PLDA models to 
form a mixture of PLDA models in i-vector space. For both of 
the models, the fixed hyper-parameter V is a full rank matrix 
of dimension 150.d =  
 
B. Results 
 

The effectiveness of the mixture PLDA model has been 
shown in [6]. In this paper we use mixture PLDA model-
based speaker verification system to compare the performance 
of the following 4 systems: 

i) Baseline: For this system, MFCC-DCC features were 
computed from the Hamming windowed spectrum estimates 
by using HCopy of the HTK toolkit.  

ii) SWCE: Here, MFCC-DCC features are calculated from 
the multi-taper spectrum estimates with sine tapering [11] and 
number of tapers used is 6. 

iii) Multi-peak: We computed MFCC-DCC features for this 
system from the multi-taper spectrum estimates with multi-
peak tapering [12] and number of tapers used is 6. 

iv) Thomson: Here, MFCC-DCC features are calculated 
from the multi-taper spectrum estimates with dpss tapering [9] 
and number of tapers used is 6. 

The number of tapers was set to 6M =  in all verification 
experiments. This selection is based on the preliminary 
GMM-UBM results on the NIST 2002 SRE corpus [3].  

 
To evaluate and compare the performance of the above 

mentioned systems we conducted experiments using telephone 
speech and microphone speech on the extended core-core 
condition of NIST SRE 2010 task. Results are reported for 
five evaluation conditions correspond to det conditions 1-5 (as 
shown in table I) in the evaluation plan [18]. 

 
TABLE I: Evaluation conditions (coreext-coreext) for the NIST 2010 SRE 
task. 
 

TABLE II: Male and female det1 to det5 speaker verification results using  a 
mixture PLDA model for the baseline Hamming window system and multi-
tapers systems, measured  by EER. For each row the best EER is in boldface. 
Positive relative improvement (RI) indicates reduction in EER whereas 
negative RI indicates an increase in EER.  

 EER (%) / RI (%) 

 Base-
line SWCE Multi- 

peak Thomson 

det1 2.5 2.2 / 12.0 1.8 / 28 2.3/8.0 
det2 5.1 4.0 / 21.6 3.8 / 25.5 4.3/ 15.7 
det4 3.9 3.4 / 12.8 3.5 / 10.3 3.8 / 2.6 
det3 3.3 2.8 / 15.2 2.9 / 12.1 3.0 / 9.1 

Female 

det5 3.4 2.9 / 14.7 3.0 / 11.8 3.2 / 5.9 
det1 1.6 1.5 / 6.3 1.2 / 25.0 1.7 / -6.3 
det2 2.7 2.4 / 11.1 2.6 / 3.7 2.9 / -7.4 
det4 2.4 2.3 / 4.2 2.0 / 16.7 2.4 / 0.0 
det3 3.2 3.5 / -9.4 3.1 / 3.1 3.5 / -9.4 

Male 

det5 2.6 2.4 / 7.7 2.5 / 3.8 2.7 / -3.8 

 

TABLE III: speaker verification results using  a mixture PLDA model for the 
baseline Hamming window system and multi-tapers systems, measured by 
normalized minimum DCF (DCFOld). For each row the best DCFOld is in 
boldface. Positive relative improvement (RI) indicates reduction in DCFOld 
whereas negative RI indicates an increase in DCFOld.  

 DCFOld / RI (%) 

 Base-
line SWCE Multi-

peak Thomson 

det1 0.12 0.12/0.0 0.09/25.0 0.12 / 0.0 
det2 0.24 0.20 / 16.7 0.19/20.8 0.22/8.3 
det4 0.20 0.16 / 20.0 0.16/20.0 0.18/10.0 
det3 0.18 0.17 / 5.6 0.15/16.7 0.18/0.0 

Female 

det5 0.16 0.16 / 0.0 0.16 / 0.0 0.17 / 0.0 
det1 0.07 0.06 / 14.3 0.07 / 0.0 0.07 / 0.0 
det2 0.14 0.11 / 21.4 0.12/14.3 0.14 / 0.0 
det4 0.11 0.09 / 18.2 0.09/18.2 0.11 / 0.0 
det3 0.14 0.15 / -7.1 0.15/-7.1 0.16/-14.3 

Male 

det5 0.13 0.13 / 0.0 0.14/-7.7 0.15/-15.4 
 
Table II presents EERs for all the systems and relative 

improvements (RI) by the multi-taper systems compared to 
the baseline system. From Table II it has been observed that 
the Multi-peak multi-taper system was consistently better than 
the baseline system.  The SWCE system does not perform 
well only in det3 (male) case. The Thomson system performs 
well on female data but its performance degrades on male data. 
Tables III and IV depict the normalized minimum DCF 
(DCFOld) and normalized minimum DCF (DCFNew), 
respectively, for all the systems considered in this paper. In 
terms of DCFOld Multi-peak multi-taper method outperform all 
other methods in female, det1 to det5 case but in the case of 
male, det1 to det5 (except det3, when baseline give better 
DCFOld) the performance of the SWCE system is better.  
Compared to baseline system the Thomson system performs 
well only in the female, det2 and det4 cases. 

In terms of DCFNew (as shown in Table IV), SWCE and 
Multi-peak multi-taper systems outperform the baseline and 
the Thomson system in most of the cases. The Thomson 

Condition Task 

det1 Interview in training and test, same Mic. 

det2 Interview in training and test, different 
Mic. 

det3 Interview in training and normal vocal 
effort phone call over Tel channel in test. 

det4 Interview in training and normal vocal 
effort phone call over Mic channel in test 

det5 Normal vocal effort phone call in 
training and test, different  Tel 



system, compared to baseline system, perform well only in 
det2 and det4 cases (both male and female). So after 
observing all the results we can come to a conclusion that the 
multi-taper-based spectrum estimation technique (SWCE and 
Multi-peak) can be an alternative to the Hamming windowed 
spectrum estimation technique to compute MFCC–DCC 
features for speaker verification system.  
 

TABLE IV: speaker verification results using  a mixture PLDA model for the 
baseline Hamming window system and multi-tapers systems, measured by 
normalized minimum DCF (DCFNew). For each row the best DCFNew is in 
boldface.  Positive relative improvement (RI) indicates reduction in DCFNew 
whereas negative RI indicates an increase in DCFNew.  

                         DCFNew / RI (%) 

 Base-
line SWCE Multi-

peak Thomson 

det1 0.40 0.38/5.0 0.34/15.0 0.41/-2.5 
det2 0.67 0.56/16.4 0.56/16.4 0.61/9.0 
det4 0.57 0.50/12.3 0.50/12.3 0.56/1.8 
det3 0.56 0.52/7.1 0.56/0.0 0.59/-5.3 

Female 

det5 0.47 0.48/-2.1 0.52/-10.6 0.53/-12.8 
det1 0.25 0.26/-4.0 0.26/-4.0 0.25 / 0.0 
det2 0.49 0.41/16.3 0.40/18.4 0.45/8.2 
det4 0.37 0.36/2.7 0.32/13.5 0.36/2.7 
det3 0.53 0.51/3.8 0.49/7.5 0.55/-3.8 

Male 

det5 0.46 0.46 / 0.0 0.47/-2.2 0.50/-8.7 
 

V. CONCLUSION 
In this paper we used three multi-taper spectrum estimation 

approaches for low variance MFCC computation and 
compared their performances, in the context of mixture PLDA 
models in gender-independent i-vector space for speaker 
verification, to the conventional single taper technique. 
Experimental results on the telephone and microphone portion 
of the NIST 2010 SRE task indicate that multi-taper methods 
outperform the baseline single taper method. Among the three 
tapers, the multi-peak and the SWCE outperformed the 
Thomson which agrees well with the preliminary GMM-UBM 
results of [3]. The number of tapers was set to 6 according to 
[3] without doing additional optimizations on the i-vector 
speaker verification system. The largest relative 
improvements over the baseline were observed for conditions 
involving microphone speech. Overall, the multi-taper method    
of MFCC feature extraction is a viable candidate for replacing 
the baseline MFCC feature.  
 

VI. ACKNOWLEDGEMENTS 
The work of T. Kinnunen was supported by the Academy 

of Finland (project no. 132129). 
 
 
 
 
 

REFERENCES 
[1] S. Davis and P. Mermelstein, “Comparison of parametric 

representations for monosyllabic word recognition in continuously 
spoken sentences,” IEEE Trans. Acoustics, Speech, and Signal 
Processing, vol. 28, no. 4, pp. 357–366, August 1980. 

[2] Y. Hu and P. Loizou, “Speech enhancement based on wavelet 
thresholding the multitaper spectrum,” IEEE Trans. On Speech and 
Audio Proc., vol. 12, No. 1, pp. 59-67, January 2004. 

[3] T. Kinnunen, R. Saeidi, J. Sandberg, M. Hansson-Sandsten, “What 
Else is New Than the Hamming Window? Robust MFCCs for Speaker 
Recognition via Multitapering”,  Proc. Interspeech 2010, pp. 2734--
2737, Makuhari, Japan, Sept. 2010. 

[4] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” in IEEE Trans. on Audio, 
Speech and Language Processing, vol. 19, No. 4, pp. 788-798, May, 
2011.  

[5] P. Kenny, “Bayesian speaker verification with heavy tailed priors,” in 
Proceedings of the Odyssey Speaker and Language Recognition 
Workshop, Brno, Czech Republic, Jun. 2010. 

[6] M. Senoussaoui, P. Kenny, N. Brummer, E. de Villiers, and P. 
Dumouchel, ‘‘Mixture of PLDA models in I-vector space for gender 
independent speaker recognition,’’ to appear in the Proceed. of 
INTERSPEECH 2011, Florence, Italy, August 2011. 

[7] S. M. Kay, Modern Spectral Estimation. Englewood Cliffs, NJ: 
Prentice-Hall, 1988. 

[8] J. Sandberg, M. Hansson-Sandsten, T. Kinnunen, R. Saeidi, P. 
Flandrin, and P. Borgnat, “Multitaper estimation of frequency-warped 
cepstra with application to speaker verification,” IEEE Signal 
Processing Letters, vol. 17, no. 4, pp. 343–346, April 2010. 

[9] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. of 
the IEEE, vol. 70, no. 9, pp. 1055–1096, Sept 1982. 

[10] K. S. Riedel and A. Sidorenko, “Minimum bias multiple taper spectral 
estimation,” IEEE Trans. on Signal Proc., vol. 43, no. 1, pp. 188–195, 
Jan 1995. 

[11] M. Hansson-Sandsten and J. Sandberg, “Optimal cepstrum estimation 
using multiple windows,” in Proc.ICASSP 2009, pp. 3077–3080, 
Taipei, Taiwan, April 2009. 

[12] M. Hansson and G. Salomonsson, “A multiple window method for 
estimation of peaked spectra,” IEEE T. on Sign. Proc., vol. 45, no. 3, 
pp. 778–781, Mar. 1997. 

[13] D. Garcia-Romero, and Carol Y. Espy-Wilson, “Analysis of i-vector 
length normalization in speaker recognition systems,” in Proceedings 
of Interspeech, Florence, Italy, Aug. 2011. 

[14] N. Brümmer, and E. de Villiers, “The speaker partitioning problem,” in 
Proceedings of the Odyssey Speaker and Language Recognition 
Workshop,  Brno, Czech Republic, June, 2010. 

[15] J. Villalba, and N. Brümmer, “Towards fully Bayesian speaker 
recognition: Integrating out the between speaker covariance,” in 
Proceedings of Interspeech, Florence, Italy, Aug, 2011. 

[16] F. Harris,”On the use of windows for harmonic analysis with the 
discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, 
pp. 51-84, January 1978. 

[17] D. A. Reynolds,  T. F. Quatieri, and R. B. Dunn, “Speaker verification 
using adapted Gaussian mixture models,” Digital Signal Processing, 
vol. 10, no. 1, pp. 19-41, Jan, 2000. 

[18] National Institute of Standards and Technology, NIST Speaker 
Recognition Evaluation, http://www.itl.nist.gov/iad/mig/tests/sre/. 


