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In speaker verification research, objective performance benchmarking of listeners and auto-
matic speaker verification (ASV) systems is of key importance in understanding the limits of
speaker recognition. While the adoption of common data and metrics has been instrumental
to progress in ASV, they have two major shortcomings. First, the utterances lack intentional
voice changes imposed by the speaker. Second, the standard evaluation metrics focus on av-
erage performance across all speakers and trials. As a result, a knowledge gap remains in how
the acoustic changes impact recognition performance at the level of individual speakers. We
address the limits of speaker recognition in ASV systems under voice disguise using a linear
mixed effects model to analyze the impact of change in long-term statistics of selected features
(formants F1-F4, their bandwidths B1-B4, F0 and speaking rate) to ASV log-likelihood ratio
(LLR) score. The correlations between the proposed predictive model and the LLR scores
are 0.72 for females and 0.81 for male speakers. As a whole, the difference in long-term F0
between enrollment and test utterances was found to be the individually most detrimental
factor, even if the ASV system uses only spectral, rather than prosodic, features.
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I. INTRODUCTION

The task of speaker recognition — recognizing
persons from their voices (Hansen and Hasan, 2015;
Schmidt-Nielsen and Stern, 1985) — can be performed
by listeners and automatic systems. A major source of
performance degradation of automatic speaker verifica-
tion (ASV) systems is condition mismatch between the
test and the reference, or enrollment, utterances. The
standard datasets used in the field have been primarily
designed to address performance factors related to chan-
nel and environment (Doddington et al., 2000; Lei and
Hansen, 2016), text-dependency (Garofolo et al., 1993;
Larcher et al., 2014), and duration (Lee et al., 2015) to
name a few. Interestingly, however, performance degra-
dation due to within-speaker variation has received far
less attention even though it has a strong impact on the
accuracy of ASV systems (Kahn et al., 2010). Within-
speaker variation arises from the speaker and can in-
clude changes in pronunciation, speaking style, short-
term health condition, emotion, or vocal effort. Vocal
effort was addressed in one of the National Institute of
Standards Technology (NIST) speaker recognition evalu-
ation (SRE) campaigns (Greenberg et al., 2011) involving
the Lombard reflex, which refers to the automatic raising
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of one’s voice under noisy environments for the purpose
of increasing intelligibility.

Even if most ASV systems utilize methods to nor-
malize within-speaker variation — within-class covari-
ance normalization (Hatch et al., 2006) and probabilistic
linear discriminant analysis (PLDA) (Prince and Elder,
2007)) being examples — they have two major limita-
tions. First, because of training data limitations, they
model combined variations in speaker, channel, content,
duration, and other factors; these variations are lumped
into combined session variation, making it difficult to
disentangle speaker-related and other effects. Further,
as noted by Ajili (2017), evaluation corpora are often
more focused on inter-speaker effects and contain rela-
tively few, or too homogeneous, recordings of the same
target speaker. The second limitation of most prior stud-
ies is the extent of within-speaker variation that is con-
sidered; ASV systems are rarely subjected to real stress
tests involving extreme within-speaker variation, in spe-
cific, variations that are intentionally introduced to avoid
detection. Indeed, many ASV studies make the implicit
assumption that the speaker is either cooperative (wants
to be recognized as him or herself) or is unaware of being
subjected to ASV testing. The former holds in authen-
tication applications (such as online banking) and the
latter in screening and search applications, such as the
monitoring of telephone calls and targeted voice search
from the Internet. Under the ‘cooperative or unaware’
situations, the speaker is less likely to deliberately modify
his or her voice (Hansen and Hasan, 2015; Rodman and
Powell, 2000). Changes in vocal effort and short-term
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health conditions are examples of non-deliberate varia-
tion.

Because of these shortcomings, there is currently
no detailed picture of the detrimental effects of delib-
erate within-speaker voice modifications to ASV accu-
racy. Voice acting, disguise and mimicry (González Hau-
tamäki et al., 2016; Leemann and Kolly, 2015; Zhang,
2012) are examples of deliberate voice modifications that
can substantially impact ASV accuracy. We focus on
disguise, the act of purposeful attempt to conceal one’s
identity. As a motivating quantitative example, in our re-
cent study (González Hautamäki et al., 2016) the equal
error rate (EER) of a standard i-vector PLDA system
was increased from 5.1 % to 31.7 % on high-quality clean
speech data when everything else was held constant but
normal (collaborative) test utterances were replaced with
disguised versions involving deliberate ‘age’ modification.
Observing such dramatic ASV performance degradations
even under highly idealized conditions suggests that ASV
systems are potentially far more sensitive to purposefully
enforced within-speaker variation than one may expect.
Detrimental effects of other forms of within-speaker vari-
ation and disguise have been reported in a number of
independent studies other that our work (reviewed in
Section II), in addition to effects due to physical con-
strictions such as handkerchiefs (Zhang and Tan, 2008)
and face garments (Saeidi et al., 2016). These studies
have demonstrated ASV performance degradations un-
der a variety of conditions but few have focused on ex-
plaining it in terms of acoustic within-speaker variation
resulting from disguise; this is precisely our aim. We ar-
gue that understanding the cause of such performance
degradation can be helpful to improve ASV technology
and understand its limits.

The primary aim of ASV research is to improve pre-
dictors — namely, classifiers that predict whether to ac-
cept an identity claim based on a test utterance (with
a priori unknown speaker identity) and a reference (en-
rollment) utterance with a known speaker identity. We
instead aim to explain the behavior of a given ASV sys-
tem on evaluation data with known ground-truth speaker
labels of all utterances. Our study expands the methodol-
ogy toolbox of ASV evaluation towards an interpretative
framework beyond the commonly used evaluation met-
rics (such as equal error rate) that provide no further
insight beyond a numerical summary. As illustrated in
Fig. 1, we present methodology to explain ASV system
behavior in terms of within-speaker acoustic variation.
In particular, we want to relate variation in long-term
statistics of interpretable segmental (formants and their
bandwidths) and prosodic (F0 and speaking rate) fea-
tures to the variation in the ASV system’s output score.
The ASV, a data-driven system constructed through ma-
chine learning techniques, is effectively treated as a ‘black
box’. Thus, in principle, the methodology can be applied
to analyze the behavior of any ASV system.

The methodology selected to explain ASV score vari-
ation in terms of acoustic variation uses the linear mixed
effects model (Bates et al., 2015). Linear mixed effects

models are a class of powerful statistical techniques to
model grouped data with a dependency structure. These
models have been around for quite a while via the de-
velopment of the restricted maximum likelihood (REML)
technique (Patterson and Thompson, 1971) but have re-
ceived thus far little attention within the speech technol-
ogy field.

II. RELATED WORK

Our work resides in the broad landscape of within-
speaker style variation study with a focus on ASV perfor-
mance degradation. Humans are highly flexible at adapt-
ing their speaking style to the needs of a given commu-
nication environment. Examples of spontaneous speech
style variation due to conversational telephone speech and
interview speech are addressed in the context of NIST
SREs data and style variation across different TV (Ajili,
2017) and internet-video (Chung et al., 2018) interviews
crawled from YouTube. Additionally, the impact of vo-
cal effort ranging from whisper (Vestman et al., 2018) to
shout (Hanilci et al., 2013) and scream (similar to shout
but lacking phonemic structure) (Hansen et al., 2017)
has been addressed in many studies. Other examples
include acted speech by naive or professional (Pietrow-
icz et al., 2017) speakers, pet-directed speech (Park et al.,
2018), and the impact of varied speech rate (Dellwo et al.,
2015). Finally, the voice disguise effect has been ad-
dressed in terms of faked foreign accents (Leemann and
Kolly, 2015), raised or lowered pitch (Zhang, 2012), and
relative age category modification (González Hautamäki
et al., 2017). Disguises defined in this way are no differ-
ent from acted speech: the goal is to sound different from
one’s own voice.

Even if the individual studies cannot easily be com-
pared due to the adoption of different corpora, experi-
mental protocols, methods, and performance metrics, the
consensus is that within-speaker style variation has a pro-
found impact on ASV performance. However, it is not
easy to relate changes in acoustic features to changes in
ASV performance. Most of the prior work focuses on ei-
ther the detrimental effect of ASV system resulting from
speech style change or changes in acoustic features. The
novelty of this work relies in linking these two through
linear mixed effects models.

III. RESEARCH DATA AND STUDY AIMS

A. AVOID corpus

Our research data consists of a corpus of modal and
disguised speech that is called AVOID (Age-related Voice
Disguise) (González Hautamäki et al., 2018). The cor-
pus, now publicly available (González Hautamäki et al.,
2018), contains 60 speakers: 31 females and 29 males
between 18 to 73 years. The read material consists of
13 sentences (11 Finnish and 2 English) recorded on two
sessions for a total of 78 sentences per speaker (González
Hautamäki et al., 2017, Appendix A). The speakers were
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FIG. 1. Procedure for the acoustical comparison of two utterances and assessment with log-likelihood ratios (LLR). The long

term features are extracted from the trial utterances and then represented by summarized statistics. The features are compared

and the absolute difference is estimated to represent the acoustic variation of the trial. This variation is then used to model

the LLR score associated with the trial. Automatic speaker verification (ASV) systems in this study include the i-vector and

x-vector, both with probabilistic linear discriminant analysis (PLDA) scoring back-end.

TABLE I. Our mixed effect models uses a total of 15 predictor

features, formed from the following combinations of features

and their long-term statistical summary measures.

Acoustic features, f Summary statistic, ϕ(·)

Formant frequencies F1 to F4 mean

and bandwidths [Hz] B1 to B4

Fundamental frequency [Hz]
F0 mean

std. deviation

median

mode

min

max

Speech rate [syllables/s] sr —

instructed to read the texts both in their modal voice and
in two disguise styles, intended old and intended child.
These style modifications are common to all speakers,
but are flexible enough to allow speakers to interpret their
age-related stereotypes. Therefore, AVOID is a dataset
of acted speech produced by naive speakers. According
to post-hoc perceptual evaluation (González Hautamäki
et al., 2018) not all the produced age stereotypes are
convincing to listeners but they are sufficient in increas-
ing ASV error rates substantially, despite idealized clean
data conditions.

B. Methodology - the high-level view

In our previous work (González Hautamäki et al.,
2018, 2017), we used the AVOID corpus to analyze the

degradation of ASV (and listener) accuracy due to dis-
guise. When a speaker is enrolled (trained) with a modal
voice and tested with either of the two disguised voices,
the ASV system score lowers substantially in contrast to
modal-modal comparison and causes the ASV system to
reject the speaker with a high probability (González Hau-
tamäki, 2017).The idea of the present study is to provide
explanation for the target speaker LLR score in terms of
acoustic variation between the enrollment and test utter-
ances. To this end, a given ASV system, g, is treated as
a black-box measurement device that outputs the LLR
score (response variable, y) between the two speech ut-
terances U1 and U2,

y = g(U1, U2|θasv), (1)

represented by parameters θasv that encapsulate all the
acoustic front-end and data-driven components of the
ASV system. The higher the value of y, the more confi-
dent the ASV system is that the speaker identities of U1

and U2 agree. In addition, we extract acoustic distance
(predictor variable, x) between U1 and U2, as

x = |ϕ(f(U1))− ϕ(f(U2))|, (2)

where f(·) denotes a short-term feature extractor to con-
vert an utterance into a sequence of scalar features, while
ϕ(·) denotes a fixed summary statistics operator. For ex-
ample, if f is an F0 extractor, and ϕ is the sample mean,
x is the distance of the average F0 values in U1 and U2.
The lower the x, the more acoustically similar the two
utterances are.

By including several features f(·) with meaningful
combinations of ϕ(·), we obtain a total of D acoustic
distances x1, . . . , xD for any pair of utterances. Our se-
lected features are summarized in Table I and details are
presented in Section VI.
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Methodology-wise, our approach bears resemblance
to quality-based score calibration such as in the work of
Mandasari et al. (2015). Quality-based calibration ad-
justs the ‘default’ speaker similarity score produced by an
ASV system towards specific operating conditions with
the help of statistics such as signal-to-noise ratio (SNR)
or log duration; these statistics are computed from the
test and/or the enrollment utterances. These statistics
are typically called quality features. Besides the pre-
dictive vs. explanatory aspect, our work is differentiated
from quality calibration models in terms of the statistical
model. The quality-calibration models assume that the
trial-list of scores are independent- and identically dis-
tributed. This assumption is clearly violated because the
same speaker appears multiple times as an enrollment
speaker or a test-speaker, so there is a group structure
defined by the speaker as a random variable in the trial
list. If the group structure is not modeled explicitly, it
will cause the model to underfit. If the task is to pre-
dict as accurately as possible, as in quality calibration
literature, the underfit will not lead to wrong results, al-
though it will not lead to the best possible performance.
However, if the task is inferential as is the case here, the
conclusions can be unreliable unless the group structure
is accounted for (Bates et al., 2015).

C. Study aims and outlook

In brief, this study aims at exploring the impact
of changes in acoustical features to the performance of
ASV systems scores considering the variations due to
the speaker effect. The remainder of this paper is or-
ganized as follows. Section IV provides an overview of
the mixed effects model. We provide the details of our
ASV systems (to obtain y) in Section V and the details
of predictor variables (to obtain x) in Section VI. The re-
sults are represented in two sections. First, Section VII
examines the acoustic features individually, and analyzes
the variation due to voice modifications. Second, Sec-
tion VIII presents the results of mixed effect modeling.
Specifically, we begin with an analysis of the effect of
voice condition (modal and disguise voices) on variable y
(LLR scores). We then explore the acoustic feature dif-
ferences as predictors by ranking them based on the ex-
planatory information that they add to the model. The
model ‘goodness’ is evaluated in terms of the correlation
between the fitted values and the modeled variable. In-
ferring the model from acoustical differences, individually
and in groups, aims to learn the speaker-dependent and
speaker-independent variability contained in the evalua-
tion of speaker verification.

IV. LINEAR MIXED EFFECTS MODEL

The linear mixed effects model (Bates et al., 2015)
is a class of regression techniques used to model grouped
data. Here, the ASV system’s output scores LLRs form
our observations, and we explain them in terms of acous-
tic and prosodic within-speaker variations. The gen-

eral idea in regression models is to model a response
y or dependent variable, with the focus on how other
known variables, predictors x = (1, x1, . . . , xD), ex-
plain the variation of y. The goal in the estimation
is to find the values for the parameters (coefficients)
β = (β0, β1, . . . , βD). The coefficient β0 is known as the
intercept or bias. The coefficients of each predictor are
unknown fixed constants that are common to all obser-
vations. As none of these variables are stochastic, they
are known as fixed effects. When we add a stochastic
predictor, we arrive at a random intercept linear mixed
effects model (Bates et al., 2015)

yij = βtxij + bi + εij , (3)

where the dependent variable, yij , is the ASV score for
trial j and speaker i, βtxij is the fixed effect part, bi
is the per-speaker random effect and εij is the residual
variation. The assumption for a random speaker effect
and the residual error is that they are independent of
each other and follow a normal distribution:

bi ∼ N (0, σb
2)

and

εij ∼ N (0, σ2).

Note that by setting bi = 0,∀i, Eq. (3) reduces to the
classical linear regression model as a special case.

The purpose of modeling the response variable is to
estimate the importance of each predictor from the ob-
served data. For example, the sign of the weight βd re-
veals whether the effect of predictor xd is to decrease or
increase the value of the dependent variable. In the case
of studying same speaker or genuine trials, as done here,
a decrease in the LLR score means that it is easier to
misclassify such a trial as a different speaker trial. The
larger the decrease, the larger the negative effect on the
ASV system’s performance.

The residual error models variations that are not ex-
plained by the predictors and it is defined as the dif-
ference between the response variable and the expected
fitted value. An additional part of linear mixed effect
models is the random effect, bi. This corresponds to an
effect of repeated measurements that can be correlated
because they belong to the group factor. Assuming there
is more than one trial (observation) per speaker, mea-
surements from different trials are grouped per speaker
to model between-speaker variance.

For our data, the voice condition is considered as an
explanatory variable or fixed effect across the speakers
and spoken utterances. We assume that there will be
different ASV scores for different voice conditions from
the same speaker. The model can reflect these individual
differences by assuming different random intercepts for
each speaker. In addition to by-speaker variation, we
expect a ‘random’ variation between different sentences
uttered by the same speaker.
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V. AUTOMATIC SPEAKER VERIFICATION SYSTEMS

We model the LLR scores of two ASV systems
based on different speaker embedding methods, namely i-
vectors (Dehak et al., 2011) and x-vectors (Snyder et al.,
2018) to demonstrate the generality of our interpretative
framework. At the time of writing, the i-vector can be
said to have reached a de facto status as a methodology
that is widely-adopted by the research community, while
the x-vector is a promising emerging method that is rep-
resentative of the current research trends and leverages
from deep neural networks.

A. I-vector and x-vector systems

Both ASV systems use mel-frequency cepstral coef-
ficients (MFCCs) as input features and PLDA back-ends
(Prince and Elder, 2007) for speaker similarity scoring.
The main difference between the types of embeddings
is in unsupervised generative training through Gaussian
mixture modeling (i-vector) vs. speaker-discriminative
training through deep neural networks (x-vector) and
adoption of a longer temporal context in the x-vector
system through a time-delay neural network model.
Implementation-wise, the two systems are unrelated: the
i-vector system is our in-house implementation that is
used in our previous studies, while the x-vector system
that is based on the Kaldi toolkit (Povey et al., 2011) is
public-domain code.

For the i-vector system, a 54-dimensional feature vec-
tor consisting of 18 MFCCs are extracted from 30 ms
Hamming windowed frames. The ∆ and ∆2 features
are appended to RASTA-filtered MFCCs. No speech ac-
tivity detector (SAD) is used. Gender-dependent uni-
versal background models (UBMs) of 512 diagonal co-
variance Gaussians are trained using the expectation-
maximization (EM) algorithm (Dempster et al., 1977).
A simplified PLDA with 200-dimensional speaker sub-
space is used in scoring.

The x-vector system uses 24 MFCCs extracted from
25 ms frames that are mean-normalized over a sliding
window of three seconds. ∆ features are not included. An
energy-based SAD is used to discard non-speech frames.
The system implementation is the Kaldi recipe with
NIST SRE 16 development data models for LDA and
PLDA.

B. Performance of the ASV systems

Before proceeding with our mixed effects modeling,
we report the accuracy of our ASV systems on the stan-
dard protocol of the AVOID corpus in Table II. The re-
sults are presented in terms of equal error rate (EER),
which corresponds to equal miss and false alarm rate.

The x-vector system outperformed the i-vector sys-
tem, as expected. Importantly, however, neither system
was immune to the disguised voice conditions. For the
i-vector PLDA system, EER increases four- and six-fold
for females and six- and nine-fold for males for the in-

TABLE II. ASV performance in terms of EER (%) per gender

and voice condition of the test utterance. Target speakers are

enrolled with modal voice and tested with three different voice

conditions.

Female Male

Voice condition i-vector x-vector i-vector x-vector

Modal 5.68 1.73 2.96 1.59

Intended old 24.23 17.12 18.78 15.12

Intended child 32.90 17.62 29.06 25.46

tended old and the intended child conditions respectively.
The x-vector system performance, though more accurate
in the modal voice condition, experiences larger relative
degradation under disguise: 10-fold for females and 10-
to 16-fold for males. These degradations caused by in-
tentional voice modifications of the speaker prompts us
to analyze the distribution of LLR scores to find a model
that could explain the within-speaker variability.

C. Dependent variable: Same speaker scores

The model concerns genuine (same speaker) trials
only, which are those scores resulting from pairwise utter-
ance comparisons with matched speaker identities. The
LLR scores are calibrated using logistic regression with a
target prior of 0.5 and false alarm and miss costs set to
1. Focal toolkit (Brümmer et al., 2007) was used for the
calibration, which was trained using the modal voice data
and applied to the scores of the three conditions. Fur-
ther analysis consider the scores pooled over the voice
conditions.

VI. PREDICTOR VARIABLES: ACOUSTIC AND

PROSODIC FEATURES

Among the possible alternatives to be used as predic-
tor variables, we focus on short-term and prosodic fea-
tures that are used in speaker characterization studies.
We require the features to be easy to extract automati-
cally because the AVOID corpus lacks phone-level tran-
scription. Formants and their bandwidths are a natu-
ral choice for the short-term features for two reasons.
First, they may reflect articulatory changes across the
modal and disguised utterances of a given speaker. Sec-
ond, change in the short-term spectral envelope (as used
by the ASV systems) impacts formants, and we there-
fore expect them to form reasonable predictors of the
LLR score. Concerning prosody, there is a vast body
of literature ranging from frame-level F0 characteriza-
tion (Mary and Yegnanarayana, 2008), stylized (Adami,
2007; Shriberg et al., 2005) and polynomially modeled
F0 contours (Dehak et al., 2007), along with energy and
timing- or rhythm-related features (Ajili et al., 2018;
Dellwo et al., 2012). A number of studies have addressed
the impact of such parameters in a forensic context (Lee-
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mann et al., 2014; Moez et al., 2016). In this study, we
focus on two important prosodic features: characteriza-
tion of the frame-level F0 (i.e. without modeling their
temporal envelopes), and speech rate. Both are moti-
vated by noting the ease by which they are altered even
by naive actors. Further, the dependency of the short-
term spectral envelope on F0 (in particular, high F0)
is known (El-Jaroudi and Makhoul, 1991), making F0-
related features another potentially strong predictor of
ASV system’s LLR score.

The raw acoustic measurements — formants F1 to
F4 and F0 — are the same as those in our earlier study
(González Hautamäki et al., 2017), while speech rate and
formant bandwidths were added for this study. All our
selected features are frequency measurements, so that the
absolute difference operator | · | to produce a distance
measure in the same measurement unit (Hz) has a trans-
parent meaning.

A. Formant frequencies and bandwidths

We extract the first four formants, F1 to F4, and
their bandwidths, B1 to B4, with the aid of the Burg algo-
rithm (Childers, 1978) in Praat (Boersma and Weenink,
2015). We extract the formants from the full utterance
using a window frame length of 15 ms. The maximum for-
mant frequency was set at 5 kHz. Raw formant measure-
ments are known to be susceptible to a number of mea-
surement errors, such as due to a breathy voice or high
F0. In our estimations, we noted many of the formant
distributions to be bi-modal, particularly in the disguised
voices. In our earlier study (González Hautamäki et al.,
2017, Appendix B), we devised a bi-Gaussian model fit-
ted to raw F1-F3 measurements (F4 was retained as-is),
which is adopted in this study as well. The mean of
the lower Gaussian was selected as the long term repre-
sentative formant mean of the utterance. The formants
bandwidth, B1 to B4, per utterance are represented by
their mean value without further processing.

B. Fundamental frequency

We used the autocorrelation-based F0 tracker
(Boersma, 1993) in Praat (Boersma and Weenink, 2015)
to extract F0 for each utterance every 15 ms. We used
gender-specific F0 range settings: [75, 400] Hz for male
and [100, 600] for female. Due to the high pitched ‘child’
voices, we set the F0 search ranges to be wider than one
would typically apply for modal speech.

Previously, we used the average F0 over all frames
as a scalar summary of a specific utterance and stud-
ied the relative change in the average F0 values between
normal and disguised variants of the same utterance spo-
ken by the same speaker (González Hautamäki et al.,
2017). In this study, we revise our F0 analysis in two
respects. First, we quantify the extent of possible F0
doubling and halving errors with the aid of a log-normal
tied mixture model (Sönmez et al., 1997). The model
fits a three-mode mixture distribution to the log-F0 val-

TABLE III. Mean percentages of F0 halving, F0 doubling,

and selected F0 presented by gender and voice condition.

Halved Doubled F0

Female Modal 0.32 0.24 99.44

Intended old 0.68 0.34 98.98

Intended child 0.41 0.10 99.49

Male Modal 0.002 0.15 99.85

Intended old 0.08 0.25 99.67

Intended child 0.29 0.07 99.64

ues using an expectation-maximization (EM) algorithm
(Dempster et al., 1977). In this model, the lowest and
highest modes are assumed to correspond to F0 halving
and doubling errors respectively, while the middle mode
represents the correct F0 values. See Fig. 2 for an ex-
ample of the original F0 distributions by voice condition.
We use the mean of the middle mode to select the raw F0
values that will be the feature vector for the utterance.
Table III depicts the mean percentages for the F0 halv-
ing, doubling, and correct values per gender and voice
condition.
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FIG. 2. (Color online) An illustration of the F0 distribution

with log-tied-mix-model fit. This figure depicts the distribu-

tion with F0 halving and doubling for the female speakers

in the three voice conditions (modal, intended old, and in-

tended child) for utterance S07 (in Finnish): “Pohjantuuli ja

aurinko väittelivät, kummalla olisi enemmän voimaa, kun he

samalla näkivät kulkijan, jolla oli yllään lämmin takki” (in

English: The North Wind and the sun were disputing which

was the stronger when a traveller came along wrapped in a

warm cloak.)

Second, we adopt the following simple statistics be-
sides the average value: median, standard deviation,
mode, maximum, minimum. The median is similar to
the mean but is less sensitive to outliers, such as those
that are potentially caused by halving or doubling errors
(Farrús et al., 2007). Similar to the statistical mean and
median, the mode brings important information about
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the F0 feature. Even if the mode is the same as the
mean and median for normally distributed data, it may
be very different in highly skewed distributions, which
we may expect in extreme variations of F0 for certain
speakers. Minimum and maximum F0 values are ana-
lyzed to consider the extreme and lowest bounds that
a speaker reaches in certain utterances for the intended
voice. The summary statistics were computed from the
halving/doubling-compensated values.

C. Speech rate

We measure speech rate using a PRAAT implemen-
tation (De Jong and Wempe, 2009) that automatically
estimates the speech rate (number of syllables / total
time) by detecting syllable nuclei (Wang and Narayanan,
2007) and pause duration. The algorithm considers all
peaks above a certain threshold (median intensity of the
speech file) as possible syllable nuclei. To discard peaks
within each syllable, the intensity measure of the utter-
ance is used to discard consecutive peaks that do not
differ by at least 2 dB in intensity. Peaks that corre-
spond to unvoiced segments according to pitch contour
are discarded. In this way, speech rate is calculated au-
tomatically without the need for transcriptions.

VII. RESULTS: MEASURING FEATURE VARIATIONS

The acoustic differences between the trial utterances
are represented by differences of the summary statistics
between enrollment and test utterances of each speaker.
We visualize the differences in F0 statistics as boxplots
in Figures 3 A and B. As expected, the mean, median
and mode of F0 have similar variations. The standard
deviation (SD) and minimum F0 indicate less variation,
while the maximum F0 indicates the widest variation,
especially for the male speakers. A one-way analysis of
variance (ANOVA) (Casella and Berger, 2002) was con-
ducted to compare the effect of the voice condition and
the acoustic features summary statistics differences. A
significant effect of voice condition and features differ-
ences was found with p < 0.001. Post-hoc comparison
using Tukey’s honest significant difference (HSD) test at
95 % significance level indicates greater differences be-
tween modal and intended child voices. An effect size
η2 = 12 % can be considered a medium size, based on
Cohen’s guidelines (Cohen, 1988).

Differences in speech rate were also inspected and
indicateed only small variations. Our speech data con-
sists of short utterances with a small number of sylla-
bles. The differences between several renditions of the
same utterance produced clear differences for few speak-
ers. Nevertheless, speech rate has been studied as a cor-
relate of vocal age disguise (González Hautamäki et al.,
2017; Skoog Waller et al., 2015; Waller and Eriksson,
2016) and is worth considering in the model. Specifically,
speakers intending to sound older tend to decrease their
speech rate, while speakers attempting to sound younger
increase the speech rate.

The differences in formant frequencies and band-
widths were also inspected but visualizations did not pro-
duce consistent patterns that were associated with the
voice conditions and speaker gender. Nevertheless, the
variations between speakers is noticeable and were thus
considered in the model of LLR scores. For example, Fig-
ure 4 depicts the formant variations, F1 and F2, for the
vowel space of two speakers with low LLR scores. The
ellipses represent the vowel space by voice condition. In
comparison to the modal voice, the vowel spaces for dis-
guised voices, are larger and shift downwards for the male
speaker; for the female speaker, the vowel space for in-
tended old voice is smaller and shift downwards; and the
intended child’s vowel space is larger and shift upwards.
The formants variations are speaker -dependent and we
can expect the vowel space to variate for every speaker
too.

VIII. RESULTS: MIXED EFFECTS MODEL

We performed a statistical analysis to model the
voice disguise effect on LLR scores. In Subsection VIII A,
we analyze the calibrated LLR scores, our dependent
variable, its distribution, and the effect caused by voice
condition (modal, intended old, intended child). This
analysis describes the effect of the voice condition and
the variation introduced by the speaker effect. In Sub-
section VIII B, we explore how the change of the selected
acoustic features explains the LLR score. The resulting
model parameters are presented by the voice condition
for comparative purposes, although voice condition is not
included as fixed factor.

A. Effects of voice disguise on LLR scores

We first investigate whether the dependent vari-
able (LLR score) is approximately normally distributed,
which is an assumption in our model. This was verified
by means of density plots and by quantile-quantile plots
that should approximate a straight line. Through visual
inspection, we concluded that even if the trials do not
follow perfect normality, the assumption is reasonable.
We therefore proceed to model the voice disguise effect
in our LLR scores. We use the lme4 package (Bates et al.,
2015) to fit the linear mixed effects model.

For the next analysis, the voice condition is treated as
an explanatory variable or fixed effect across the speakers
and the spoken utterances. We can assume that the LLR
scores vary for different voice conditions across speakers.
The model can reflect these individual differences by as-
suming different random intercepts for each speaker. In
addition to by-speaker variation, we expect a “random”
variation between different sentences uttered by the same
speaker. Speakers and utterances were then treated as
random effects for the fixed effect of the voice condition.
Table IV presents the parameters of the model, intercept
and slopes for the linear model, for the voice condition
effect on i-vector LLR scores. Results with x-vector LLR
scores are included in the supplementary material1.
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FIG. 3. Female (A) and male (B) speakers’ F0 differences of summary statistics between trials’ utterances presented by voice
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FIG. 4. (Color online) An example of vowel space variation for a female (A) and male (B) speaker presented for modal, intended

old and intended child voice conditions. The speakers were selected based on their low LLR scores for both i-vector PLDA and

x-vector PLDA.

The standard deviation (SD) for random effects is a
measure of how much variability in the dependent mea-
sure there is due to speakers and utterances. A similar
variability by-speaker and by-sentence can be observed.
Further, the variation between the disguised voices is sim-
ilar for both conditions in the by-speaker analysis (for
females in the i-vector system SD = 2.84 and 2.83). The
residual, which corresponds to the variability that is nei-
ther due to speakers nor utterances, can be considered
as an indication that each speakers uttered sentence has
some factors that affect the ASV system score and are
outside of this model. This is one motivation to include
acoustical measures as fixed effects later on.

The coefficient for the intended old voice is the slope
for that voice condition. For female speakers, for ex-
ample, the coefficient −5.97 means that changing from
modal to intended old voice causes the LLR score to go

down by 5.97 units. In other words, the LLR score is
lower in the intended old voice than for the modal voice
and is even lower for the intended child voice (−8.39 rel-
ative to modal voice). So, from the speakers’ point of
view, the child voice is a more effective disguising strat-
egy than the old voice role. Similar effects are observed
for male speakers in both ASV systems.

We created a model without the effect of the
voice condition on the ASV scores and compared it to
the model that has that effect to analyze its impor-
tance. This can be performed using a standard like-
lihood test ANOVA. The Akaike information criterion
(AIC) (Akaike, 1974) value was used to evaluate both
models and identified the model with better fit. The
AIC value decreases with better models. Considering the
i-vector system’s scores model results (See Table IV), we
found that the voice condition affected the LLR score for
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TABLE IV. Summary of the results for the mixed effects model of voice condition for calibrated i-vector ASV system’s scores

Female Male

Random effects:

Groups Voice Variance Std.Dev. Variance Std.Dev.

speaker (Intercept) 0.97 0.98 4.25 2.06

Old 8.09 2.84 13.36 3.65

Child 8.03 2.83 35.94 5.99

sentence (Intercept) 2.05 1.43 2.43 1.56

Old 0.29 0.54 0.09 0.30

Child 1.28 1.13 0.36 0.60

Residual 6.37 2.53 7.50 2.74

Fixed effects:

Estimate Std. t Estimate Std. t

Error value Error value

(Intercept) 4.42 0.46 9.77 7.03 0.60 11.82

Old −5.97 0.56 −10.63 −8.04 0.71 −11.29

Child −8.39 0.62 −13.44 −11.02 0.62 −9.64

female speakers (χ2(12) = 1328, p < 2.2e−16), lowering
it by about 5.97±0.56 (standard errors) for the intended
old voice and lowering about 8.39±0.62 for the intended
child voice. For male speakers, the variation by-speaker
is higher than the by-sentence for the voice conditions,
with a SD for the intended old voice of 3.65 and 5.99
for the intended child. The voice condition affected LLR
score (χ2(12) = 1623, p < 2.2e−16), lowering it by about
8.04 ± 0.71 (standard errors) for the intended old, and
lowering even further 11.02± 0.62 for the intended child.

The voice condition effect on LLR scores is in line
with the degradation in EER as displayed in Table II. In
the subsequent analysis, we do not include the effect of
voice condition, as a fixed effect, to explain the variation
in LLR score. In this manner, we seek to understand how
the acoustical features’ differences can be associated to
the trials’ LLR scores without the explicit information of
the voice condition.

B. Effects of acoustical variations on LLR scores

We performed a linear mixed effects analysis of the
relationship between LLR scores, and the fixed effects:
absolute differences of F0 summary statistics (mean,
standard deviation, median, mode, minimum, and maxi-
mum), mean difference of formant frequencies, F1 to F4
and their bandwidths, B1 to B4, and difference of speech
rate (syllables/second). Only the speakers were treated
as random effects because the variance corresponding to
sentences was small.

An important objective of this analysis is to iden-
tify the change of acoustical features that best explains
the LLR score associated with the trial’s enrollment and
test utterances. We fitted a model by aggregating each

TABLE V. Coefficients (β) for the linear mixed effect model

for female speakers presented by voice condition. Predictors

for i-vector and x-vector same speaker scores: difference of

mean F0, F3, and B4 between genuine trial utterances.

i-vector

Modal Old Child Pooled

β0 5.90 0.97 −0.15 4.29

Feature

dmeanF0 (β1) −0.11 −0.04 −0.05 −0.093

dmeanF3 (β2) −0.003 −0.005 −0.003 −0.007

dmeanB4 (β3) −0.02 −0.006 −0.002 −0.008

x-vector

β0 9.79 1.67 1.02 7.86

Feature

dmeanF0 (β1) −0.11 −0.04 −0.05 −0.11

dmeanF3 (β2) −0.003 −0.01 −0.005 −0.013

dmeanB4 (β3) −0.004 −0.004 −0.005 −0.012

feature difference at a time to select only those feature
differences that were most significant from the 15 esti-
mated ones. We searched for the highest Pearson cor-
relation between the model fitted values and the LLR
scores to compare between the models. After a feature
difference was included in the model, we proceeded to
evaluate the remaining feature differences, aggregating
one-by-one and verifying the highest correlation to be in-
cluded in the model. This process continued until there
was no increase in the correlation and all the feature dif-
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TABLE VI. Coefficients (β) for the linear mixed effect model

for male speakers presented by voice condition. Predictors for

i-vector same speaker scores: difference of mean F0, F4, and

B1. Predictors for x-vector same speaker scores: difference of

median F0, F4, and F1.

i-vector

Modal Old Child Pooled

β0 8.49 0.40 0.62 6.46

Feature

dmeanF0 (β1) −0.11 −0.03 −0.04 −0.08

dmeanF4 (β2) −0.01 −0.002 −0.01 −0.01

dmeanB1 (β3) −0.005 −0.007 −0.01 −0.02

x-vector

β0 10.07 0.36 −0.38 8.26

Feature

dmedianF0 (β1) −0.13 −0.05 −0.10 −0.13

dmeanF4 (β2) −0.002 −0.01 −0.004 −0.02

dmeanF1 (β3) −0.001 −0.01 −0.002 −0.03

ferences had been included. The final model has the fea-
ture differences in a sequence that can be interpreted as a
ranking in descending order that indicates the feature dif-
ferences that contribute more information to the model.
For simplicity, we chose the three top feature differences
for the proposed model. The rest of the feature differ-
ences results are included in the supplementary material.

For the female model, the acoustical feature differ-
ences (fixed effects) that were more important for the
fitted model were the differences of mean F0, mean F3,
and mean B4. For the male model, the factors that were
more explanatory for i-vector PLDA scores were the dif-
ferences of mean F0, mean F4, and mean B1, while for
x-vector PLDA were the differences of median F0, mean
F4, and mean F1. Tables V and VI present the regres-
sion coefficients for the best models selection for female
and male speakers respectively.

Table VII presents the Pearson correlations between
the model fitted values and the LLR scores for both sys-
tems in the corresponding voice conditions. Further, Fig-
ures 5 and 6 depict the correlations between the model
fitted values and the LLR scores for i-vector ASV sys-
tem. The model based on the absolute difference of the
selected features has a higher correlation for the disguised
voices than for the modal voice. This indicates that the
mixed effects model better explains the LLR score for
the target trials with disguised voices, where we see more
variation in the acoustical feature differences.

Table VIII presents the model parameters per gen-
der and voice condition for the best fitted models. β0 is
the mean LLR for the trials in the respective gender and
voice condition. σ2 represents the variability that is not
dependent on the speaker factor, while σ2

b describes the
variability that is related to the speaker effect. The resid-

TABLE VII. Correlations for the model fitted values and the

LLR scores (i-vector and x-vector ASV systems) correspond-

ing to gender and voice conditions (modal, old and child).

p-value 2.2e−16 with a confidence interval at 95%.

Model i-vector x-vector

Female – modal 0.51 0.57

Female – old 0.74 0.83

Female – child 0.74 0.80

Male – modal 0.64 0.67

Male – old 0.80 0.82

Male – child 0.87 0.92

ual variance (σ2) is high in all the cases, which indicates
that even though the selected feature differences explain
the LLR score per trial, there are factors that are not
included in our model. The model can be potentially im-
proved by including more acoustic features and/or other
distance measures.

TABLE VIII. Statistic parameters from the fitted models cor-

responding to gender and voice conditions (modal, old and

child) for i-vector and x-vector ASV systems.

i-vector

Population

mean

Residual er-

rors variance

Variance

speaker ef-

fects

Model β0 σ2 σ2
b

Female – modal 5.90 6.14 0.77

Female – old 0.97 6.83 4.48

Female – child −0.15 7.74 2.90

Male – modal 8.49 7.68 3.37

Male – old 0.40 8.95 2.99

Male – child 0.62 10.10 14.16

x-vector

Female – modal 9.79 8.09 1.98

Female – old 1.67 14.10 20.44

Female – child 1.02 13.72 13.81

Male – modal 10.07 8.08 4.70

Male – old 0.36 17.77 25.16

Male – child −0.38 15.41 40.85

IX. DISCUSSION

We summarize our main observations as follows:

• ASV performance degradation: while our
prior work (González Hautamäki et al., 2017) on
the AVOID corpus demonstrated severe perfor-
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FIG. 5. Correlation for fitted model values and LLR scores (x-vector) for female speakers in their (A) modal (r = 0.57), (B)

intended old (r = 0.83), and (C) intended child voices (r = 0.80).
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FIG. 6. Correlation for fitted model values and LLR scores (x-vector) for male speakers in their (A) modal (r = 0.67), (B)

intended old (r = 0.82), and (C) intended child voices(r = 0.92).

mance degradation of the i-vector system, we have
confirmed that the x-vector approach is not im-
mune to disguise either. The x-vector system sys-
tematically outperformed our i-vector system (Ta-
ble II), but relative performance degradation for
the former was worse. The mixed effects model
indicates substantially lowered LLR scores from
modal voice to the two disguised voices (Table IV).

• Features with greatest explanatory power:
The feature ranking experiment (Tables V and VI)
reveals the average (either mean or median) F0
difference to be the individually most important
feature to explain the target LLR score. Impor-
tantly, this is consistent across the i-vector and the
x-vector systems. F0 is followed by formant-related
mismatches, whether in specific formant frequen-
cies (F1, F3, F4) or bandwidths (B1, B4). Again,
the observations are nearly consistent across the i-
vector and the x-vector systems within each gender.

• Mixed effect model as a whole: How good
is the mixed effect model at explaining the tar-
get LLR score as a whole? As Table VII and
Fig. 6 indicate, the correlation between the fit-
ted model with the selected explanatory features

varies from 0.51 up to 0.92, with many values con-
centrated in [0.7, 0.8]. Despite the use of simple
acoustic features, the correlations are deemed to
be strong and indicate the usefulness of the pro-
posed framework. Nonetheless, the large residual
variances (Table VIII) indicate the presence of un-
modeled effects, leaving scope for future improve-
ments.

• Modal vs. disguised voices: The final model
correlation (Table VII) is weaker for the modal
than the two disguised voices (old, child). This
is somewhat expected; for acoustically similar ut-
terances (modal condition), ASV systems are tol-
erant against reasonable within-speaker variations
by their design. However, when the trial utterances
are acoustically very dissimilar (old and young con-
ditions), the LLR degradation is stronger because
the ASV systems are not designed to cope with
these cases.

• Model for i-vector vs. x-vector scores: Ta-
ble VII further indicates systematically higher cor-
relations for the x-vector system. This is in line
both with the larger relative degradation in EER
(Table II) and the higher absolute values of the β
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coefficients in Tables V and VI (on average). The
x-vector system could be said to be more sensitive
to large acoustic perturbations — though still out-
performing the i-vector system.

The above findings suggest that the proposed inter-
pretative framework is well-suited to cater for acoustic
explanations to ASV performance degradation, especially
under intentional and strong speech style changes. As
our research data consists of speech produced by naive
actors whose disguise strategies may be incompatible
with each other, the authors are cautious to avoid over-
interpreting observations relating to specific acoustic pa-
rameters. Nonetheless, one general observation was that
a mismatch in average F0 and specific formants (frequen-
cies and bandwidths) were the top features to explain
target LLRs in both of the tested ASV systems. The
commonality of the i-vector and the x-vector systems is
their use of MFCC features that are extracted from the
short-term power spectrum. The short-term power spec-
trum is notoriously sensitive to a number of distortions,
including F0 mismatch (El-Jaroudi and Makhoul, 1991)
and formant mismatch, which might explain the observed
results.

X. CONCLUSIONS

We performed linear mixed effects analysis of the re-
lationship between ASV system scores and acoustic and
prosodic within-speaker differences. The considered fixed
effects included voice condition (modal, intended old, in-
tended child), difference of F0 statistics (mean, stan-
dard deviation, median, mode, minimum and maximum),
mean difference of formants F1-F4, mean difference of
their bandwidths B1-B4, and difference of speech rate
(syllables/second). The random effect due to different
speakers was considered as part of the variability of the
model. Visual inspection of residual plots did not re-
veal any obvious deviations from homoscedasticity (ho-
mogeneity of variance) or normality. Feature selection
for the final model was performed by aggregating the
feature difference that added explanatory information to
the model, which was defined by the highest correlation
between the fitted values and the modeled LLR scores
variable.

In principle, the ASV systems considered in this
study use frame-level features — namely, MFCCs.
Nonetheless, we did not observe a drastic effect caused
by differences in formants, but it is the opposite case for
F0. In our previous work (González Hautamäki et al.,
2017), we already noted the drastic F0 modifications im-
plemented by the speakers when they attempted to sound
like an elderly person and a child. The new insight de-
rived from the present work is the explicit modeling of the
link between acoustic changes and degraded target LLR
scores. While our findings are specific to the selected
dataset and recognizer, the same mixed effects model
approach could be used to analyze the potential sensi-
tivity of other ASV systems to change in other features
as well. We envision that modeling speaker dependency

in, for example, trial-based calibration, can significantly
improve the calibration performance because all trials are
assumed to be independent in current systems.

The results suggest potential future improvements
to state-of-the-art ASV. Perhaps x-vector systems could
be made more robust against within-speaker speech style
variation by replacing MFCCs (or the power spectrum
estimator) with alternative methods designed to tackle
specifically identified types of acoustic mismatch (such
as F0 difference). Another path could be novel data aug-
mentation strategies to enlarge target speaker’s enroll-
ment data with acoustically-manipulated versions.
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