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ABSTRACT
For the task of detecting shouted speech in a noisy environment,
this paper introduces a system based on mel frequency cepstral co-
efficient (MFCC) feature extraction, unsupervised frame dropping
and Gaussian mixture model (GMM) classification. The evaluation
material consists of phonemically identical speech and shouting as
well as environmental noise of varying levels. The performance of
the shout detection system is analyzed by varying the MFCC fea-
ture extraction with respect to 1) the feature vector length and 2) the
spectrum estimation method. As for feature vector length, the best
performance is obtained using 30 MFCC coefficients, which is more
than what is conventionally used. In spectrum estimation, a scheme
that combines a linear prediction spectrum envelope with spectral
fine structure outperforms the conventional FFT.

Index Terms— shout detection

1. INTRODUCTION

Recently, several audio surveillance systems have been proposed to
detect abnormal or potentially alarming sounds in specific acoustic
environments. Examples include the detection of non-neutral speech
and banging in elevator [1], the detection of shouts in train [2] and
the detection of screams, gunshots and explosions in urban or mili-
tary environments [3].

It can be argued that shouting is a quite generic acoustic indica-
tor of a potentially hazardous situation in an environment typically
characterized by normal speaking voices and non-vocal environmen-
tal sounds. Shouting in such an environment is typically associated
with some degree of urgency. Hence, reliable detection of shouted
speech in noisy environments is an essential research topic in the
area of audio surveillance technology. This topic will be addressed
in the present paper by proposing a system using which the perfor-
mance of several techniques in shout detection can be compared.

Previous studies have examined the detection of shouted speech
[2] [4] or screams [5] [6] [3] apart from environmental noise, often
also including normal speech as test material [2] [4] [3]. Differently
from previous approaches, the present study uses exactly the same
textual material for both shouted speech and normal speech. It can
be argued that this scenario is more challenging, because when the
shouts and normal speech share the same phonemic content, phone-
mic differences between the two classes cannot aid the detection. In
some previous studies, the robustness of scream detection with re-
spect to decreasing signal-to-noise ratio (SNR) has been examined
[5] [6] [3] and the performance has been found to degrade steeply
when the SNR is close to 0 dB. This degradation has sometimes
been tackled by training the shout/scream models with data that al-
ready contains the expected type and amount of noise corruption [2]
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[6], but this calls for a complete retraining whenever the noise envi-
ronment changes and, as noted in [6], increases the number of false
alarms. In practice, the distance between the microphone and the
person shouting determines the SNR, and it is desirable that the per-
formance is independent of whether the person shouting is close to
or further away from the microphone. Clearly, there is a demand for
techniques that improve the noise robustness of shout and scream
detection. Towards this end, the present study trains the system on
clean (not noisy) vocal data and investigates the degradation of per-
formance as the SNR decreases. This is done using two different
realistic noise types: factory noise and large crowd babble.

The proposed shout detection system is based on two well-
known audio recognition techniques: feature extraction based on
mel frequency cepstral coefficients (MFCC) and classification using
Gaussian mixture models (GMMs), both of which have been popular
in previous audio surveillance systems, e.g. [1] [2] [3]. These are
complemented with several techniques to improve the robustness
of shout detection in adverse noise conditions. In particular, the
conventional Fourier-based spectrum estimation in the MFCC com-
putation is replaced with new methods that combine linear predictive
spectral envelope modeling with spectral fine structure, i.e., the fun-
damental frequency (F0) and its harmonics. Hence, the importance
of F0 and its multiple integers can be increased in the MFCC feature
extraction, a goal that is justified by the fact that shouting in speech
communication correlates with the use of high pitch [7]. In addition,
the number of MFCC coefficients is varied with different spectral
modeling techniques in order to better capture shout-discriminating
characteristics. The proposed system utilizes an unsupervised time
series segmentation method for energy-based frame dropping prior
to GMM training and detection.

2. SHOUT DETECTION SYSTEM

2.1. MFCC feature extraction

The input to the system is sampled at 16 kHz and pre-emphasized
with Hp(z) = 1 − 0.97z−1. The signal is processed in Hamming-
windowed frames of 25 ms with a 10 ms interval between two
frames. Fig. 1 shows the complete chain of MFCC computation
used in the present work.

The feature extraction uses MFCCs as a representation for the
short-time magnitude spectrum [8]. Different methods are evaluated
for the estimation of the magnitude spectrum. The fast Fourier trans-
form (FFT) is the conventional spectrum estimation method for the
MFCC computation. Recently, the present authors have investigated
the use of different forms of linear predictive models in the MFCC
feature extraction for automatic speech recognition and speaker ver-
ification in adverse conditions. In particular, weighted linear predic-
tion (WLP) and its variants have led to improved robustness in these
applications, e.g. [9] [10] [11]. The explanation of LP and WLP is
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Fig. 1. Diagram of the MFCC feature extraction.

deferred to Section 2.2.
FFT spectrum estimation preserves the spectral fine structure,

while LP and WLP (with the typical choice of prediction order p =
20 for 16 kHz sampling rate, as used in this work) only depict the
spectral envelope. Because shouting clearly has an effect on the vo-
cal tract excitation (e.g., increased F0) and the spectral fine structure
is related to the vocal tract excitation, using the all-pole spectrum
envelope alone may be sub-optimal for the detection of shouts. To
include the spectral fine structure, the all-pole spectral envelope is
multiplied by the excitation spectrum obtained by liftering the FFT-
based cepstrum in the cepstral domain and transforming the liftered
cepstrum back into the spectral domain. The lifter used for this pur-
pose forces to zero the cepstral coefficients corresponding to lags
less than (Fs/500) + 1, where Fs denotes the sampling rate in Hz.
This means that periodic vocal tract excitation information up to 500
Hz is retained in the liftered excitation spectrum. Figs. 1 and 2 illus-
trate the idea.
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Fig. 2. The vowel /o/ spoken normally (top) and shouted (bottom) by
a male speaker. LP and WLP spectrum envelopes and the cepstrally
liftered excitation spectrum (left) are used to construct spectrum es-
timate alternatives (right) to the FFT spectrum. The notations A, B,
C and D correspond to Fig. 1.

Once a spectrum estimate is obtained using some of the above
methods, it is squared and passed through a conventional mel filter-
bank with 40 mel filters. After converting the mel spectrum into a

logarithmic form, it is transformed by the discrete cosine transform
(DCT) to yield the desired number of MFCC coefficients (the so-
called ”zeroth” MFCC coefficient, which is related to the energy of
the analysis frame, is not used). The longer the MFCC vector, the
more of the detail left in the mel spectrum it preserves. By examining
the mean and variance of theMFCC coefficients in speech and shout-
ing, it was observed that these two classes differ mainly in MFCC
coefficients with index below 30. Therefore, in order to analyze the
effect of the MFCC vector length, the values 8, 12, 20 and 30 were
chosen for the experimental evaluation. The effect of concatenat-
ing the basic 12 MFCC coefficients with their delta and double-delta
coefficients to depict their instantaneous trajectories was also inves-
tigated, but this was not found to improve detection performance.

2.2. Linear predictive spectrum envelope estimation

Linear predictive (LP) speech spectrum modeling [12] assumes that
each speech sample is predictable as a linear combination of p pre-
vious samples, ŝn =

Pp

k=1 aksn−k, where sn are the samples of
the speech signal in a given short-term frame. The {ak} are the pre-
dictor coefficients, which in the frequency domain form an all-pole
filterH(z) = 1/(1−

Pp

k=1
akz−k). The number of predictor coef-

ficients p is the order of linear prediction. Conventional LP analysis
minimizes the energy of the prediction error signalELP =

P
n
(sn−Pp

k=1
aksn−k)2 by setting the partial derivatives of ELP with re-

spect to each coefficient ak to zero. This results in the normal equa-
tions [12]

Pp

k=1
ak

P
n

sn−ksn−j =
P

n
snsn−j , 1 ≤ j ≤ p.

The range of summation of n is chosen in this work to correspond to
the autocorrelation method, in which the energy is minimized over a
theoretically infinite interval, but sn is considered to be zero outside
the analysis window [12].

WLP, originally introduced in [13], is a generalization of LP
that introduces a temporal weighting of the squared prediction error
in model coefficient optimization. Specifically, in WLP, the predic-
tor coefficients {bk} are solved by minimizing the energy EWLP =P

n
(sn −

Pp

k=1
bksn−k)2Wn, where Wn is the weighting func-

tion chosen as the short-time energy of the immediate signal history:
Wn =

Pp

i=1
s2

n−i . This kind of weighting can be used to empha-
size the importance of the prediction error in the high-energy regions
assumed to be less affected by noise (large local signal-to-noise ra-
tio), and de-emphasize the importance of modeling the noisier low-
energy regions. The WLP model is obtained by solving the nor-
mal equations

Pp

k=1
bk

P
n

Wnsn−ksn−i =
P

n
Wnsnsn−i for

all 1 ≤ i ≤ p.

2.3. Unsupervised segmentation for energy-based frame selec-
tion

For long-time processing of the features, frame dropping is im-
plemented using an unsupervised time series segmentation method.
This step is performed in both the training and testing phases. Within
each long-time analysis block of two seconds, the logarithmic frame
energy is computed for each short-time analysis frame, i.e., every
10 ms. This sequence of 200 energy values, denoted by En, is
segmented into “low state” and “high state” using unsupervised
training of a univariate Gaussian density ergodic hidden Markov
model (HMM) with two states. The HMM is parametrized by the
parameter set λ = {(aij), π1, π2, μ1, μ2, σ

2
1 , σ2

2}, where (aij) de-
notes the 2 × 2 state transition probability matrix, π1 and π2 are
the initial state probabilities, μ1 and μ2 are the state density means
and σ2

1 and σ2
2 are the state density variances. The most important

aspect of this method is the initialization of the HMM parameters.
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While the probability parameters (aij), π1 and π2 are initialized
conventionally using uniform distributions [14], the state means are
initialized as μ1 = max(En) and μ2 = min(En). For the variance
parameters, the initialization σ2

1 = σ2
2 = R · var(En) with R = 0.1

has been found to yield satisfactory results. From these initial val-
ues, the HMM parameters are estimated in a typical fashion using
an implementation of the EM re-estimation principle [14].

During each iteration, the EM algorithm estimates the proba-
bility distribution (γn(1), γn(2)) for being in state 1 or state 2 at
time instant n. To convert these values to a segmentation in terms
of the two states, we simply take Xn = 1 if γn(1) ≥ γn(2) and
Xn = 0 otherwise, for all n. The EM re-estimation is deemed to
have converged and the iteration is stopped once this segmentation
Xn does not change between two successive EM iterations. Since
state 1 was initialized with the maximal value and state 2 with the
minimal value, we can safely assume that state 1 will be the “high
state” for the frame energy time series. The additional benefit of us-
ing an HMM for this purpose instead of simple unsupervised thresh-
old determination is that the HMM smoothes the segmentation in
time. All successive processing for the block is done using only
the high-state frames for which Xn = 1. Modeling and recogniz-
ing only these high-energy frames is justifiable because these frames
presumably have the best local SNR. Fig. 3 shows the evolution of
the state segmentationXn with EM iterations for a noisy (SNR 0 dB
factory noise) two-second speech segment.

En

Xn iteration 1

Xn iteration 2

Xn iteration 3

Fig. 3. Evolution of HMM segmentation with EM iterations for the
log energy sequence of a noisy speech segment.

2.4. GMM classification

The classifier uses a specialized GMM to model each of the three
primary classes: the noise environment, normal speech (both male
and female) and shouting (both male and female). These GMMs
λenvironment, λspeech and λshout have 8 mixture components with
a diagonal covariance structure [15]. For initializing the component
mean vectors of the GMMs, the simple heuristic approach proposed
in [16] is used. The variances of each variable in each component
are initialized by 0.1 times the variable’s global variance over the
training data. The mixture weights are initialized with uniform dis-
tributions. Each GMM is trained by running four EM iterations [15].
For the number of mixture components in each model, both 8 and
16 were evaluated and the former was selected because it provided
slightly better performance.

When the GMMs are used in detection, the audio signal is pro-
cessed in blocks of two seconds, with a block shift of one second.
After the high-energy frames have been selected using the HMM
frame dropping detailed in Section 2.3, the averaged log likelihoods

of them having been produced by each of the three GMMs are com-
puted and denoted as Lshout, Lspeech and Lenvironment. The shout-
ing detection is considered as a binary classification problem and
treated according to the Bayes rule. The logarithmic likelihood ratio
decision statistic is defined as L = Lshout − Lnonshout. The shout
score is the shout GMM likelihood and the non-shout score is ob-
tained as the maximum of the speech and noise GMM likelihoods
as Lnonshout = max(Lspeech, Lenvironment). For each detection
block, the statistic L can be recorded and used in evaluating the sys-
tem performance with variable detection threshold.

3. EXPERIMENTAL EVALUATION

3.1. Test material and setup

To represent different types of acoustic environments, two types of
noise from the NOISEX-92 database were used. The factory1 noise
contains machine noise with frequent transient impulsive sounds.
The babble noise contains many people talking simultaneously in
a cafeteria-like environment.

The speech and shouting was recorded with high quality equip-
ment in an anechoic chamber. The data consists of 11 male and 11
female speakers, each speaking 24 Finnish sentences, both in a nor-
mal fashion and by shouting. The shouting was controlled both by
listening and by monitoring the sound pressure level. A mere raised
voice was not accepted as shouting. Twelve of the sentences are
sentences in the imperative mood, consisting of one to four Finnish
words, with a message that could plausibly be uttered in a potentially
threatening situation, such as “anna se kamera tänne” (“give me the
camera”), “älkää liikkuko” (“don’t move”) and “lopettakaa” (“stop
it”). The other 12 sentences consist of three Finnish words, are in
the indicative mood and have a neutral, abstract information content.

The experiments were carried out as leave-one-out cross valida-
tion. Each speaker in turn was selected as the test speaker, and data
from the other 21 speakers was used to train the speech and shout
models. The test material for each speaker consisted of that speaker’s
speech and shout material, both corrupted by noise with a given seg-
mental or frame-averaged SNR, as well as a segment of noise equal
in length to the speaker’s combined speech and shout material. The
noise model was trained using two minutes of the noise material,
while the remaining portion of the noise recording was used for test-
ing. The primary measure to assess the performance is the equal
error rate (EER), a common metric to assess the quality of a two-
class detector. The EER corresponds to the decision threshold for
which the miss and false alarm rates are equal.

3.2. Results

Tables 1 and 2 show the shout detection results for the NOISEX-92
factory1 and babble noises, respectively. In the case of 12 MFCCs,
results are also shown by using only the LP or WLP spectrum en-
velope without the excitation spectrum. The usefulness of including
the excitation spectrum is easily observed. Several different types
of features give good performance at low to moderate noise levels.
However, at SNR levels -10 dB and -20 dB, at which the system
performance is degrading rapidly, the most resistant features are 30
MFCCs obtained using LP or WLP envelope combined with the ex-
citation spectrum.
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Table 1. Shout detection EER scores (%) for factory1 noise. Excita-
tion spectrum is denoted by “ex.”.

Spectrum # Signal-to-noise ratio (dB)
estimation MFCCs 20 10 0 -10 -20 -30
FFT 8 2.3 3.2 3.9 13.9 27.7 49.4
FFT 12 2.4 2.5 3.2 12.2 28.1 50.2
FFT 20 2.5 2.3 3.3 11.5 21.3 48.2
FFT 30 2.5 2.7 2.9 10.1 20.2 46.0
LP + ex. 8 4.0 3.9 4.6 7.6 22.4 46.6
LP + ex. 12 2.7 2.3 3.3 6.6 21.2 46.4
LP 12 3.9 4.3 5.6 10.3 22.0 45.4
LP + ex. 20 4.7 4.7 4.8 10.2 21.6 50.9
LP + ex. 30 2.9 3.1 3.0 6.1 17.0 45.9
WLP + ex. 8 4.0 3.4 4.5 8.4 22.4 46.1
WLP + ex. 12 3.3 2.8 3.4 7.6 19.9 44.9
WLP 12 4.0 4.3 6.8 12.1 22.4 45.6
WLP + ex. 20 3.9 3.6 3.4 8.8 18.7 48.6
WLP + ex. 30 2.6 2.5 3.3 6.8 18.4 46.6

Table 2. Shout detection EER scores (%) for babble noise. Excita-
tion spectrum is denoted by “ex.”.

Spectrum # Signal-to-noise ratio (dB)
estimation MFCCs 20 10 0 -10 -20 -30
FFT 8 2.2 2.8 3.9 11.0 24.2 45.6
FFT 12 2.6 2.9 3.2 9.5 22.8 46.0
FFT 20 2.2 2.5 3.0 7.1 21.7 46.4
FFT 30 2.6 2.3 2.1 5.1 19.8 45.0
LP + ex. 8 4.0 4.0 4.2 6.1 19.4 44.1
LP + ex. 12 2.8 2.7 2.9 4.7 17.0 43.8
LP 12 3.5 4.3 4.6 7.7 22.9 45.6
LP + ex. 20 4.7 4.6 4.5 6.7 16.0 41.9
LP + ex. 30 3.2 2.9 3.5 4.6 15.6 42.9
WLP + ex. 8 3.3 3.6 3.6 6.0 20.4 44.0
WLP + ex. 12 3.4 3.0 3.3 6.5 19.4 45.1
WLP 12 4.3 4.9 4.9 9.9 23.4 46.6
WLP + ex. 20 3.9 3.4 3.5 5.2 16.9 44.5
WLP + ex. 30 2.2 2.4 2.2 4.7 15.2 43.8

4. CONCLUSIONS

This study introduced a system for shout detection, including new
methods for feature extraction and energy-based segmentation. The
emphasis was on noise robustness with respect to realistic envi-
ronmental noises. With all evaluated MFCC features, the system
showed reasonably good performance with increasing noise until
at least 0 dB SNR level. The largest differences between different
features were observed in the noisier cases. The overall best results
were obtained with feature vectors consisting of 30 MFCCs. A pos-
sible explanation is that they preserve more spectral fine structure
than shorter MFCC vectors and thus contain more information about
vocal tract excitation. Concerning spectrum estimation in MFCC
computation, the best noise performance was, instead of the conven-
tional FFT, shown by the composite spectra obtained by multiplying
an LP or WLP spectrum envelope with the excitation spectrum.
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